|  | /* | 
|  | * z_Windows_NT_util.cpp -- platform specific routines. | 
|  | */ | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is dual licensed under the MIT and the University of Illinois Open | 
|  | // Source Licenses. See LICENSE.txt for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "kmp.h" | 
|  | #include "kmp_affinity.h" | 
|  | #include "kmp_i18n.h" | 
|  | #include "kmp_io.h" | 
|  | #include "kmp_itt.h" | 
|  | #include "kmp_wait_release.h" | 
|  |  | 
|  | /* This code is related to NtQuerySystemInformation() function. This function | 
|  | is used in the Load balance algorithm for OMP_DYNAMIC=true to find the | 
|  | number of running threads in the system. */ | 
|  |  | 
|  | #include <ntsecapi.h> // UNICODE_STRING | 
|  | #include <ntstatus.h> | 
|  |  | 
|  | enum SYSTEM_INFORMATION_CLASS { | 
|  | SystemProcessInformation = 5 | 
|  | }; // SYSTEM_INFORMATION_CLASS | 
|  |  | 
|  | struct CLIENT_ID { | 
|  | HANDLE UniqueProcess; | 
|  | HANDLE UniqueThread; | 
|  | }; // struct CLIENT_ID | 
|  |  | 
|  | enum THREAD_STATE { | 
|  | StateInitialized, | 
|  | StateReady, | 
|  | StateRunning, | 
|  | StateStandby, | 
|  | StateTerminated, | 
|  | StateWait, | 
|  | StateTransition, | 
|  | StateUnknown | 
|  | }; // enum THREAD_STATE | 
|  |  | 
|  | struct VM_COUNTERS { | 
|  | SIZE_T PeakVirtualSize; | 
|  | SIZE_T VirtualSize; | 
|  | ULONG PageFaultCount; | 
|  | SIZE_T PeakWorkingSetSize; | 
|  | SIZE_T WorkingSetSize; | 
|  | SIZE_T QuotaPeakPagedPoolUsage; | 
|  | SIZE_T QuotaPagedPoolUsage; | 
|  | SIZE_T QuotaPeakNonPagedPoolUsage; | 
|  | SIZE_T QuotaNonPagedPoolUsage; | 
|  | SIZE_T PagefileUsage; | 
|  | SIZE_T PeakPagefileUsage; | 
|  | SIZE_T PrivatePageCount; | 
|  | }; // struct VM_COUNTERS | 
|  |  | 
|  | struct SYSTEM_THREAD { | 
|  | LARGE_INTEGER KernelTime; | 
|  | LARGE_INTEGER UserTime; | 
|  | LARGE_INTEGER CreateTime; | 
|  | ULONG WaitTime; | 
|  | LPVOID StartAddress; | 
|  | CLIENT_ID ClientId; | 
|  | DWORD Priority; | 
|  | LONG BasePriority; | 
|  | ULONG ContextSwitchCount; | 
|  | THREAD_STATE State; | 
|  | ULONG WaitReason; | 
|  | }; // SYSTEM_THREAD | 
|  |  | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); | 
|  | #if KMP_ARCH_X86 | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); | 
|  | #else | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); | 
|  | #endif | 
|  |  | 
|  | struct SYSTEM_PROCESS_INFORMATION { | 
|  | ULONG NextEntryOffset; | 
|  | ULONG NumberOfThreads; | 
|  | LARGE_INTEGER Reserved[3]; | 
|  | LARGE_INTEGER CreateTime; | 
|  | LARGE_INTEGER UserTime; | 
|  | LARGE_INTEGER KernelTime; | 
|  | UNICODE_STRING ImageName; | 
|  | DWORD BasePriority; | 
|  | HANDLE ProcessId; | 
|  | HANDLE ParentProcessId; | 
|  | ULONG HandleCount; | 
|  | ULONG Reserved2[2]; | 
|  | VM_COUNTERS VMCounters; | 
|  | IO_COUNTERS IOCounters; | 
|  | SYSTEM_THREAD Threads[1]; | 
|  | }; // SYSTEM_PROCESS_INFORMATION | 
|  | typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; | 
|  |  | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); | 
|  | #if KMP_ARCH_X86 | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); | 
|  | #else | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); | 
|  | KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); | 
|  | #endif | 
|  |  | 
|  | typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, | 
|  | PVOID, ULONG, PULONG); | 
|  | NtQuerySystemInformation_t NtQuerySystemInformation = NULL; | 
|  |  | 
|  | HMODULE ntdll = NULL; | 
|  |  | 
|  | /* End of NtQuerySystemInformation()-related code */ | 
|  |  | 
|  | static HMODULE kernel32 = NULL; | 
|  |  | 
|  | #if KMP_HANDLE_SIGNALS | 
|  | typedef void (*sig_func_t)(int); | 
|  | static sig_func_t __kmp_sighldrs[NSIG]; | 
|  | static int __kmp_siginstalled[NSIG]; | 
|  | #endif | 
|  |  | 
|  | #if KMP_USE_MONITOR | 
|  | static HANDLE __kmp_monitor_ev; | 
|  | #endif | 
|  | static kmp_int64 __kmp_win32_time; | 
|  | double __kmp_win32_tick; | 
|  |  | 
|  | int __kmp_init_runtime = FALSE; | 
|  | CRITICAL_SECTION __kmp_win32_section; | 
|  |  | 
|  | void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { | 
|  | InitializeCriticalSection(&mx->cs); | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_system_object_created(&mx->cs, "Critical Section"); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | } | 
|  |  | 
|  | void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { | 
|  | DeleteCriticalSection(&mx->cs); | 
|  | } | 
|  |  | 
|  | void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { | 
|  | EnterCriticalSection(&mx->cs); | 
|  | } | 
|  |  | 
|  | int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { | 
|  | return TryEnterCriticalSection(&mx->cs); | 
|  | } | 
|  |  | 
|  | void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { | 
|  | LeaveCriticalSection(&mx->cs); | 
|  | } | 
|  |  | 
|  | void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { | 
|  | cv->waiters_count_ = 0; | 
|  | cv->wait_generation_count_ = 0; | 
|  | cv->release_count_ = 0; | 
|  |  | 
|  | /* Initialize the critical section */ | 
|  | __kmp_win32_mutex_init(&cv->waiters_count_lock_); | 
|  |  | 
|  | /* Create a manual-reset event. */ | 
|  | cv->event_ = CreateEvent(NULL, // no security | 
|  | TRUE, // manual-reset | 
|  | FALSE, // non-signaled initially | 
|  | NULL); // unnamed | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_system_object_created(cv->event_, "Event"); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | } | 
|  |  | 
|  | void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { | 
|  | __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); | 
|  | __kmp_free_handle(cv->event_); | 
|  | memset(cv, '\0', sizeof(*cv)); | 
|  | } | 
|  |  | 
|  | /* TODO associate cv with a team instead of a thread so as to optimize | 
|  | the case where we wake up a whole team */ | 
|  |  | 
|  | void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, | 
|  | kmp_info_t *th, int need_decrease_load) { | 
|  | int my_generation; | 
|  | int last_waiter; | 
|  |  | 
|  | /* Avoid race conditions */ | 
|  | __kmp_win32_mutex_lock(&cv->waiters_count_lock_); | 
|  |  | 
|  | /* Increment count of waiters */ | 
|  | cv->waiters_count_++; | 
|  |  | 
|  | /* Store current generation in our activation record. */ | 
|  | my_generation = cv->wait_generation_count_; | 
|  |  | 
|  | __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); | 
|  | __kmp_win32_mutex_unlock(mx); | 
|  |  | 
|  | for (;;) { | 
|  | int wait_done; | 
|  |  | 
|  | /* Wait until the event is signaled */ | 
|  | WaitForSingleObject(cv->event_, INFINITE); | 
|  |  | 
|  | __kmp_win32_mutex_lock(&cv->waiters_count_lock_); | 
|  |  | 
|  | /* Exit the loop when the <cv->event_> is signaled and there are still | 
|  | waiting threads from this <wait_generation> that haven't been released | 
|  | from this wait yet. */ | 
|  | wait_done = (cv->release_count_ > 0) && | 
|  | (cv->wait_generation_count_ != my_generation); | 
|  |  | 
|  | __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); | 
|  |  | 
|  | /* there used to be a semicolon after the if statement, it looked like a | 
|  | bug, so i removed it */ | 
|  | if (wait_done) | 
|  | break; | 
|  | } | 
|  |  | 
|  | __kmp_win32_mutex_lock(mx); | 
|  | __kmp_win32_mutex_lock(&cv->waiters_count_lock_); | 
|  |  | 
|  | cv->waiters_count_--; | 
|  | cv->release_count_--; | 
|  |  | 
|  | last_waiter = (cv->release_count_ == 0); | 
|  |  | 
|  | __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); | 
|  |  | 
|  | if (last_waiter) { | 
|  | /* We're the last waiter to be notified, so reset the manual event. */ | 
|  | ResetEvent(cv->event_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { | 
|  | __kmp_win32_mutex_lock(&cv->waiters_count_lock_); | 
|  |  | 
|  | if (cv->waiters_count_ > 0) { | 
|  | SetEvent(cv->event_); | 
|  | /* Release all the threads in this generation. */ | 
|  |  | 
|  | cv->release_count_ = cv->waiters_count_; | 
|  |  | 
|  | /* Start a new generation. */ | 
|  | cv->wait_generation_count_++; | 
|  | } | 
|  |  | 
|  | __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); | 
|  | } | 
|  |  | 
|  | void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { | 
|  | __kmp_win32_cond_broadcast(cv); | 
|  | } | 
|  |  | 
|  | void __kmp_enable(int new_state) { | 
|  | if (__kmp_init_runtime) | 
|  | LeaveCriticalSection(&__kmp_win32_section); | 
|  | } | 
|  |  | 
|  | void __kmp_disable(int *old_state) { | 
|  | *old_state = 0; | 
|  |  | 
|  | if (__kmp_init_runtime) | 
|  | EnterCriticalSection(&__kmp_win32_section); | 
|  | } | 
|  |  | 
|  | void __kmp_suspend_initialize(void) { /* do nothing */ | 
|  | } | 
|  |  | 
|  | static void __kmp_suspend_initialize_thread(kmp_info_t *th) { | 
|  | if (!TCR_4(th->th.th_suspend_init)) { | 
|  | /* this means we haven't initialized the suspension pthread objects for this | 
|  | thread in this instance of the process */ | 
|  | __kmp_win32_cond_init(&th->th.th_suspend_cv); | 
|  | __kmp_win32_mutex_init(&th->th.th_suspend_mx); | 
|  | TCW_4(th->th.th_suspend_init, TRUE); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { | 
|  | if (TCR_4(th->th.th_suspend_init)) { | 
|  | /* this means we have initialize the suspension pthread objects for this | 
|  | thread in this instance of the process */ | 
|  | __kmp_win32_cond_destroy(&th->th.th_suspend_cv); | 
|  | __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); | 
|  | TCW_4(th->th.th_suspend_init, FALSE); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __kmp_try_suspend_mx(kmp_info_t *th) { | 
|  | return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); | 
|  | } | 
|  |  | 
|  | void __kmp_lock_suspend_mx(kmp_info_t *th) { | 
|  | __kmp_win32_mutex_lock(&th->th.th_suspend_mx); | 
|  | } | 
|  |  | 
|  | void __kmp_unlock_suspend_mx(kmp_info_t *th) { | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  | } | 
|  |  | 
|  | /* This routine puts the calling thread to sleep after setting the | 
|  | sleep bit for the indicated flag variable to true. */ | 
|  | template <class C> | 
|  | static inline void __kmp_suspend_template(int th_gtid, C *flag) { | 
|  | kmp_info_t *th = __kmp_threads[th_gtid]; | 
|  | int status; | 
|  | typename C::flag_t old_spin; | 
|  |  | 
|  | KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", | 
|  | th_gtid, flag->get())); | 
|  |  | 
|  | __kmp_suspend_initialize_thread(th); | 
|  | __kmp_win32_mutex_lock(&th->th.th_suspend_mx); | 
|  |  | 
|  | KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" | 
|  | " loc(%p)\n", | 
|  | th_gtid, flag->get())); | 
|  |  | 
|  | /* TODO: shouldn't this use release semantics to ensure that | 
|  | __kmp_suspend_initialize_thread gets called first? */ | 
|  | old_spin = flag->set_sleeping(); | 
|  | #if OMP_50_ENABLED | 
|  | if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && | 
|  | __kmp_pause_status != kmp_soft_paused) { | 
|  | flag->unset_sleeping(); | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" | 
|  | " loc(%p)==%d\n", | 
|  | th_gtid, flag->get(), *(flag->get()))); | 
|  |  | 
|  | if (flag->done_check_val(old_spin)) { | 
|  | old_spin = flag->unset_sleeping(); | 
|  | KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " | 
|  | "for flag's loc(%p)\n", | 
|  | th_gtid, flag->get())); | 
|  | } else { | 
|  | #ifdef DEBUG_SUSPEND | 
|  | __kmp_suspend_count++; | 
|  | #endif | 
|  | /* Encapsulate in a loop as the documentation states that this may "with | 
|  | low probability" return when the condition variable has not been signaled | 
|  | or broadcast */ | 
|  | int deactivated = FALSE; | 
|  | TCW_PTR(th->th.th_sleep_loc, (void *)flag); | 
|  | while (flag->is_sleeping()) { | 
|  | KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " | 
|  | "kmp_win32_cond_wait()\n", | 
|  | th_gtid)); | 
|  | // Mark the thread as no longer active (only in the first iteration of the | 
|  | // loop). | 
|  | if (!deactivated) { | 
|  | th->th.th_active = FALSE; | 
|  | if (th->th.th_active_in_pool) { | 
|  | th->th.th_active_in_pool = FALSE; | 
|  | KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); | 
|  | KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); | 
|  | } | 
|  | deactivated = TRUE; | 
|  |  | 
|  | __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, | 
|  | 0); | 
|  | } else { | 
|  | __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | if (flag->is_sleeping()) { | 
|  | KF_TRACE(100, | 
|  | ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); | 
|  | } | 
|  | #endif /* KMP_DEBUG */ | 
|  |  | 
|  | } // while | 
|  |  | 
|  | // Mark the thread as active again (if it was previous marked as inactive) | 
|  | if (deactivated) { | 
|  | th->th.th_active = TRUE; | 
|  | if (TCR_4(th->th.th_in_pool)) { | 
|  | KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); | 
|  | th->th.th_active_in_pool = TRUE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  |  | 
|  | KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); | 
|  | } | 
|  |  | 
|  | void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { | 
|  | __kmp_suspend_template(th_gtid, flag); | 
|  | } | 
|  | void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { | 
|  | __kmp_suspend_template(th_gtid, flag); | 
|  | } | 
|  | void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { | 
|  | __kmp_suspend_template(th_gtid, flag); | 
|  | } | 
|  |  | 
|  | /* This routine signals the thread specified by target_gtid to wake up | 
|  | after setting the sleep bit indicated by the flag argument to FALSE */ | 
|  | template <class C> | 
|  | static inline void __kmp_resume_template(int target_gtid, C *flag) { | 
|  | kmp_info_t *th = __kmp_threads[target_gtid]; | 
|  | int status; | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; | 
|  | #endif | 
|  |  | 
|  | KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", | 
|  | gtid, target_gtid)); | 
|  |  | 
|  | __kmp_suspend_initialize_thread(th); | 
|  | __kmp_win32_mutex_lock(&th->th.th_suspend_mx); | 
|  |  | 
|  | if (!flag) { // coming from __kmp_null_resume_wrapper | 
|  | flag = (C *)th->th.th_sleep_loc; | 
|  | } | 
|  |  | 
|  | // First, check if the flag is null or its type has changed. If so, someone | 
|  | // else woke it up. | 
|  | if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type | 
|  | // simply shows what | 
|  | // flag was cast to | 
|  | KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " | 
|  | "awake: flag's loc(%p)\n", | 
|  | gtid, target_gtid, NULL)); | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  | return; | 
|  | } else { | 
|  | typename C::flag_t old_spin = flag->unset_sleeping(); | 
|  | if (!flag->is_sleeping_val(old_spin)) { | 
|  | KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " | 
|  | "awake: flag's loc(%p): %u => %u\n", | 
|  | gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  | return; | 
|  | } | 
|  | } | 
|  | TCW_PTR(th->th.th_sleep_loc, NULL); | 
|  | KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " | 
|  | "bit for flag's loc(%p)\n", | 
|  | gtid, target_gtid, flag->get())); | 
|  |  | 
|  | __kmp_win32_cond_signal(&th->th.th_suspend_cv); | 
|  | __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); | 
|  |  | 
|  | KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" | 
|  | " for T#%d\n", | 
|  | gtid, target_gtid)); | 
|  | } | 
|  |  | 
|  | void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { | 
|  | __kmp_resume_template(target_gtid, flag); | 
|  | } | 
|  | void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { | 
|  | __kmp_resume_template(target_gtid, flag); | 
|  | } | 
|  | void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { | 
|  | __kmp_resume_template(target_gtid, flag); | 
|  | } | 
|  |  | 
|  | void __kmp_yield(int cond) { | 
|  | if (cond) | 
|  | Sleep(0); | 
|  | } | 
|  |  | 
|  | void __kmp_gtid_set_specific(int gtid) { | 
|  | if (__kmp_init_gtid) { | 
|  | KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, | 
|  | __kmp_gtid_threadprivate_key)); | 
|  | if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) | 
|  | KMP_FATAL(TLSSetValueFailed); | 
|  | } else { | 
|  | KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __kmp_gtid_get_specific() { | 
|  | int gtid; | 
|  | if (!__kmp_init_gtid) { | 
|  | KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " | 
|  | "KMP_GTID_SHUTDOWN\n")); | 
|  | return KMP_GTID_SHUTDOWN; | 
|  | } | 
|  | gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); | 
|  | if (gtid == 0) { | 
|  | gtid = KMP_GTID_DNE; | 
|  | } else { | 
|  | gtid--; | 
|  | } | 
|  | KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", | 
|  | __kmp_gtid_threadprivate_key, gtid)); | 
|  | return gtid; | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_bind_thread(int proc) { | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | // Form the GROUP_AFFINITY struct directly, rather than filling | 
|  | // out a bit vector and calling __kmp_set_system_affinity(). | 
|  | GROUP_AFFINITY ga; | 
|  | KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * | 
|  | sizeof(DWORD_PTR)))); | 
|  | ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); | 
|  | ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); | 
|  | ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); | 
|  | if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { | 
|  | DWORD error = GetLastError(); | 
|  | if (__kmp_affinity_verbose) { // AC: continue silently if not verbose | 
|  | kmp_msg_t err_code = KMP_ERR(error); | 
|  | __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, | 
|  | __kmp_msg_null); | 
|  | if (__kmp_generate_warnings == kmp_warnings_off) { | 
|  | __kmp_str_free(&err_code.str); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | kmp_affin_mask_t *mask; | 
|  | KMP_CPU_ALLOC_ON_STACK(mask); | 
|  | KMP_CPU_ZERO(mask); | 
|  | KMP_CPU_SET(proc, mask); | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | KMP_CPU_FREE_FROM_STACK(mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_determine_capable(const char *env_var) { | 
|  | // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); | 
|  | #else | 
|  | KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); | 
|  | #endif | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_affinity_determine_capable: " | 
|  | "Windows* OS affinity interface functional (mask size = " | 
|  | "%" KMP_SIZE_T_SPEC ").\n", | 
|  | __kmp_affin_mask_size)); | 
|  | } | 
|  |  | 
|  | double __kmp_read_cpu_time(void) { | 
|  | FILETIME CreationTime, ExitTime, KernelTime, UserTime; | 
|  | int status; | 
|  | double cpu_time; | 
|  |  | 
|  | cpu_time = 0; | 
|  |  | 
|  | status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, | 
|  | &KernelTime, &UserTime); | 
|  |  | 
|  | if (status) { | 
|  | double sec = 0; | 
|  |  | 
|  | sec += KernelTime.dwHighDateTime; | 
|  | sec += UserTime.dwHighDateTime; | 
|  |  | 
|  | /* Shift left by 32 bits */ | 
|  | sec *= (double)(1 << 16) * (double)(1 << 16); | 
|  |  | 
|  | sec += KernelTime.dwLowDateTime; | 
|  | sec += UserTime.dwLowDateTime; | 
|  |  | 
|  | cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; | 
|  | } | 
|  |  | 
|  | return cpu_time; | 
|  | } | 
|  |  | 
|  | int __kmp_read_system_info(struct kmp_sys_info *info) { | 
|  | info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ | 
|  | info->minflt = 0; /* the number of page faults serviced without any I/O */ | 
|  | info->majflt = 0; /* the number of page faults serviced that required I/O */ | 
|  | info->nswap = 0; // the number of times a process was "swapped" out of memory | 
|  | info->inblock = 0; // the number of times the file system had to perform input | 
|  | info->oublock = 0; // number of times the file system had to perform output | 
|  | info->nvcsw = 0; /* the number of times a context switch was voluntarily */ | 
|  | info->nivcsw = 0; /* the number of times a context switch was forced */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kmp_runtime_initialize(void) { | 
|  | SYSTEM_INFO info; | 
|  | kmp_str_buf_t path; | 
|  | UINT path_size; | 
|  |  | 
|  | if (__kmp_init_runtime) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if KMP_DYNAMIC_LIB | 
|  | /* Pin dynamic library for the lifetime of application */ | 
|  | { | 
|  | // First, turn off error message boxes | 
|  | UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); | 
|  | HMODULE h; | 
|  | BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | | 
|  | GET_MODULE_HANDLE_EX_FLAG_PIN, | 
|  | (LPCTSTR)&__kmp_serial_initialize, &h); | 
|  | KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); | 
|  | SetErrorMode(err_mode); // Restore error mode | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | InitializeCriticalSection(&__kmp_win32_section); | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | __kmp_initialize_system_tick(); | 
|  |  | 
|  | #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) | 
|  | if (!__kmp_cpuinfo.initialized) { | 
|  | __kmp_query_cpuid(&__kmp_cpuinfo); | 
|  | } | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | /* Set up minimum number of threads to switch to TLS gtid */ | 
|  | #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB | 
|  | // Windows* OS, static library. | 
|  | /* New thread may use stack space previously used by another thread, | 
|  | currently terminated. On Windows* OS, in case of static linking, we do not | 
|  | know the moment of thread termination, and our structures (__kmp_threads | 
|  | and __kmp_root arrays) are still keep info about dead threads. This leads | 
|  | to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid | 
|  | (by searching through stack addresses of all known threads) for | 
|  | unregistered foreign tread. | 
|  |  | 
|  | Setting __kmp_tls_gtid_min to 0 workarounds this problem: | 
|  | __kmp_get_global_thread_id() does not search through stacks, but get gtid | 
|  | from TLS immediately. | 
|  | --ln | 
|  | */ | 
|  | __kmp_tls_gtid_min = 0; | 
|  | #else | 
|  | __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; | 
|  | #endif | 
|  |  | 
|  | /* for the static library */ | 
|  | if (!__kmp_gtid_threadprivate_key) { | 
|  | __kmp_gtid_threadprivate_key = TlsAlloc(); | 
|  | if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { | 
|  | KMP_FATAL(TLSOutOfIndexes); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Load ntdll.dll. | 
|  | /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue | 
|  | (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We | 
|  | have to specify full path to the library. */ | 
|  | __kmp_str_buf_init(&path); | 
|  | path_size = GetSystemDirectory(path.str, path.size); | 
|  | KMP_DEBUG_ASSERT(path_size > 0); | 
|  | if (path_size >= path.size) { | 
|  | // Buffer is too short.  Expand the buffer and try again. | 
|  | __kmp_str_buf_reserve(&path, path_size); | 
|  | path_size = GetSystemDirectory(path.str, path.size); | 
|  | KMP_DEBUG_ASSERT(path_size > 0); | 
|  | } | 
|  | if (path_size > 0 && path_size < path.size) { | 
|  | // Now we have system directory name in the buffer. | 
|  | // Append backslash and name of dll to form full path, | 
|  | path.used = path_size; | 
|  | __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); | 
|  |  | 
|  | // Now load ntdll using full path. | 
|  | ntdll = GetModuleHandle(path.str); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(ntdll != NULL); | 
|  | if (ntdll != NULL) { | 
|  | NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( | 
|  | ntdll, "NtQuerySystemInformation"); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | // Load kernel32.dll. | 
|  | // Same caveat - must use full system path name. | 
|  | if (path_size > 0 && path_size < path.size) { | 
|  | // Truncate the buffer back to just the system path length, | 
|  | // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". | 
|  | path.used = path_size; | 
|  | __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); | 
|  |  | 
|  | // Load kernel32.dll using full path. | 
|  | kernel32 = GetModuleHandle(path.str); | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); | 
|  |  | 
|  | // Load the function pointers to kernel32.dll routines | 
|  | // that may or may not exist on this system. | 
|  | if (kernel32 != NULL) { | 
|  | __kmp_GetActiveProcessorCount = | 
|  | (kmp_GetActiveProcessorCount_t)GetProcAddress( | 
|  | kernel32, "GetActiveProcessorCount"); | 
|  | __kmp_GetActiveProcessorGroupCount = | 
|  | (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( | 
|  | kernel32, "GetActiveProcessorGroupCount"); | 
|  | __kmp_GetThreadGroupAffinity = | 
|  | (kmp_GetThreadGroupAffinity_t)GetProcAddress( | 
|  | kernel32, "GetThreadGroupAffinity"); | 
|  | __kmp_SetThreadGroupAffinity = | 
|  | (kmp_SetThreadGroupAffinity_t)GetProcAddress( | 
|  | kernel32, "SetThreadGroupAffinity"); | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" | 
|  | " = %p\n", | 
|  | __kmp_GetActiveProcessorCount)); | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: " | 
|  | "__kmp_GetActiveProcessorGroupCount = %p\n", | 
|  | __kmp_GetActiveProcessorGroupCount)); | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" | 
|  | " = %p\n", | 
|  | __kmp_GetThreadGroupAffinity)); | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" | 
|  | " = %p\n", | 
|  | __kmp_SetThreadGroupAffinity)); | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", | 
|  | sizeof(kmp_affin_mask_t))); | 
|  |  | 
|  | // See if group affinity is supported on this system. | 
|  | // If so, calculate the #groups and #procs. | 
|  | // | 
|  | // Group affinity was introduced with Windows* 7 OS and | 
|  | // Windows* Server 2008 R2 OS. | 
|  | if ((__kmp_GetActiveProcessorCount != NULL) && | 
|  | (__kmp_GetActiveProcessorGroupCount != NULL) && | 
|  | (__kmp_GetThreadGroupAffinity != NULL) && | 
|  | (__kmp_SetThreadGroupAffinity != NULL) && | 
|  | ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > | 
|  | 1)) { | 
|  | // Calculate the total number of active OS procs. | 
|  | int i; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" | 
|  | " detected\n", | 
|  | __kmp_num_proc_groups)); | 
|  |  | 
|  | __kmp_xproc = 0; | 
|  |  | 
|  | for (i = 0; i < __kmp_num_proc_groups; i++) { | 
|  | DWORD size = __kmp_GetActiveProcessorCount(i); | 
|  | __kmp_xproc += size; | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", | 
|  | i, size)); | 
|  | } | 
|  | } else { | 
|  | KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" | 
|  | " detected\n", | 
|  | __kmp_num_proc_groups)); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (__kmp_num_proc_groups <= 1) { | 
|  | GetSystemInfo(&info); | 
|  | __kmp_xproc = info.dwNumberOfProcessors; | 
|  | } | 
|  | #else | 
|  | GetSystemInfo(&info); | 
|  | __kmp_xproc = info.dwNumberOfProcessors; | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | // If the OS said there were 0 procs, take a guess and use a value of 2. | 
|  | // This is done for Linux* OS, also.  Do we need error / warning? | 
|  | if (__kmp_xproc <= 0) { | 
|  | __kmp_xproc = 2; | 
|  | } | 
|  |  | 
|  | KA_TRACE(5, | 
|  | ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); | 
|  |  | 
|  | __kmp_str_buf_free(&path); | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_initialize(); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | __kmp_init_runtime = TRUE; | 
|  | } // __kmp_runtime_initialize | 
|  |  | 
|  | void __kmp_runtime_destroy(void) { | 
|  | if (!__kmp_init_runtime) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_destroy(); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ | 
|  | /* due to the KX_TRACE() commands */ | 
|  | KA_TRACE(40, ("__kmp_runtime_destroy\n")); | 
|  |  | 
|  | if (__kmp_gtid_threadprivate_key) { | 
|  | TlsFree(__kmp_gtid_threadprivate_key); | 
|  | __kmp_gtid_threadprivate_key = 0; | 
|  | } | 
|  |  | 
|  | __kmp_affinity_uninitialize(); | 
|  | DeleteCriticalSection(&__kmp_win32_section); | 
|  |  | 
|  | ntdll = NULL; | 
|  | NtQuerySystemInformation = NULL; | 
|  |  | 
|  | #if KMP_ARCH_X86_64 | 
|  | kernel32 = NULL; | 
|  | __kmp_GetActiveProcessorCount = NULL; | 
|  | __kmp_GetActiveProcessorGroupCount = NULL; | 
|  | __kmp_GetThreadGroupAffinity = NULL; | 
|  | __kmp_SetThreadGroupAffinity = NULL; | 
|  | #endif // KMP_ARCH_X86_64 | 
|  |  | 
|  | __kmp_init_runtime = FALSE; | 
|  | } | 
|  |  | 
|  | void __kmp_terminate_thread(int gtid) { | 
|  | kmp_info_t *th = __kmp_threads[gtid]; | 
|  |  | 
|  | if (!th) | 
|  | return; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); | 
|  |  | 
|  | if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { | 
|  | /* It's OK, the thread may have exited already */ | 
|  | } | 
|  | __kmp_free_handle(th->th.th_info.ds.ds_thread); | 
|  | } | 
|  |  | 
|  | void __kmp_clear_system_time(void) { | 
|  | BOOL status; | 
|  | LARGE_INTEGER time; | 
|  | status = QueryPerformanceCounter(&time); | 
|  | __kmp_win32_time = (kmp_int64)time.QuadPart; | 
|  | } | 
|  |  | 
|  | void __kmp_initialize_system_tick(void) { | 
|  | { | 
|  | BOOL status; | 
|  | LARGE_INTEGER freq; | 
|  |  | 
|  | status = QueryPerformanceFrequency(&freq); | 
|  | if (!status) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), | 
|  | KMP_ERR(error), __kmp_msg_null); | 
|  |  | 
|  | } else { | 
|  | __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate the elapsed wall clock time for the user */ | 
|  |  | 
|  | void __kmp_elapsed(double *t) { | 
|  | BOOL status; | 
|  | LARGE_INTEGER now; | 
|  | status = QueryPerformanceCounter(&now); | 
|  | *t = ((double)now.QuadPart) * __kmp_win32_tick; | 
|  | } | 
|  |  | 
|  | /* Calculate the elapsed wall clock tick for the user */ | 
|  |  | 
|  | void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } | 
|  |  | 
|  | void __kmp_read_system_time(double *delta) { | 
|  | if (delta != NULL) { | 
|  | BOOL status; | 
|  | LARGE_INTEGER now; | 
|  |  | 
|  | status = QueryPerformanceCounter(&now); | 
|  |  | 
|  | *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * | 
|  | __kmp_win32_tick; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the current time stamp in nsec */ | 
|  | kmp_uint64 __kmp_now_nsec() { | 
|  | LARGE_INTEGER now; | 
|  | QueryPerformanceCounter(&now); | 
|  | return 1e9 * __kmp_win32_tick * now.QuadPart; | 
|  | } | 
|  |  | 
|  | extern "C" | 
|  | void *__stdcall __kmp_launch_worker(void *arg) { | 
|  | volatile void *stack_data; | 
|  | void *exit_val; | 
|  | void *padding = 0; | 
|  | kmp_info_t *this_thr = (kmp_info_t *)arg; | 
|  | int gtid; | 
|  |  | 
|  | gtid = this_thr->th.th_info.ds.ds_gtid; | 
|  | __kmp_gtid_set_specific(gtid); | 
|  | #ifdef KMP_TDATA_GTID | 
|  | #error "This define causes problems with LoadLibrary() + declspec(thread) " \ | 
|  | "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \ | 
|  | "reference: http://support.microsoft.com/kb/118816" | 
|  | //__kmp_gtid = gtid; | 
|  | #endif | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_thread_name(gtid); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | __kmp_affinity_set_init_mask(gtid, FALSE); | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | // Set FP control regs to be a copy of the parallel initialization thread's. | 
|  | __kmp_clear_x87_fpu_status_word(); | 
|  | __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); | 
|  | __kmp_load_mxcsr(&__kmp_init_mxcsr); | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | if (__kmp_stkoffset > 0 && gtid > 0) { | 
|  | padding = KMP_ALLOCA(gtid * __kmp_stkoffset); | 
|  | } | 
|  |  | 
|  | KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); | 
|  | this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); | 
|  | TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); | 
|  |  | 
|  | if (TCR_4(__kmp_gtid_mode) < | 
|  | 2) { // check stack only if it is used to get gtid | 
|  | TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); | 
|  | KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); | 
|  | __kmp_check_stack_overlap(this_thr); | 
|  | } | 
|  | KMP_MB(); | 
|  | exit_val = __kmp_launch_thread(this_thr); | 
|  | KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); | 
|  | TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); | 
|  | KMP_MB(); | 
|  | return exit_val; | 
|  | } | 
|  |  | 
|  | #if KMP_USE_MONITOR | 
|  | /* The monitor thread controls all of the threads in the complex */ | 
|  |  | 
|  | void *__stdcall __kmp_launch_monitor(void *arg) { | 
|  | DWORD wait_status; | 
|  | kmp_thread_t monitor; | 
|  | int status; | 
|  | int interval; | 
|  | kmp_info_t *this_thr = (kmp_info_t *)arg; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_init_monitor); | 
|  | TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started | 
|  | // TODO: hide "2" in enum (like {true,false,started}) | 
|  | this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); | 
|  | TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); | 
|  |  | 
|  | monitor = GetCurrentThread(); | 
|  |  | 
|  | /* set thread priority */ | 
|  | status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); | 
|  | if (!status) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); | 
|  | } | 
|  |  | 
|  | /* register us as monitor */ | 
|  | __kmp_gtid_set_specific(KMP_GTID_MONITOR); | 
|  | #ifdef KMP_TDATA_GTID | 
|  | #error "This define causes problems with LoadLibrary() + declspec(thread) " \ | 
|  | "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \ | 
|  | "reference: http://support.microsoft.com/kb/118816" | 
|  | //__kmp_gtid = KMP_GTID_MONITOR; | 
|  | #endif | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore | 
|  | // monitor thread. | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ | 
|  |  | 
|  | while (!TCR_4(__kmp_global.g.g_done)) { | 
|  | /*  This thread monitors the state of the system */ | 
|  |  | 
|  | KA_TRACE(15, ("__kmp_launch_monitor: update\n")); | 
|  |  | 
|  | wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); | 
|  |  | 
|  | if (wait_status == WAIT_TIMEOUT) { | 
|  | TCW_4(__kmp_global.g.g_time.dt.t_value, | 
|  | TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); | 
|  | } | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); | 
|  |  | 
|  | status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); | 
|  | if (!status) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); | 
|  | } | 
|  |  | 
|  | if (__kmp_global.g.g_abort != 0) { | 
|  | /* now we need to terminate the worker threads   */ | 
|  | /* the value of t_abort is the signal we caught */ | 
|  | int gtid; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", | 
|  | (__kmp_global.g.g_abort))); | 
|  |  | 
|  | /* terminate the OpenMP worker threads */ | 
|  | /* TODO this is not valid for sibling threads!! | 
|  | * the uber master might not be 0 anymore.. */ | 
|  | for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) | 
|  | __kmp_terminate_thread(gtid); | 
|  |  | 
|  | __kmp_cleanup(); | 
|  |  | 
|  | Sleep(0); | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); | 
|  |  | 
|  | if (__kmp_global.g.g_abort > 0) { | 
|  | raise(__kmp_global.g.g_abort); | 
|  | } | 
|  | } | 
|  |  | 
|  | TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); | 
|  |  | 
|  | KMP_MB(); | 
|  | return arg; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { | 
|  | kmp_thread_t handle; | 
|  | DWORD idThread; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); | 
|  |  | 
|  | th->th.th_info.ds.ds_gtid = gtid; | 
|  |  | 
|  | if (KMP_UBER_GTID(gtid)) { | 
|  | int stack_data; | 
|  |  | 
|  | /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for | 
|  | other threads to use. Is it appropriate to just use GetCurrentThread? | 
|  | When should we close this handle?  When unregistering the root? */ | 
|  | { | 
|  | BOOL rc; | 
|  | rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), | 
|  | GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, | 
|  | FALSE, DUPLICATE_SAME_ACCESS); | 
|  | KMP_ASSERT(rc); | 
|  | KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " | 
|  | "handle = %" KMP_UINTPTR_SPEC "\n", | 
|  | (LPVOID)th, th->th.th_info.ds.ds_thread)); | 
|  | th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); | 
|  | } | 
|  | if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid | 
|  | /* we will dynamically update the stack range if gtid_mode == 1 */ | 
|  | TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); | 
|  | TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); | 
|  | TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); | 
|  | __kmp_check_stack_overlap(th); | 
|  | } | 
|  | } else { | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | /* Set stack size for this thread now. */ | 
|  | KA_TRACE(10, | 
|  | ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", | 
|  | stack_size)); | 
|  |  | 
|  | stack_size += gtid * __kmp_stkoffset; | 
|  |  | 
|  | TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); | 
|  | TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC | 
|  | " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", | 
|  | (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, | 
|  | (LPVOID)th, &idThread)); | 
|  |  | 
|  | handle = CreateThread( | 
|  | NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, | 
|  | (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC | 
|  | " bytes, &__kmp_launch_worker = %p, th = %p, " | 
|  | "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", | 
|  | (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, | 
|  | (LPVOID)th, idThread, handle)); | 
|  |  | 
|  | if (handle == 0) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); | 
|  | } else { | 
|  | th->th.th_info.ds.ds_thread = handle; | 
|  | } | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); | 
|  | } | 
|  |  | 
|  | int __kmp_still_running(kmp_info_t *th) { | 
|  | return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); | 
|  | } | 
|  |  | 
|  | #if KMP_USE_MONITOR | 
|  | void __kmp_create_monitor(kmp_info_t *th) { | 
|  | kmp_thread_t handle; | 
|  | DWORD idThread; | 
|  | int ideal, new_ideal; | 
|  |  | 
|  | if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { | 
|  | // We don't need monitor thread in case of MAX_BLOCKTIME | 
|  | KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " | 
|  | "MAX blocktime\n")); | 
|  | th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op | 
|  | th->th.th_info.ds.ds_gtid = 0; | 
|  | TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation | 
|  | return; | 
|  | } | 
|  | KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); | 
|  | if (__kmp_monitor_ev == NULL) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); | 
|  | } | 
|  | #if USE_ITT_BUILD | 
|  | __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; | 
|  | th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; | 
|  |  | 
|  | // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how | 
|  | // to automatically expand stacksize based on CreateThread error code. | 
|  | if (__kmp_monitor_stksize == 0) { | 
|  | __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; | 
|  | } | 
|  | if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { | 
|  | __kmp_monitor_stksize = __kmp_sys_min_stksize; | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", | 
|  | (int)__kmp_monitor_stksize)); | 
|  |  | 
|  | TCW_4(__kmp_global.g.g_time.dt.t_value, 0); | 
|  |  | 
|  | handle = | 
|  | CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, | 
|  | (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, | 
|  | STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); | 
|  | if (handle == 0) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); | 
|  | } else | 
|  | th->th.th_info.ds.ds_thread = handle; | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", | 
|  | (void *)th->th.th_info.ds.ds_thread)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Check to see if thread is still alive. | 
|  | NOTE:  The ExitProcess(code) system call causes all threads to Terminate | 
|  | with a exit_val = code.  Because of this we can not rely on exit_val having | 
|  | any particular value.  So this routine may return STILL_ALIVE in exit_val | 
|  | even after the thread is dead. */ | 
|  |  | 
|  | int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { | 
|  | DWORD rc; | 
|  | rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); | 
|  | if (rc == 0) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), | 
|  | __kmp_msg_null); | 
|  | } | 
|  | return (*exit_val == STILL_ACTIVE); | 
|  | } | 
|  |  | 
|  | void __kmp_exit_thread(int exit_status) { | 
|  | ExitThread(exit_status); | 
|  | } // __kmp_exit_thread | 
|  |  | 
|  | // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). | 
|  | static void __kmp_reap_common(kmp_info_t *th) { | 
|  | DWORD exit_val; | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); | 
|  |  | 
|  | /* 2006-10-19: | 
|  | There are two opposite situations: | 
|  | 1. Windows* OS keep thread alive after it resets ds_alive flag and | 
|  | exits from thread function. (For example, see C70770/Q394281 "unloading of | 
|  | dll based on OMP is very slow".) | 
|  | 2. Windows* OS may kill thread before it resets ds_alive flag. | 
|  |  | 
|  | Right solution seems to be waiting for *either* thread termination *or* | 
|  | ds_alive resetting. */ | 
|  | { | 
|  | // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize | 
|  | // KMP_WAIT_YIELD to cover this usage also. | 
|  | void *obj = NULL; | 
|  | kmp_uint32 spins; | 
|  | #if USE_ITT_BUILD | 
|  | KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | KMP_INIT_YIELD(spins); | 
|  | do { | 
|  | #if USE_ITT_BUILD | 
|  | KMP_FSYNC_SPIN_PREPARE(obj); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | __kmp_is_thread_alive(th, &exit_val); | 
|  | KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc); | 
|  | KMP_YIELD_SPIN(spins); | 
|  | } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); | 
|  | #if USE_ITT_BUILD | 
|  | if (exit_val == STILL_ACTIVE) { | 
|  | KMP_FSYNC_CANCEL(obj); | 
|  | } else { | 
|  | KMP_FSYNC_SPIN_ACQUIRED(obj); | 
|  | } | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | } | 
|  |  | 
|  | __kmp_free_handle(th->th.th_info.ds.ds_thread); | 
|  |  | 
|  | /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate | 
|  | with a exit_val = code.  Because of this we can not rely on exit_val having | 
|  | any particular value. */ | 
|  | if (exit_val == STILL_ACTIVE) { | 
|  | KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); | 
|  | } else if ((void *)exit_val != (void *)th) { | 
|  | KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC | 
|  | "\n", | 
|  | th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); | 
|  |  | 
|  | th->th.th_info.ds.ds_thread = 0; | 
|  | th->th.th_info.ds.ds_tid = KMP_GTID_DNE; | 
|  | th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; | 
|  | th->th.th_info.ds.ds_thread_id = 0; | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } | 
|  |  | 
|  | #if KMP_USE_MONITOR | 
|  | void __kmp_reap_monitor(kmp_info_t *th) { | 
|  | int status; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", | 
|  | (void *)th->th.th_info.ds.ds_thread)); | 
|  |  | 
|  | // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. | 
|  | // If both tid and gtid are 0, it means the monitor did not ever start. | 
|  | // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. | 
|  | KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); | 
|  | if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { | 
|  | KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | status = SetEvent(__kmp_monitor_ev); | 
|  | if (status == FALSE) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); | 
|  | } | 
|  | KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", | 
|  | th->th.th_info.ds.ds_gtid)); | 
|  | __kmp_reap_common(th); | 
|  |  | 
|  | __kmp_free_handle(__kmp_monitor_ev); | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __kmp_reap_worker(kmp_info_t *th) { | 
|  | KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", | 
|  | th->th.th_info.ds.ds_gtid)); | 
|  | __kmp_reap_common(th); | 
|  | } | 
|  |  | 
|  | #if KMP_HANDLE_SIGNALS | 
|  |  | 
|  | static void __kmp_team_handler(int signo) { | 
|  | if (__kmp_global.g.g_abort == 0) { | 
|  | // Stage 1 signal handler, let's shut down all of the threads. | 
|  | if (__kmp_debug_buf) { | 
|  | __kmp_dump_debug_buffer(); | 
|  | } | 
|  | KMP_MB(); // Flush all pending memory write invalidates. | 
|  | TCW_4(__kmp_global.g.g_abort, signo); | 
|  | KMP_MB(); // Flush all pending memory write invalidates. | 
|  | TCW_4(__kmp_global.g.g_done, TRUE); | 
|  | KMP_MB(); // Flush all pending memory write invalidates. | 
|  | } | 
|  | } // __kmp_team_handler | 
|  |  | 
|  | static sig_func_t __kmp_signal(int signum, sig_func_t handler) { | 
|  | sig_func_t old = signal(signum, handler); | 
|  | if (old == SIG_ERR) { | 
|  | int error = errno; | 
|  | __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), | 
|  | __kmp_msg_null); | 
|  | } | 
|  | return old; | 
|  | } | 
|  |  | 
|  | static void __kmp_install_one_handler(int sig, sig_func_t handler, | 
|  | int parallel_init) { | 
|  | sig_func_t old; | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); | 
|  | if (parallel_init) { | 
|  | old = __kmp_signal(sig, handler); | 
|  | // SIG_DFL on Windows* OS in NULL or 0. | 
|  | if (old == __kmp_sighldrs[sig]) { | 
|  | __kmp_siginstalled[sig] = 1; | 
|  | } else { // Restore/keep user's handler if one previously installed. | 
|  | old = __kmp_signal(sig, old); | 
|  | } | 
|  | } else { | 
|  | // Save initial/system signal handlers to see if user handlers installed. | 
|  | // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals | 
|  | // called once with parallel_init == TRUE. | 
|  | old = __kmp_signal(sig, SIG_DFL); | 
|  | __kmp_sighldrs[sig] = old; | 
|  | __kmp_signal(sig, old); | 
|  | } | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } // __kmp_install_one_handler | 
|  |  | 
|  | static void __kmp_remove_one_handler(int sig) { | 
|  | if (__kmp_siginstalled[sig]) { | 
|  | sig_func_t old; | 
|  | KMP_MB(); // Flush all pending memory write invalidates. | 
|  | KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); | 
|  | old = __kmp_signal(sig, __kmp_sighldrs[sig]); | 
|  | if (old != __kmp_team_handler) { | 
|  | KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " | 
|  | "restoring: sig=%d\n", | 
|  | sig)); | 
|  | old = __kmp_signal(sig, old); | 
|  | } | 
|  | __kmp_sighldrs[sig] = NULL; | 
|  | __kmp_siginstalled[sig] = 0; | 
|  | KMP_MB(); // Flush all pending memory write invalidates. | 
|  | } | 
|  | } // __kmp_remove_one_handler | 
|  |  | 
|  | void __kmp_install_signals(int parallel_init) { | 
|  | KB_TRACE(10, ("__kmp_install_signals: called\n")); | 
|  | if (!__kmp_handle_signals) { | 
|  | KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " | 
|  | "handlers not installed\n")); | 
|  | return; | 
|  | } | 
|  | __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); | 
|  | __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); | 
|  | __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); | 
|  | __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); | 
|  | __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); | 
|  | __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); | 
|  | } // __kmp_install_signals | 
|  |  | 
|  | void __kmp_remove_signals(void) { | 
|  | int sig; | 
|  | KB_TRACE(10, ("__kmp_remove_signals: called\n")); | 
|  | for (sig = 1; sig < NSIG; ++sig) { | 
|  | __kmp_remove_one_handler(sig); | 
|  | } | 
|  | } // __kmp_remove_signals | 
|  |  | 
|  | #endif // KMP_HANDLE_SIGNALS | 
|  |  | 
|  | /* Put the thread to sleep for a time period */ | 
|  | void __kmp_thread_sleep(int millis) { | 
|  | DWORD status; | 
|  |  | 
|  | status = SleepEx((DWORD)millis, FALSE); | 
|  | if (status) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), | 
|  | __kmp_msg_null); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether the given address is mapped into the current address space. | 
|  | int __kmp_is_address_mapped(void *addr) { | 
|  | DWORD status; | 
|  | MEMORY_BASIC_INFORMATION lpBuffer; | 
|  | SIZE_T dwLength; | 
|  |  | 
|  | dwLength = sizeof(MEMORY_BASIC_INFORMATION); | 
|  |  | 
|  | status = VirtualQuery(addr, &lpBuffer, dwLength); | 
|  |  | 
|  | return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || | 
|  | ((lpBuffer.Protect == PAGE_NOACCESS) || | 
|  | (lpBuffer.Protect == PAGE_EXECUTE))); | 
|  | } | 
|  |  | 
|  | kmp_uint64 __kmp_hardware_timestamp(void) { | 
|  | kmp_uint64 r = 0; | 
|  |  | 
|  | QueryPerformanceCounter((LARGE_INTEGER *)&r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* Free handle and check the error code */ | 
|  | void __kmp_free_handle(kmp_thread_t tHandle) { | 
|  | /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined | 
|  | * as HANDLE */ | 
|  | BOOL rc; | 
|  | rc = CloseHandle(tHandle); | 
|  | if (!rc) { | 
|  | DWORD error = GetLastError(); | 
|  | __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __kmp_get_load_balance(int max) { | 
|  | static ULONG glb_buff_size = 100 * 1024; | 
|  |  | 
|  | // Saved count of the running threads for the thread balance algortihm | 
|  | static int glb_running_threads = 0; | 
|  | static double glb_call_time = 0; /* Thread balance algorithm call time */ | 
|  |  | 
|  | int running_threads = 0; // Number of running threads in the system. | 
|  | NTSTATUS status = 0; | 
|  | ULONG buff_size = 0; | 
|  | ULONG info_size = 0; | 
|  | void *buffer = NULL; | 
|  | PSYSTEM_PROCESS_INFORMATION spi = NULL; | 
|  | int first_time = 1; | 
|  |  | 
|  | double call_time = 0.0; // start, finish; | 
|  |  | 
|  | __kmp_elapsed(&call_time); | 
|  |  | 
|  | if (glb_call_time && | 
|  | (call_time - glb_call_time < __kmp_load_balance_interval)) { | 
|  | running_threads = glb_running_threads; | 
|  | goto finish; | 
|  | } | 
|  | glb_call_time = call_time; | 
|  |  | 
|  | // Do not spend time on running algorithm if we have a permanent error. | 
|  | if (NtQuerySystemInformation == NULL) { | 
|  | running_threads = -1; | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | if (max <= 0) { | 
|  | max = INT_MAX; | 
|  | } | 
|  |  | 
|  | do { | 
|  |  | 
|  | if (first_time) { | 
|  | buff_size = glb_buff_size; | 
|  | } else { | 
|  | buff_size = 2 * buff_size; | 
|  | } | 
|  |  | 
|  | buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); | 
|  | if (buffer == NULL) { | 
|  | running_threads = -1; | 
|  | goto finish; | 
|  | } | 
|  | status = NtQuerySystemInformation(SystemProcessInformation, buffer, | 
|  | buff_size, &info_size); | 
|  | first_time = 0; | 
|  |  | 
|  | } while (status == STATUS_INFO_LENGTH_MISMATCH); | 
|  | glb_buff_size = buff_size; | 
|  |  | 
|  | #define CHECK(cond)                                                            \ | 
|  | {                                                                            \ | 
|  | KMP_DEBUG_ASSERT(cond);                                                    \ | 
|  | if (!(cond)) {                                                             \ | 
|  | running_threads = -1;                                                    \ | 
|  | goto finish;                                                             \ | 
|  | }                                                                          \ | 
|  | } | 
|  |  | 
|  | CHECK(buff_size >= info_size); | 
|  | spi = PSYSTEM_PROCESS_INFORMATION(buffer); | 
|  | for (;;) { | 
|  | ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); | 
|  | CHECK(0 <= offset && | 
|  | offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); | 
|  | HANDLE pid = spi->ProcessId; | 
|  | ULONG num = spi->NumberOfThreads; | 
|  | CHECK(num >= 1); | 
|  | size_t spi_size = | 
|  | sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); | 
|  | CHECK(offset + spi_size < | 
|  | info_size); // Make sure process info record fits the buffer. | 
|  | if (spi->NextEntryOffset != 0) { | 
|  | CHECK(spi_size <= | 
|  | spi->NextEntryOffset); // And do not overlap with the next record. | 
|  | } | 
|  | // pid == 0 corresponds to the System Idle Process. It always has running | 
|  | // threads on all cores. So, we don't consider the running threads of this | 
|  | // process. | 
|  | if (pid != 0) { | 
|  | for (int i = 0; i < num; ++i) { | 
|  | THREAD_STATE state = spi->Threads[i].State; | 
|  | // Count threads that have Ready or Running state. | 
|  | // !!! TODO: Why comment does not match the code??? | 
|  | if (state == StateRunning) { | 
|  | ++running_threads; | 
|  | // Stop counting running threads if the number is already greater than | 
|  | // the number of available cores | 
|  | if (running_threads >= max) { | 
|  | goto finish; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (spi->NextEntryOffset == 0) { | 
|  | break; | 
|  | } | 
|  | spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); | 
|  | } | 
|  |  | 
|  | #undef CHECK | 
|  |  | 
|  | finish: // Clean up and exit. | 
|  |  | 
|  | if (buffer != NULL) { | 
|  | KMP_INTERNAL_FREE(buffer); | 
|  | } | 
|  |  | 
|  | glb_running_threads = running_threads; | 
|  |  | 
|  | return running_threads; | 
|  | } //__kmp_get_load_balance() |