| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines several CodeGen-specific LLVM IR analysis utilities. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/Analysis.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Transforms/Utils/GlobalStatus.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | /// Compute the linearized index of a member in a nested aggregate/struct/array | 
 | /// by recursing and accumulating CurIndex as long as there are indices in the | 
 | /// index list. | 
 | unsigned llvm::ComputeLinearIndex(Type *Ty, | 
 |                                   const unsigned *Indices, | 
 |                                   const unsigned *IndicesEnd, | 
 |                                   unsigned CurIndex) { | 
 |   // Base case: We're done. | 
 |   if (Indices && Indices == IndicesEnd) | 
 |     return CurIndex; | 
 |  | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |         EI != EE; ++EI) { | 
 |       if (Indices && *Indices == unsigned(EI - EB)) | 
 |         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); | 
 |       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); | 
 |     } | 
 |     assert(!Indices && "Unexpected out of bound"); | 
 |     return CurIndex; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     Type *EltTy = ATy->getElementType(); | 
 |     unsigned NumElts = ATy->getNumElements(); | 
 |     // Compute the Linear offset when jumping one element of the array | 
 |     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); | 
 |     if (Indices) { | 
 |       assert(*Indices < NumElts && "Unexpected out of bound"); | 
 |       // If the indice is inside the array, compute the index to the requested | 
 |       // elt and recurse inside the element with the end of the indices list | 
 |       CurIndex += EltLinearOffset* *Indices; | 
 |       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); | 
 |     } | 
 |     CurIndex += EltLinearOffset*NumElts; | 
 |     return CurIndex; | 
 |   } | 
 |   // We haven't found the type we're looking for, so keep searching. | 
 |   return CurIndex + 1; | 
 | } | 
 |  | 
 | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
 | /// EVTs that represent all the individual underlying | 
 | /// non-aggregate types that comprise it. | 
 | /// | 
 | /// If Offsets is non-null, it points to a vector to be filled in | 
 | /// with the in-memory offsets of each of the individual values. | 
 | /// | 
 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, | 
 |                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs, | 
 |                            SmallVectorImpl<EVT> *MemVTs, | 
 |                            SmallVectorImpl<uint64_t> *Offsets, | 
 |                            uint64_t StartingOffset) { | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     const StructLayout *SL = DL.getStructLayout(STy); | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |          EI != EE; ++EI) | 
 |       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, | 
 |                       StartingOffset + SL->getElementOffset(EI - EB)); | 
 |     return; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     Type *EltTy = ATy->getElementType(); | 
 |     uint64_t EltSize = DL.getTypeAllocSize(EltTy); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, | 
 |                       StartingOffset + i * EltSize); | 
 |     return; | 
 |   } | 
 |   // Interpret void as zero return values. | 
 |   if (Ty->isVoidTy()) | 
 |     return; | 
 |   // Base case: we can get an EVT for this LLVM IR type. | 
 |   ValueVTs.push_back(TLI.getValueType(DL, Ty)); | 
 |   if (MemVTs) | 
 |     MemVTs->push_back(TLI.getMemValueType(DL, Ty)); | 
 |   if (Offsets) | 
 |     Offsets->push_back(StartingOffset); | 
 | } | 
 |  | 
 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, | 
 |                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs, | 
 |                            SmallVectorImpl<uint64_t> *Offsets, | 
 |                            uint64_t StartingOffset) { | 
 |   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, | 
 |                          StartingOffset); | 
 | } | 
 |  | 
 | void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, | 
 |                             SmallVectorImpl<LLT> &ValueTys, | 
 |                             SmallVectorImpl<uint64_t> *Offsets, | 
 |                             uint64_t StartingOffset) { | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (StructType *STy = dyn_cast<StructType>(&Ty)) { | 
 |     const StructLayout *SL = DL.getStructLayout(STy); | 
 |     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) | 
 |       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, | 
 |                        StartingOffset + SL->getElementOffset(I)); | 
 |     return; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { | 
 |     Type *EltTy = ATy->getElementType(); | 
 |     uint64_t EltSize = DL.getTypeAllocSize(EltTy); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |       computeValueLLTs(DL, *EltTy, ValueTys, Offsets, | 
 |                        StartingOffset + i * EltSize); | 
 |     return; | 
 |   } | 
 |   // Interpret void as zero return values. | 
 |   if (Ty.isVoidTy()) | 
 |     return; | 
 |   // Base case: we can get an LLT for this LLVM IR type. | 
 |   ValueTys.push_back(getLLTForType(Ty, DL)); | 
 |   if (Offsets != nullptr) | 
 |     Offsets->push_back(StartingOffset * 8); | 
 | } | 
 |  | 
 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
 | GlobalValue *llvm::ExtractTypeInfo(Value *V) { | 
 |   V = V->stripPointerCasts(); | 
 |   GlobalValue *GV = dyn_cast<GlobalValue>(V); | 
 |   GlobalVariable *Var = dyn_cast<GlobalVariable>(V); | 
 |  | 
 |   if (Var && Var->getName() == "llvm.eh.catch.all.value") { | 
 |     assert(Var->hasInitializer() && | 
 |            "The EH catch-all value must have an initializer"); | 
 |     Value *Init = Var->getInitializer(); | 
 |     GV = dyn_cast<GlobalValue>(Init); | 
 |     if (!GV) V = cast<ConstantPointerNull>(Init); | 
 |   } | 
 |  | 
 |   assert((GV || isa<ConstantPointerNull>(V)) && | 
 |          "TypeInfo must be a global variable or NULL"); | 
 |   return GV; | 
 | } | 
 |  | 
 | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
 | /// processed uses a memory 'm' constraint. | 
 | bool | 
 | llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, | 
 |                                 const TargetLowering &TLI) { | 
 |   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
 |     InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
 |     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
 |       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
 |       if (CType == TargetLowering::C_Memory) | 
 |         return true; | 
 |     } | 
 |  | 
 |     // Indirect operand accesses access memory. | 
 |     if (CI.isIndirect) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR floating-point condition code.  This includes | 
 | /// consideration of global floating-point math flags. | 
 | /// | 
 | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { | 
 |   switch (Pred) { | 
 |   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; | 
 |   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ; | 
 |   case FCmpInst::FCMP_OGT:   return ISD::SETOGT; | 
 |   case FCmpInst::FCMP_OGE:   return ISD::SETOGE; | 
 |   case FCmpInst::FCMP_OLT:   return ISD::SETOLT; | 
 |   case FCmpInst::FCMP_OLE:   return ISD::SETOLE; | 
 |   case FCmpInst::FCMP_ONE:   return ISD::SETONE; | 
 |   case FCmpInst::FCMP_ORD:   return ISD::SETO; | 
 |   case FCmpInst::FCMP_UNO:   return ISD::SETUO; | 
 |   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ; | 
 |   case FCmpInst::FCMP_UGT:   return ISD::SETUGT; | 
 |   case FCmpInst::FCMP_UGE:   return ISD::SETUGE; | 
 |   case FCmpInst::FCMP_ULT:   return ISD::SETULT; | 
 |   case FCmpInst::FCMP_ULE:   return ISD::SETULE; | 
 |   case FCmpInst::FCMP_UNE:   return ISD::SETUNE; | 
 |   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE; | 
 |   default: llvm_unreachable("Invalid FCmp predicate opcode!"); | 
 |   } | 
 | } | 
 |  | 
 | ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { | 
 |   switch (CC) { | 
 |     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; | 
 |     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; | 
 |     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; | 
 |     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; | 
 |     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; | 
 |     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; | 
 |     default: return CC; | 
 |   } | 
 | } | 
 |  | 
 | /// getICmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR integer condition code. | 
 | /// | 
 | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { | 
 |   switch (Pred) { | 
 |   case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
 |   case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
 |   case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
 |   case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
 |   case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
 |   case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
 |   case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
 |   case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
 |   case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
 |   case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
 |   default: | 
 |     llvm_unreachable("Invalid ICmp predicate opcode!"); | 
 |   } | 
 | } | 
 |  | 
 | static bool isNoopBitcast(Type *T1, Type *T2, | 
 |                           const TargetLoweringBase& TLI) { | 
 |   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || | 
 |          (isa<VectorType>(T1) && isa<VectorType>(T2) && | 
 |           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); | 
 | } | 
 |  | 
 | /// Look through operations that will be free to find the earliest source of | 
 | /// this value. | 
 | /// | 
 | /// @param ValLoc If V has aggegate type, we will be interested in a particular | 
 | /// scalar component. This records its address; the reverse of this list gives a | 
 | /// sequence of indices appropriate for an extractvalue to locate the important | 
 | /// value. This value is updated during the function and on exit will indicate | 
 | /// similar information for the Value returned. | 
 | /// | 
 | /// @param DataBits If this function looks through truncate instructions, this | 
 | /// will record the smallest size attained. | 
 | static const Value *getNoopInput(const Value *V, | 
 |                                  SmallVectorImpl<unsigned> &ValLoc, | 
 |                                  unsigned &DataBits, | 
 |                                  const TargetLoweringBase &TLI, | 
 |                                  const DataLayout &DL) { | 
 |   while (true) { | 
 |     // Try to look through V1; if V1 is not an instruction, it can't be looked | 
 |     // through. | 
 |     const Instruction *I = dyn_cast<Instruction>(V); | 
 |     if (!I || I->getNumOperands() == 0) return V; | 
 |     const Value *NoopInput = nullptr; | 
 |  | 
 |     Value *Op = I->getOperand(0); | 
 |     if (isa<BitCastInst>(I)) { | 
 |       // Look through truly no-op bitcasts. | 
 |       if (isNoopBitcast(Op->getType(), I->getType(), TLI)) | 
 |         NoopInput = Op; | 
 |     } else if (isa<GetElementPtrInst>(I)) { | 
 |       // Look through getelementptr | 
 |       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) | 
 |         NoopInput = Op; | 
 |     } else if (isa<IntToPtrInst>(I)) { | 
 |       // Look through inttoptr. | 
 |       // Make sure this isn't a truncating or extending cast.  We could | 
 |       // support this eventually, but don't bother for now. | 
 |       if (!isa<VectorType>(I->getType()) && | 
 |           DL.getPointerSizeInBits() == | 
 |               cast<IntegerType>(Op->getType())->getBitWidth()) | 
 |         NoopInput = Op; | 
 |     } else if (isa<PtrToIntInst>(I)) { | 
 |       // Look through ptrtoint. | 
 |       // Make sure this isn't a truncating or extending cast.  We could | 
 |       // support this eventually, but don't bother for now. | 
 |       if (!isa<VectorType>(I->getType()) && | 
 |           DL.getPointerSizeInBits() == | 
 |               cast<IntegerType>(I->getType())->getBitWidth()) | 
 |         NoopInput = Op; | 
 |     } else if (isa<TruncInst>(I) && | 
 |                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { | 
 |       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); | 
 |       NoopInput = Op; | 
 |     } else if (auto CS = ImmutableCallSite(I)) { | 
 |       const Value *ReturnedOp = CS.getReturnedArgOperand(); | 
 |       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) | 
 |         NoopInput = ReturnedOp; | 
 |     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { | 
 |       // Value may come from either the aggregate or the scalar | 
 |       ArrayRef<unsigned> InsertLoc = IVI->getIndices(); | 
 |       if (ValLoc.size() >= InsertLoc.size() && | 
 |           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { | 
 |         // The type being inserted is a nested sub-type of the aggregate; we | 
 |         // have to remove those initial indices to get the location we're | 
 |         // interested in for the operand. | 
 |         ValLoc.resize(ValLoc.size() - InsertLoc.size()); | 
 |         NoopInput = IVI->getInsertedValueOperand(); | 
 |       } else { | 
 |         // The struct we're inserting into has the value we're interested in, no | 
 |         // change of address. | 
 |         NoopInput = Op; | 
 |       } | 
 |     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { | 
 |       // The part we're interested in will inevitably be some sub-section of the | 
 |       // previous aggregate. Combine the two paths to obtain the true address of | 
 |       // our element. | 
 |       ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); | 
 |       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); | 
 |       NoopInput = Op; | 
 |     } | 
 |     // Terminate if we couldn't find anything to look through. | 
 |     if (!NoopInput) | 
 |       return V; | 
 |  | 
 |     V = NoopInput; | 
 |   } | 
 | } | 
 |  | 
 | /// Return true if this scalar return value only has bits discarded on its path | 
 | /// from the "tail call" to the "ret". This includes the obvious noop | 
 | /// instructions handled by getNoopInput above as well as free truncations (or | 
 | /// extensions prior to the call). | 
 | static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, | 
 |                                  SmallVectorImpl<unsigned> &RetIndices, | 
 |                                  SmallVectorImpl<unsigned> &CallIndices, | 
 |                                  bool AllowDifferingSizes, | 
 |                                  const TargetLoweringBase &TLI, | 
 |                                  const DataLayout &DL) { | 
 |  | 
 |   // Trace the sub-value needed by the return value as far back up the graph as | 
 |   // possible, in the hope that it will intersect with the value produced by the | 
 |   // call. In the simple case with no "returned" attribute, the hope is actually | 
 |   // that we end up back at the tail call instruction itself. | 
 |   unsigned BitsRequired = UINT_MAX; | 
 |   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); | 
 |  | 
 |   // If this slot in the value returned is undef, it doesn't matter what the | 
 |   // call puts there, it'll be fine. | 
 |   if (isa<UndefValue>(RetVal)) | 
 |     return true; | 
 |  | 
 |   // Now do a similar search up through the graph to find where the value | 
 |   // actually returned by the "tail call" comes from. In the simple case without | 
 |   // a "returned" attribute, the search will be blocked immediately and the loop | 
 |   // a Noop. | 
 |   unsigned BitsProvided = UINT_MAX; | 
 |   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); | 
 |  | 
 |   // There's no hope if we can't actually trace them to (the same part of!) the | 
 |   // same value. | 
 |   if (CallVal != RetVal || CallIndices != RetIndices) | 
 |     return false; | 
 |  | 
 |   // However, intervening truncates may have made the call non-tail. Make sure | 
 |   // all the bits that are needed by the "ret" have been provided by the "tail | 
 |   // call". FIXME: with sufficiently cunning bit-tracking, we could look through | 
 |   // extensions too. | 
 |   if (BitsProvided < BitsRequired || | 
 |       (!AllowDifferingSizes && BitsProvided != BitsRequired)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// For an aggregate type, determine whether a given index is within bounds or | 
 | /// not. | 
 | static bool indexReallyValid(CompositeType *T, unsigned Idx) { | 
 |   if (ArrayType *AT = dyn_cast<ArrayType>(T)) | 
 |     return Idx < AT->getNumElements(); | 
 |  | 
 |   return Idx < cast<StructType>(T)->getNumElements(); | 
 | } | 
 |  | 
 | /// Move the given iterators to the next leaf type in depth first traversal. | 
 | /// | 
 | /// Performs a depth-first traversal of the type as specified by its arguments, | 
 | /// stopping at the next leaf node (which may be a legitimate scalar type or an | 
 | /// empty struct or array). | 
 | /// | 
 | /// @param SubTypes List of the partial components making up the type from | 
 | /// outermost to innermost non-empty aggregate. The element currently | 
 | /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). | 
 | /// | 
 | /// @param Path Set of extractvalue indices leading from the outermost type | 
 | /// (SubTypes[0]) to the leaf node currently represented. | 
 | /// | 
 | /// @returns true if a new type was found, false otherwise. Calling this | 
 | /// function again on a finished iterator will repeatedly return | 
 | /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty | 
 | /// aggregate or a non-aggregate | 
 | static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, | 
 |                                   SmallVectorImpl<unsigned> &Path) { | 
 |   // First march back up the tree until we can successfully increment one of the | 
 |   // coordinates in Path. | 
 |   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { | 
 |     Path.pop_back(); | 
 |     SubTypes.pop_back(); | 
 |   } | 
 |  | 
 |   // If we reached the top, then the iterator is done. | 
 |   if (Path.empty()) | 
 |     return false; | 
 |  | 
 |   // We know there's *some* valid leaf now, so march back down the tree picking | 
 |   // out the left-most element at each node. | 
 |   ++Path.back(); | 
 |   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); | 
 |   while (DeeperType->isAggregateType()) { | 
 |     CompositeType *CT = cast<CompositeType>(DeeperType); | 
 |     if (!indexReallyValid(CT, 0)) | 
 |       return true; | 
 |  | 
 |     SubTypes.push_back(CT); | 
 |     Path.push_back(0); | 
 |  | 
 |     DeeperType = CT->getTypeAtIndex(0U); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Find the first non-empty, scalar-like type in Next and setup the iterator | 
 | /// components. | 
 | /// | 
 | /// Assuming Next is an aggregate of some kind, this function will traverse the | 
 | /// tree from left to right (i.e. depth-first) looking for the first | 
 | /// non-aggregate type which will play a role in function return. | 
 | /// | 
 | /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup | 
 | /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first | 
 | /// i32 in that type. | 
 | static bool firstRealType(Type *Next, | 
 |                           SmallVectorImpl<CompositeType *> &SubTypes, | 
 |                           SmallVectorImpl<unsigned> &Path) { | 
 |   // First initialise the iterator components to the first "leaf" node | 
 |   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf | 
 |   // despite nominally being an aggregate). | 
 |   while (Next->isAggregateType() && | 
 |          indexReallyValid(cast<CompositeType>(Next), 0)) { | 
 |     SubTypes.push_back(cast<CompositeType>(Next)); | 
 |     Path.push_back(0); | 
 |     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); | 
 |   } | 
 |  | 
 |   // If there's no Path now, Next was originally scalar already (or empty | 
 |   // leaf). We're done. | 
 |   if (Path.empty()) | 
 |     return true; | 
 |  | 
 |   // Otherwise, use normal iteration to keep looking through the tree until we | 
 |   // find a non-aggregate type. | 
 |   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { | 
 |     if (!advanceToNextLeafType(SubTypes, Path)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Set the iterator data-structures to the next non-empty, non-aggregate | 
 | /// subtype. | 
 | static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, | 
 |                          SmallVectorImpl<unsigned> &Path) { | 
 |   do { | 
 |     if (!advanceToNextLeafType(SubTypes, Path)) | 
 |       return false; | 
 |  | 
 |     assert(!Path.empty() && "found a leaf but didn't set the path?"); | 
 |   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// Test if the given instruction is in a position to be optimized | 
 | /// with a tail-call. This roughly means that it's in a block with | 
 | /// a return and there's nothing that needs to be scheduled | 
 | /// between it and the return. | 
 | /// | 
 | /// This function only tests target-independent requirements. | 
 | bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { | 
 |   const Instruction *I = CS.getInstruction(); | 
 |   const BasicBlock *ExitBB = I->getParent(); | 
 |   const Instruction *Term = ExitBB->getTerminator(); | 
 |   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); | 
 |  | 
 |   // The block must end in a return statement or unreachable. | 
 |   // | 
 |   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in | 
 |   // an unreachable, for now. The way tailcall optimization is currently | 
 |   // implemented means it will add an epilogue followed by a jump. That is | 
 |   // not profitable. Also, if the callee is a special function (e.g. | 
 |   // longjmp on x86), it can end up causing miscompilation that has not | 
 |   // been fully understood. | 
 |   if (!Ret && | 
 |       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) | 
 |     return false; | 
 |  | 
 |   // If I will have a chain, make sure no other instruction that will have a | 
 |   // chain interposes between I and the return. | 
 |   if (I->mayHaveSideEffects() || I->mayReadFromMemory() || | 
 |       !isSafeToSpeculativelyExecute(I)) | 
 |     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { | 
 |       if (&*BBI == I) | 
 |         break; | 
 |       // Debug info intrinsics do not get in the way of tail call optimization. | 
 |       if (isa<DbgInfoIntrinsic>(BBI)) | 
 |         continue; | 
 |       // A lifetime end intrinsic should not stop tail call optimization. | 
 |       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) | 
 |         if (II->getIntrinsicID() == Intrinsic::lifetime_end) | 
 |           continue; | 
 |       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || | 
 |           !isSafeToSpeculativelyExecute(&*BBI)) | 
 |         return false; | 
 |     } | 
 |  | 
 |   const Function *F = ExitBB->getParent(); | 
 |   return returnTypeIsEligibleForTailCall( | 
 |       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); | 
 | } | 
 |  | 
 | bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, | 
 |                                     const ReturnInst *Ret, | 
 |                                     const TargetLoweringBase &TLI, | 
 |                                     bool *AllowDifferingSizes) { | 
 |   // ADS may be null, so don't write to it directly. | 
 |   bool DummyADS; | 
 |   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; | 
 |   ADS = true; | 
 |  | 
 |   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); | 
 |   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), | 
 |                           AttributeList::ReturnIndex); | 
 |  | 
 |   // NoAlias and NonNull are completely benign as far as calling convention | 
 |   // goes, they shouldn't affect whether the call is a tail call. | 
 |   CallerAttrs.removeAttribute(Attribute::NoAlias); | 
 |   CalleeAttrs.removeAttribute(Attribute::NoAlias); | 
 |   CallerAttrs.removeAttribute(Attribute::NonNull); | 
 |   CalleeAttrs.removeAttribute(Attribute::NonNull); | 
 |  | 
 |   if (CallerAttrs.contains(Attribute::ZExt)) { | 
 |     if (!CalleeAttrs.contains(Attribute::ZExt)) | 
 |       return false; | 
 |  | 
 |     ADS = false; | 
 |     CallerAttrs.removeAttribute(Attribute::ZExt); | 
 |     CalleeAttrs.removeAttribute(Attribute::ZExt); | 
 |   } else if (CallerAttrs.contains(Attribute::SExt)) { | 
 |     if (!CalleeAttrs.contains(Attribute::SExt)) | 
 |       return false; | 
 |  | 
 |     ADS = false; | 
 |     CallerAttrs.removeAttribute(Attribute::SExt); | 
 |     CalleeAttrs.removeAttribute(Attribute::SExt); | 
 |   } | 
 |  | 
 |   // Drop sext and zext return attributes if the result is not used. | 
 |   // This enables tail calls for code like: | 
 |   // | 
 |   // define void @caller() { | 
 |   // entry: | 
 |   //   %unused_result = tail call zeroext i1 @callee() | 
 |   //   br label %retlabel | 
 |   // retlabel: | 
 |   //   ret void | 
 |   // } | 
 |   if (I->use_empty()) { | 
 |     CalleeAttrs.removeAttribute(Attribute::SExt); | 
 |     CalleeAttrs.removeAttribute(Attribute::ZExt); | 
 |   } | 
 |  | 
 |   // If they're still different, there's some facet we don't understand | 
 |   // (currently only "inreg", but in future who knows). It may be OK but the | 
 |   // only safe option is to reject the tail call. | 
 |   return CallerAttrs == CalleeAttrs; | 
 | } | 
 |  | 
 | bool llvm::returnTypeIsEligibleForTailCall(const Function *F, | 
 |                                            const Instruction *I, | 
 |                                            const ReturnInst *Ret, | 
 |                                            const TargetLoweringBase &TLI) { | 
 |   // If the block ends with a void return or unreachable, it doesn't matter | 
 |   // what the call's return type is. | 
 |   if (!Ret || Ret->getNumOperands() == 0) return true; | 
 |  | 
 |   // If the return value is undef, it doesn't matter what the call's | 
 |   // return type is. | 
 |   if (isa<UndefValue>(Ret->getOperand(0))) return true; | 
 |  | 
 |   // Make sure the attributes attached to each return are compatible. | 
 |   bool AllowDifferingSizes; | 
 |   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) | 
 |     return false; | 
 |  | 
 |   const Value *RetVal = Ret->getOperand(0), *CallVal = I; | 
 |   // Intrinsic like llvm.memcpy has no return value, but the expanded | 
 |   // libcall may or may not have return value. On most platforms, it | 
 |   // will be expanded as memcpy in libc, which returns the first | 
 |   // argument. On other platforms like arm-none-eabi, memcpy may be | 
 |   // expanded as library call without return value, like __aeabi_memcpy. | 
 |   const CallInst *Call = cast<CallInst>(I); | 
 |   if (Function *F = Call->getCalledFunction()) { | 
 |     Intrinsic::ID IID = F->getIntrinsicID(); | 
 |     if (((IID == Intrinsic::memcpy && | 
 |           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || | 
 |          (IID == Intrinsic::memmove && | 
 |           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || | 
 |          (IID == Intrinsic::memset && | 
 |           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && | 
 |         RetVal == Call->getArgOperand(0)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   SmallVector<unsigned, 4> RetPath, CallPath; | 
 |   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; | 
 |  | 
 |   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); | 
 |   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); | 
 |  | 
 |   // Nothing's actually returned, it doesn't matter what the callee put there | 
 |   // it's a valid tail call. | 
 |   if (RetEmpty) | 
 |     return true; | 
 |  | 
 |   // Iterate pairwise through each of the value types making up the tail call | 
 |   // and the corresponding return. For each one we want to know whether it's | 
 |   // essentially going directly from the tail call to the ret, via operations | 
 |   // that end up not generating any code. | 
 |   // | 
 |   // We allow a certain amount of covariance here. For example it's permitted | 
 |   // for the tail call to define more bits than the ret actually cares about | 
 |   // (e.g. via a truncate). | 
 |   do { | 
 |     if (CallEmpty) { | 
 |       // We've exhausted the values produced by the tail call instruction, the | 
 |       // rest are essentially undef. The type doesn't really matter, but we need | 
 |       // *something*. | 
 |       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); | 
 |       CallVal = UndefValue::get(SlotType); | 
 |     } | 
 |  | 
 |     // The manipulations performed when we're looking through an insertvalue or | 
 |     // an extractvalue would happen at the front of the RetPath list, so since | 
 |     // we have to copy it anyway it's more efficient to create a reversed copy. | 
 |     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); | 
 |     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); | 
 |  | 
 |     // Finally, we can check whether the value produced by the tail call at this | 
 |     // index is compatible with the value we return. | 
 |     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, | 
 |                               AllowDifferingSizes, TLI, | 
 |                               F->getParent()->getDataLayout())) | 
 |       return false; | 
 |  | 
 |     CallEmpty  = !nextRealType(CallSubTypes, CallPath); | 
 |   } while(nextRealType(RetSubTypes, RetPath)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void collectEHScopeMembers( | 
 |     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, | 
 |     const MachineBasicBlock *MBB) { | 
 |   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; | 
 |   while (!Worklist.empty()) { | 
 |     const MachineBasicBlock *Visiting = Worklist.pop_back_val(); | 
 |     // Don't follow blocks which start new scopes. | 
 |     if (Visiting->isEHPad() && Visiting != MBB) | 
 |       continue; | 
 |  | 
 |     // Add this MBB to our scope. | 
 |     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); | 
 |  | 
 |     // Don't revisit blocks. | 
 |     if (!P.second) { | 
 |       assert(P.first->second == EHScope && "MBB is part of two scopes!"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Returns are boundaries where scope transfer can occur, don't follow | 
 |     // successors. | 
 |     if (Visiting->isEHScopeReturnBlock()) | 
 |       continue; | 
 |  | 
 |     for (const MachineBasicBlock *Succ : Visiting->successors()) | 
 |       Worklist.push_back(Succ); | 
 |   } | 
 | } | 
 |  | 
 | DenseMap<const MachineBasicBlock *, int> | 
 | llvm::getEHScopeMembership(const MachineFunction &MF) { | 
 |   DenseMap<const MachineBasicBlock *, int> EHScopeMembership; | 
 |  | 
 |   // We don't have anything to do if there aren't any EH pads. | 
 |   if (!MF.hasEHScopes()) | 
 |     return EHScopeMembership; | 
 |  | 
 |   int EntryBBNumber = MF.front().getNumber(); | 
 |   bool IsSEH = isAsynchronousEHPersonality( | 
 |       classifyEHPersonality(MF.getFunction().getPersonalityFn())); | 
 |  | 
 |   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
 |   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; | 
 |   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; | 
 |   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; | 
 |   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; | 
 |   for (const MachineBasicBlock &MBB : MF) { | 
 |     if (MBB.isEHScopeEntry()) { | 
 |       EHScopeBlocks.push_back(&MBB); | 
 |     } else if (IsSEH && MBB.isEHPad()) { | 
 |       SEHCatchPads.push_back(&MBB); | 
 |     } else if (MBB.pred_empty()) { | 
 |       UnreachableBlocks.push_back(&MBB); | 
 |     } | 
 |  | 
 |     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); | 
 |  | 
 |     // CatchPads are not scopes for SEH so do not consider CatchRet to | 
 |     // transfer control to another scope. | 
 |     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) | 
 |       continue; | 
 |  | 
 |     // FIXME: SEH CatchPads are not necessarily in the parent function: | 
 |     // they could be inside a finally block. | 
 |     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); | 
 |     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); | 
 |     CatchRetSuccessors.push_back( | 
 |         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); | 
 |   } | 
 |  | 
 |   // We don't have anything to do if there aren't any EH pads. | 
 |   if (EHScopeBlocks.empty()) | 
 |     return EHScopeMembership; | 
 |  | 
 |   // Identify all the basic blocks reachable from the function entry. | 
 |   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); | 
 |   // All blocks not part of a scope are in the parent function. | 
 |   for (const MachineBasicBlock *MBB : UnreachableBlocks) | 
 |     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); | 
 |   // Next, identify all the blocks inside the scopes. | 
 |   for (const MachineBasicBlock *MBB : EHScopeBlocks) | 
 |     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); | 
 |   // SEH CatchPads aren't really scopes, handle them separately. | 
 |   for (const MachineBasicBlock *MBB : SEHCatchPads) | 
 |     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); | 
 |   // Finally, identify all the targets of a catchret. | 
 |   for (std::pair<const MachineBasicBlock *, int> CatchRetPair : | 
 |        CatchRetSuccessors) | 
 |     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, | 
 |                           CatchRetPair.first); | 
 |   return EHScopeMembership; | 
 | } |