|  | /* | 
|  | * kmp_taskq.cpp -- TASKQ support for OpenMP. | 
|  | */ | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is dual licensed under the MIT and the University of Illinois Open | 
|  | // Source Licenses. See LICENSE.txt for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "kmp.h" | 
|  | #include "kmp_error.h" | 
|  | #include "kmp_i18n.h" | 
|  | #include "kmp_io.h" | 
|  |  | 
|  | #define MAX_MESSAGE 512 | 
|  |  | 
|  | /* Taskq routines and global variables */ | 
|  |  | 
|  | #define KMP_DEBUG_REF_CTS(x) KF_TRACE(1, x); | 
|  |  | 
|  | #define THREAD_ALLOC_FOR_TASKQ | 
|  |  | 
|  | static int in_parallel_context(kmp_team_t *team) { | 
|  | return !team->t.t_serialized; | 
|  | } | 
|  |  | 
|  | static void __kmp_taskq_eo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { | 
|  | int gtid = *gtid_ref; | 
|  | int tid = __kmp_tid_from_gtid(gtid); | 
|  | kmp_uint32 my_token; | 
|  | kmpc_task_queue_t *taskq; | 
|  | kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq; | 
|  |  | 
|  | if (__kmp_env_consistency_check) | 
|  | #if KMP_USE_DYNAMIC_LOCK | 
|  | __kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL, 0); | 
|  | #else | 
|  | __kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL); | 
|  | #endif | 
|  |  | 
|  | if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) { | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | /* GEH - need check here under stats to make sure   */ | 
|  | /*       inside task (curr_thunk[*tid_ref] != NULL) */ | 
|  |  | 
|  | my_token = tq->tq_curr_thunk[tid]->th_tasknum; | 
|  |  | 
|  | taskq = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue; | 
|  |  | 
|  | KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_EQ, NULL); | 
|  | KMP_MB(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_taskq_xo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { | 
|  | int gtid = *gtid_ref; | 
|  | int tid = __kmp_tid_from_gtid(gtid); | 
|  | kmp_uint32 my_token; | 
|  | kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq; | 
|  |  | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_pop_sync(gtid, ct_ordered_in_taskq, loc_ref); | 
|  |  | 
|  | if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) { | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | /* GEH - need check here under stats to make sure */ | 
|  | /*       inside task (curr_thunk[tid] != NULL)    */ | 
|  |  | 
|  | my_token = tq->tq_curr_thunk[tid]->th_tasknum; | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue->tq_tasknum_serving = | 
|  | my_token + 1; | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_taskq_check_ordered(kmp_int32 gtid, kmpc_thunk_t *thunk) { | 
|  | kmp_uint32 my_token; | 
|  | kmpc_task_queue_t *taskq; | 
|  |  | 
|  | /* assume we are always called from an active parallel context */ | 
|  |  | 
|  | KMP_MB(); /* Flush all pending memory write invalidates.  */ | 
|  |  | 
|  | my_token = thunk->th_tasknum; | 
|  |  | 
|  | taskq = thunk->th.th_shareds->sv_queue; | 
|  |  | 
|  | if (taskq->tq_tasknum_serving <= my_token) { | 
|  | KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_GE, NULL); | 
|  | KMP_MB(); | 
|  | taskq->tq_tasknum_serving = my_token + 1; | 
|  | KMP_MB(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  |  | 
|  | static void __kmp_dump_TQF(kmp_int32 flags) { | 
|  | if (flags & TQF_IS_ORDERED) | 
|  | __kmp_printf("ORDERED "); | 
|  | if (flags & TQF_IS_LASTPRIVATE) | 
|  | __kmp_printf("LAST_PRIV "); | 
|  | if (flags & TQF_IS_NOWAIT) | 
|  | __kmp_printf("NOWAIT "); | 
|  | if (flags & TQF_HEURISTICS) | 
|  | __kmp_printf("HEURIST "); | 
|  | if (flags & TQF_INTERFACE_RESERVED1) | 
|  | __kmp_printf("RESERV1 "); | 
|  | if (flags & TQF_INTERFACE_RESERVED2) | 
|  | __kmp_printf("RESERV2 "); | 
|  | if (flags & TQF_INTERFACE_RESERVED3) | 
|  | __kmp_printf("RESERV3 "); | 
|  | if (flags & TQF_INTERFACE_RESERVED4) | 
|  | __kmp_printf("RESERV4 "); | 
|  | if (flags & TQF_IS_LAST_TASK) | 
|  | __kmp_printf("LAST_TASK "); | 
|  | if (flags & TQF_TASKQ_TASK) | 
|  | __kmp_printf("TASKQ_TASK "); | 
|  | if (flags & TQF_RELEASE_WORKERS) | 
|  | __kmp_printf("RELEASE "); | 
|  | if (flags & TQF_ALL_TASKS_QUEUED) | 
|  | __kmp_printf("ALL_QUEUED "); | 
|  | if (flags & TQF_PARALLEL_CONTEXT) | 
|  | __kmp_printf("PARALLEL "); | 
|  | if (flags & TQF_DEALLOCATED) | 
|  | __kmp_printf("DEALLOC "); | 
|  | if (!(flags & (TQF_INTERNAL_FLAGS | TQF_INTERFACE_FLAGS))) | 
|  | __kmp_printf("(NONE)"); | 
|  | } | 
|  |  | 
|  | static void __kmp_dump_thunk(kmp_taskq_t *tq, kmpc_thunk_t *thunk, | 
|  | kmp_int32 global_tid) { | 
|  | int i; | 
|  | int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc; | 
|  |  | 
|  | __kmp_printf("\tThunk at %p on (%d):  ", thunk, global_tid); | 
|  |  | 
|  | if (thunk != NULL) { | 
|  | for (i = 0; i < nproc; i++) { | 
|  | if (tq->tq_curr_thunk[i] == thunk) { | 
|  | __kmp_printf("[%i] ", i); | 
|  | } | 
|  | } | 
|  | __kmp_printf("th_shareds=%p, ", thunk->th.th_shareds); | 
|  | __kmp_printf("th_task=%p, ", thunk->th_task); | 
|  | __kmp_printf("th_encl_thunk=%p, ", thunk->th_encl_thunk); | 
|  | __kmp_printf("th_status=%d, ", thunk->th_status); | 
|  | __kmp_printf("th_tasknum=%u, ", thunk->th_tasknum); | 
|  | __kmp_printf("th_flags="); | 
|  | __kmp_dump_TQF(thunk->th_flags); | 
|  | } | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  | } | 
|  |  | 
|  | static void __kmp_dump_thunk_stack(kmpc_thunk_t *thunk, kmp_int32 thread_num) { | 
|  | kmpc_thunk_t *th; | 
|  |  | 
|  | __kmp_printf("    Thunk stack for T#%d:  ", thread_num); | 
|  |  | 
|  | for (th = thunk; th != NULL; th = th->th_encl_thunk) | 
|  | __kmp_printf("%p ", th); | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  | } | 
|  |  | 
|  | static void __kmp_dump_task_queue(kmp_taskq_t *tq, kmpc_task_queue_t *queue, | 
|  | kmp_int32 global_tid) { | 
|  | int qs, count, i; | 
|  | kmpc_thunk_t *thunk; | 
|  | kmpc_task_queue_t *taskq; | 
|  |  | 
|  | __kmp_printf("Task Queue at %p on (%d):\n", queue, global_tid); | 
|  |  | 
|  | if (queue != NULL) { | 
|  | int in_parallel = queue->tq_flags & TQF_PARALLEL_CONTEXT; | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | __kmp_printf("    tq_loc             : "); | 
|  | } | 
|  | if (in_parallel) { | 
|  |  | 
|  | // if (queue->tq.tq_parent != 0) | 
|  | //__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  |  | 
|  | //__kmp_acquire_lock(& queue->tq_link_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | __kmp_printf("    tq_parent          : %p\n", queue->tq.tq_parent); | 
|  | __kmp_printf("    tq_first_child     : %p\n", queue->tq_first_child); | 
|  | __kmp_printf("    tq_next_child      : %p\n", queue->tq_next_child); | 
|  | __kmp_printf("    tq_prev_child      : %p\n", queue->tq_prev_child); | 
|  | __kmp_printf("    tq_ref_count       : %d\n", queue->tq_ref_count); | 
|  |  | 
|  | //__kmp_release_lock(& queue->tq_link_lck, global_tid); | 
|  |  | 
|  | // if (queue->tq.tq_parent != 0) | 
|  | //__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  |  | 
|  | //__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid); | 
|  | //__kmp_acquire_lock(& queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | __kmp_printf("    tq_shareds         : "); | 
|  | for (i = 0; i < ((queue == tq->tq_root) ? queue->tq_nproc : 1); i++) | 
|  | __kmp_printf("%p ", queue->tq_shareds[i].ai_data); | 
|  | __kmp_printf("\n"); | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_printf("    tq_tasknum_queuing : %u\n", queue->tq_tasknum_queuing); | 
|  | __kmp_printf("    tq_tasknum_serving : %u\n", queue->tq_tasknum_serving); | 
|  | } | 
|  |  | 
|  | __kmp_printf("    tq_queue           : %p\n", queue->tq_queue); | 
|  | __kmp_printf("    tq_thunk_space     : %p\n", queue->tq_thunk_space); | 
|  | __kmp_printf("    tq_taskq_slot      : %p\n", queue->tq_taskq_slot); | 
|  |  | 
|  | __kmp_printf("    tq_free_thunks     : "); | 
|  | for (thunk = queue->tq_free_thunks; thunk != NULL; | 
|  | thunk = thunk->th.th_next_free) | 
|  | __kmp_printf("%p ", thunk); | 
|  | __kmp_printf("\n"); | 
|  |  | 
|  | __kmp_printf("    tq_nslots          : %d\n", queue->tq_nslots); | 
|  | __kmp_printf("    tq_head            : %d\n", queue->tq_head); | 
|  | __kmp_printf("    tq_tail            : %d\n", queue->tq_tail); | 
|  | __kmp_printf("    tq_nfull           : %d\n", queue->tq_nfull); | 
|  | __kmp_printf("    tq_hiwat           : %d\n", queue->tq_hiwat); | 
|  | __kmp_printf("    tq_flags           : "); | 
|  | __kmp_dump_TQF(queue->tq_flags); | 
|  | __kmp_printf("\n"); | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_printf("    tq_th_thunks       : "); | 
|  | for (i = 0; i < queue->tq_nproc; i++) { | 
|  | __kmp_printf("%d ", queue->tq_th_thunks[i].ai_data); | 
|  | } | 
|  | __kmp_printf("\n"); | 
|  | } | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  | __kmp_printf("    Queue slots:\n"); | 
|  |  | 
|  | qs = queue->tq_tail; | 
|  | for (count = 0; count < queue->tq_nfull; ++count) { | 
|  | __kmp_printf("(%d)", qs); | 
|  | __kmp_dump_thunk(tq, queue->tq_queue[qs].qs_thunk, global_tid); | 
|  | qs = (qs + 1) % queue->tq_nslots; | 
|  | } | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  |  | 
|  | if (in_parallel) { | 
|  | if (queue->tq_taskq_slot != NULL) { | 
|  | __kmp_printf("    TaskQ slot:\n"); | 
|  | __kmp_dump_thunk(tq, CCAST(kmpc_thunk_t *, queue->tq_taskq_slot), | 
|  | global_tid); | 
|  | __kmp_printf("\n"); | 
|  | } | 
|  | //__kmp_release_lock(& queue->tq_queue_lck, global_tid); | 
|  | //__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_printf("    Taskq freelist: "); | 
|  |  | 
|  | //__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid ); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | for (taskq = tq->tq_freelist; taskq != NULL; taskq = taskq->tq.tq_next_free) | 
|  | __kmp_printf("%p ", taskq); | 
|  |  | 
|  | //__kmp_release_lock( & tq->tq_freelist_lck, global_tid ); | 
|  |  | 
|  | __kmp_printf("\n\n"); | 
|  | } | 
|  |  | 
|  | static void __kmp_aux_dump_task_queue_tree(kmp_taskq_t *tq, | 
|  | kmpc_task_queue_t *curr_queue, | 
|  | kmp_int32 level, | 
|  | kmp_int32 global_tid) { | 
|  | int i, count, qs; | 
|  | int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc; | 
|  | kmpc_task_queue_t *queue = curr_queue; | 
|  |  | 
|  | if (curr_queue == NULL) | 
|  | return; | 
|  |  | 
|  | __kmp_printf("    "); | 
|  |  | 
|  | for (i = 0; i < level; i++) | 
|  | __kmp_printf("  "); | 
|  |  | 
|  | __kmp_printf("%p", curr_queue); | 
|  |  | 
|  | for (i = 0; i < nproc; i++) { | 
|  | if (tq->tq_curr_thunk[i] && | 
|  | tq->tq_curr_thunk[i]->th.th_shareds->sv_queue == curr_queue) { | 
|  | __kmp_printf(" [%i]", i); | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_printf(":"); | 
|  |  | 
|  | //__kmp_acquire_lock(& curr_queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | qs = curr_queue->tq_tail; | 
|  |  | 
|  | for (count = 0; count < curr_queue->tq_nfull; ++count) { | 
|  | __kmp_printf("%p ", curr_queue->tq_queue[qs].qs_thunk); | 
|  | qs = (qs + 1) % curr_queue->tq_nslots; | 
|  | } | 
|  |  | 
|  | //__kmp_release_lock(& curr_queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  |  | 
|  | if (curr_queue->tq_first_child) { | 
|  | //__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | if (curr_queue->tq_first_child) { | 
|  | for (queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child); | 
|  | queue != NULL; queue = queue->tq_next_child) { | 
|  | __kmp_aux_dump_task_queue_tree(tq, queue, level + 1, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | //__kmp_release_lock(& curr_queue->tq_link_lck, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_dump_task_queue_tree(kmp_taskq_t *tq, | 
|  | kmpc_task_queue_t *tqroot, | 
|  | kmp_int32 global_tid) { | 
|  | __kmp_printf("TaskQ Tree at root %p on (%d):\n", tqroot, global_tid); | 
|  |  | 
|  | __kmp_aux_dump_task_queue_tree(tq, tqroot, 0, global_tid); | 
|  |  | 
|  | __kmp_printf("\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* New taskq storage routines that try to minimize overhead of mallocs but | 
|  | still provide cache line alignment. */ | 
|  | static void *__kmp_taskq_allocate(size_t size, kmp_int32 global_tid) { | 
|  | void *addr, *orig_addr; | 
|  | size_t bytes; | 
|  |  | 
|  | KB_TRACE(5, ("__kmp_taskq_allocate: called size=%d, gtid=%d\n", (int)size, | 
|  | global_tid)); | 
|  |  | 
|  | bytes = sizeof(void *) + CACHE_LINE + size; | 
|  |  | 
|  | #ifdef THREAD_ALLOC_FOR_TASKQ | 
|  | orig_addr = | 
|  | (void *)__kmp_thread_malloc(__kmp_thread_from_gtid(global_tid), bytes); | 
|  | #else | 
|  | KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", bytes)); | 
|  | orig_addr = (void *)KMP_INTERNAL_MALLOC(bytes); | 
|  | #endif /* THREAD_ALLOC_FOR_TASKQ */ | 
|  |  | 
|  | if (orig_addr == 0) | 
|  | KMP_FATAL(OutOfHeapMemory); | 
|  |  | 
|  | addr = orig_addr; | 
|  |  | 
|  | if (((kmp_uintptr_t)addr & (CACHE_LINE - 1)) != 0) { | 
|  | KB_TRACE(50, ("__kmp_taskq_allocate:  adjust for cache alignment\n")); | 
|  | addr = (void *)(((kmp_uintptr_t)addr + CACHE_LINE) & ~(CACHE_LINE - 1)); | 
|  | } | 
|  |  | 
|  | (*(void **)addr) = orig_addr; | 
|  |  | 
|  | KB_TRACE(10, | 
|  | ("__kmp_taskq_allocate:  allocate: %p, use: %p - %p, size: %d, " | 
|  | "gtid: %d\n", | 
|  | orig_addr, ((void **)addr) + 1, | 
|  | ((char *)(((void **)addr) + 1)) + size - 1, (int)size, global_tid)); | 
|  |  | 
|  | return (((void **)addr) + 1); | 
|  | } | 
|  |  | 
|  | static void __kmpc_taskq_free(void *p, kmp_int32 global_tid) { | 
|  | KB_TRACE(5, ("__kmpc_taskq_free: called addr=%p, gtid=%d\n", p, global_tid)); | 
|  |  | 
|  | KB_TRACE(10, ("__kmpc_taskq_free:  freeing: %p, gtid: %d\n", | 
|  | (*(((void **)p) - 1)), global_tid)); | 
|  |  | 
|  | #ifdef THREAD_ALLOC_FOR_TASKQ | 
|  | __kmp_thread_free(__kmp_thread_from_gtid(global_tid), *(((void **)p) - 1)); | 
|  | #else | 
|  | KMP_INTERNAL_FREE(*(((void **)p) - 1)); | 
|  | #endif /* THREAD_ALLOC_FOR_TASKQ */ | 
|  | } | 
|  |  | 
|  | /* Keep freed kmpc_task_queue_t on an internal freelist and recycle since | 
|  | they're of constant size. */ | 
|  |  | 
|  | static kmpc_task_queue_t * | 
|  | __kmp_alloc_taskq(kmp_taskq_t *tq, int in_parallel, kmp_int32 nslots, | 
|  | kmp_int32 nthunks, kmp_int32 nshareds, kmp_int32 nproc, | 
|  | size_t sizeof_thunk, size_t sizeof_shareds, | 
|  | kmpc_thunk_t **new_taskq_thunk, kmp_int32 global_tid) { | 
|  | kmp_int32 i; | 
|  | size_t bytes; | 
|  | kmpc_task_queue_t *new_queue; | 
|  | kmpc_aligned_shared_vars_t *shared_var_array; | 
|  | char *shared_var_storage; | 
|  | char *pt; /* for doing byte-adjusted address computations */ | 
|  |  | 
|  | __kmp_acquire_lock(&tq->tq_freelist_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | if (tq->tq_freelist) { | 
|  | new_queue = tq->tq_freelist; | 
|  | tq->tq_freelist = tq->tq_freelist->tq.tq_next_free; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(new_queue->tq_flags & TQF_DEALLOCATED); | 
|  |  | 
|  | new_queue->tq_flags = 0; | 
|  |  | 
|  | __kmp_release_lock(&tq->tq_freelist_lck, global_tid); | 
|  | } else { | 
|  | __kmp_release_lock(&tq->tq_freelist_lck, global_tid); | 
|  |  | 
|  | new_queue = (kmpc_task_queue_t *)__kmp_taskq_allocate( | 
|  | sizeof(kmpc_task_queue_t), global_tid); | 
|  | new_queue->tq_flags = 0; | 
|  | } | 
|  |  | 
|  | /*  space in the task queue for queue slots (allocate as one big chunk */ | 
|  | /* of storage including new_taskq_task space)                          */ | 
|  |  | 
|  | sizeof_thunk += | 
|  | (CACHE_LINE - (sizeof_thunk % CACHE_LINE)); /* pad to cache line size */ | 
|  | pt = (char *)__kmp_taskq_allocate(nthunks * sizeof_thunk, global_tid); | 
|  | new_queue->tq_thunk_space = (kmpc_thunk_t *)pt; | 
|  | *new_taskq_thunk = (kmpc_thunk_t *)(pt + (nthunks - 1) * sizeof_thunk); | 
|  |  | 
|  | /*  chain the allocated thunks into a freelist for this queue  */ | 
|  |  | 
|  | new_queue->tq_free_thunks = (kmpc_thunk_t *)pt; | 
|  |  | 
|  | for (i = 0; i < (nthunks - 2); i++) { | 
|  | ((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th.th_next_free = | 
|  | (kmpc_thunk_t *)(pt + (i + 1) * sizeof_thunk); | 
|  | #ifdef KMP_DEBUG | 
|  | ((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th_flags = TQF_DEALLOCATED; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th.th_next_free = NULL; | 
|  | #ifdef KMP_DEBUG | 
|  | ((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th_flags = | 
|  | TQF_DEALLOCATED; | 
|  | #endif | 
|  |  | 
|  | /* initialize the locks */ | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_init_lock(&new_queue->tq_link_lck); | 
|  | __kmp_init_lock(&new_queue->tq_free_thunks_lck); | 
|  | __kmp_init_lock(&new_queue->tq_queue_lck); | 
|  | } | 
|  |  | 
|  | /* now allocate the slots */ | 
|  |  | 
|  | bytes = nslots * sizeof(kmpc_aligned_queue_slot_t); | 
|  | new_queue->tq_queue = | 
|  | (kmpc_aligned_queue_slot_t *)__kmp_taskq_allocate(bytes, global_tid); | 
|  |  | 
|  | /*  space for array of pointers to shared variable structures */ | 
|  | sizeof_shareds += sizeof(kmpc_task_queue_t *); | 
|  | sizeof_shareds += | 
|  | (CACHE_LINE - (sizeof_shareds % CACHE_LINE)); /* pad to cache line size */ | 
|  |  | 
|  | bytes = nshareds * sizeof(kmpc_aligned_shared_vars_t); | 
|  | shared_var_array = | 
|  | (kmpc_aligned_shared_vars_t *)__kmp_taskq_allocate(bytes, global_tid); | 
|  |  | 
|  | bytes = nshareds * sizeof_shareds; | 
|  | shared_var_storage = (char *)__kmp_taskq_allocate(bytes, global_tid); | 
|  |  | 
|  | for (i = 0; i < nshareds; i++) { | 
|  | shared_var_array[i].ai_data = | 
|  | (kmpc_shared_vars_t *)(shared_var_storage + i * sizeof_shareds); | 
|  | shared_var_array[i].ai_data->sv_queue = new_queue; | 
|  | } | 
|  | new_queue->tq_shareds = shared_var_array; | 
|  |  | 
|  | /* array for number of outstanding thunks per thread */ | 
|  |  | 
|  | if (in_parallel) { | 
|  | bytes = nproc * sizeof(kmpc_aligned_int32_t); | 
|  | new_queue->tq_th_thunks = | 
|  | (kmpc_aligned_int32_t *)__kmp_taskq_allocate(bytes, global_tid); | 
|  | new_queue->tq_nproc = nproc; | 
|  |  | 
|  | for (i = 0; i < nproc; i++) | 
|  | new_queue->tq_th_thunks[i].ai_data = 0; | 
|  | } | 
|  |  | 
|  | return new_queue; | 
|  | } | 
|  |  | 
|  | static void __kmp_free_taskq(kmp_taskq_t *tq, kmpc_task_queue_t *p, | 
|  | int in_parallel, kmp_int32 global_tid) { | 
|  | __kmpc_taskq_free(p->tq_thunk_space, global_tid); | 
|  | __kmpc_taskq_free(p->tq_queue, global_tid); | 
|  |  | 
|  | /* free shared var structure storage */ | 
|  | __kmpc_taskq_free(CCAST(kmpc_shared_vars_t *, p->tq_shareds[0].ai_data), | 
|  | global_tid); | 
|  | /* free array of pointers to shared vars storage */ | 
|  | __kmpc_taskq_free(p->tq_shareds, global_tid); | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | p->tq_first_child = NULL; | 
|  | p->tq_next_child = NULL; | 
|  | p->tq_prev_child = NULL; | 
|  | p->tq_ref_count = -10; | 
|  | p->tq_shareds = NULL; | 
|  | p->tq_tasknum_queuing = 0; | 
|  | p->tq_tasknum_serving = 0; | 
|  | p->tq_queue = NULL; | 
|  | p->tq_thunk_space = NULL; | 
|  | p->tq_taskq_slot = NULL; | 
|  | p->tq_free_thunks = NULL; | 
|  | p->tq_nslots = 0; | 
|  | p->tq_head = 0; | 
|  | p->tq_tail = 0; | 
|  | p->tq_nfull = 0; | 
|  | p->tq_hiwat = 0; | 
|  |  | 
|  | if (in_parallel) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < p->tq_nproc; i++) | 
|  | p->tq_th_thunks[i].ai_data = 0; | 
|  | } | 
|  | if (__kmp_env_consistency_check) | 
|  | p->tq_loc = NULL; | 
|  | KMP_DEBUG_ASSERT(p->tq_flags & TQF_DEALLOCATED); | 
|  | p->tq_flags = TQF_DEALLOCATED; | 
|  | #endif /* KMP_DEBUG */ | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmpc_taskq_free(p->tq_th_thunks, global_tid); | 
|  | __kmp_destroy_lock(&p->tq_link_lck); | 
|  | __kmp_destroy_lock(&p->tq_queue_lck); | 
|  | __kmp_destroy_lock(&p->tq_free_thunks_lck); | 
|  | } | 
|  | #ifdef KMP_DEBUG | 
|  | p->tq_th_thunks = NULL; | 
|  | #endif /* KMP_DEBUG */ | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | __kmp_acquire_lock(&tq->tq_freelist_lck, global_tid); | 
|  | p->tq.tq_next_free = tq->tq_freelist; | 
|  |  | 
|  | tq->tq_freelist = p; | 
|  | __kmp_release_lock(&tq->tq_freelist_lck, global_tid); | 
|  | } | 
|  |  | 
|  | /* Once a group of thunks has been allocated for use in a particular queue, | 
|  | these are managed via a per-queue freelist. | 
|  | We force a check that there's always a thunk free if we need one. */ | 
|  |  | 
|  | static kmpc_thunk_t *__kmp_alloc_thunk(kmpc_task_queue_t *queue, | 
|  | int in_parallel, kmp_int32 global_tid) { | 
|  | kmpc_thunk_t *fl; | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | fl = queue->tq_free_thunks; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(fl != NULL); | 
|  |  | 
|  | queue->tq_free_thunks = fl->th.th_next_free; | 
|  | fl->th_flags = 0; | 
|  |  | 
|  | if (in_parallel) | 
|  | __kmp_release_lock(&queue->tq_free_thunks_lck, global_tid); | 
|  |  | 
|  | return fl; | 
|  | } | 
|  |  | 
|  | static void __kmp_free_thunk(kmpc_task_queue_t *queue, kmpc_thunk_t *p, | 
|  | int in_parallel, kmp_int32 global_tid) { | 
|  | #ifdef KMP_DEBUG | 
|  | p->th_task = 0; | 
|  | p->th_encl_thunk = 0; | 
|  | p->th_status = 0; | 
|  | p->th_tasknum = 0; | 
|  | /* Also could zero pointers to private vars */ | 
|  | #endif | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | p->th.th_next_free = queue->tq_free_thunks; | 
|  | queue->tq_free_thunks = p; | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | p->th_flags = TQF_DEALLOCATED; | 
|  | #endif | 
|  |  | 
|  | if (in_parallel) | 
|  | __kmp_release_lock(&queue->tq_free_thunks_lck, global_tid); | 
|  | } | 
|  |  | 
|  | /*  returns nonzero if the queue just became full after the enqueue  */ | 
|  | static kmp_int32 __kmp_enqueue_task(kmp_taskq_t *tq, kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *queue, | 
|  | kmpc_thunk_t *thunk, int in_parallel) { | 
|  | kmp_int32 ret; | 
|  |  | 
|  | /*  dkp: can we get around the lock in the TQF_RELEASE_WORKERS case (only the | 
|  | * master is executing then)  */ | 
|  | if (in_parallel) { | 
|  | __kmp_acquire_lock(&queue->tq_queue_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull < queue->tq_nslots); // check queue not full | 
|  |  | 
|  | queue->tq_queue[(queue->tq_head)++].qs_thunk = thunk; | 
|  |  | 
|  | if (queue->tq_head >= queue->tq_nslots) | 
|  | queue->tq_head = 0; | 
|  |  | 
|  | (queue->tq_nfull)++; | 
|  |  | 
|  | KMP_MB(); /* to assure that nfull is seen to increase before | 
|  | TQF_ALL_TASKS_QUEUED is set */ | 
|  |  | 
|  | ret = (in_parallel) ? (queue->tq_nfull == queue->tq_nslots) : FALSE; | 
|  |  | 
|  | if (in_parallel) { | 
|  | /* don't need to wait until workers are released before unlocking */ | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | if (tq->tq_global_flags & TQF_RELEASE_WORKERS) { | 
|  | // If just creating the root queue, the worker threads are waiting at a | 
|  | // join barrier until now, when there's something in the queue for them to | 
|  | // do; release them now to do work. This should only be done when this is | 
|  | // the first task enqueued, so reset the flag here also. | 
|  | tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; /* no lock needed, workers | 
|  | are still in spin mode */ | 
|  | // avoid releasing barrier twice if taskq_task switches threads | 
|  | KMP_MB(); | 
|  |  | 
|  | __kmpc_end_barrier_master(NULL, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static kmpc_thunk_t *__kmp_dequeue_task(kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *queue, | 
|  | int in_parallel) { | 
|  | kmpc_thunk_t *pt; | 
|  | int tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull > 0); /*  check queue not empty  */ | 
|  |  | 
|  | if (queue->tq.tq_parent != NULL && in_parallel) { | 
|  | int ct; | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | ct = ++(queue->tq_ref_count); | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); | 
|  | } | 
|  |  | 
|  | pt = queue->tq_queue[(queue->tq_tail)++].qs_thunk; | 
|  |  | 
|  | if (queue->tq_tail >= queue->tq_nslots) | 
|  | queue->tq_tail = 0; | 
|  |  | 
|  | if (in_parallel) { | 
|  | queue->tq_th_thunks[tid].ai_data++; | 
|  |  | 
|  | KMP_MB(); /* necessary so ai_data increment is propagated to other threads | 
|  | immediately (digital) */ | 
|  |  | 
|  | KF_TRACE(200, ("__kmp_dequeue_task: T#%d(:%d) now has %d outstanding " | 
|  | "thunks from queue %p\n", | 
|  | global_tid, tid, queue->tq_th_thunks[tid].ai_data, queue)); | 
|  | } | 
|  |  | 
|  | (queue->tq_nfull)--; | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | KMP_MB(); | 
|  |  | 
|  | /* necessary so (queue->tq_nfull > 0) above succeeds after tq_nfull is | 
|  | * decremented */ | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull >= 0); | 
|  |  | 
|  | if (in_parallel) { | 
|  | KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data <= | 
|  | __KMP_TASKQ_THUNKS_PER_TH); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | /* Find the next (non-null) task to dequeue and return it. | 
|  | * This is never called unless in_parallel=TRUE | 
|  | * | 
|  | * Here are the rules for deciding which queue to take the task from: | 
|  | * 1.  Walk up the task queue tree from the current queue's parent and look | 
|  | *      on the way up (for loop, below). | 
|  | * 2.  Do a depth-first search back down the tree from the root and | 
|  | *      look (find_task_in_descendant_queue()). | 
|  | * | 
|  | * Here are the rules for deciding which task to take from a queue | 
|  | * (__kmp_find_task_in_queue ()): | 
|  | * 1.  Never take the last task from a queue if TQF_IS_LASTPRIVATE; this task | 
|  | *     must be staged to make sure we execute the last one with | 
|  | *     TQF_IS_LAST_TASK at the end of task queue execution. | 
|  | * 2.  If the queue length is below some high water mark and the taskq task | 
|  | *     is enqueued, prefer running the taskq task. | 
|  | * 3.  Otherwise, take a (normal) task from the queue. | 
|  | * | 
|  | * If we do all this and return pt == NULL at the bottom of this routine, | 
|  | * this means there are no more tasks to execute (except possibly for | 
|  | * TQF_IS_LASTPRIVATE). | 
|  | */ | 
|  |  | 
|  | static kmpc_thunk_t *__kmp_find_task_in_queue(kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *queue) { | 
|  | kmpc_thunk_t *pt = NULL; | 
|  | int tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | /* To prevent deadlock from tq_queue_lck if queue already deallocated */ | 
|  | if (!(queue->tq_flags & TQF_DEALLOCATED)) { | 
|  |  | 
|  | __kmp_acquire_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | /* Check again to avoid race in __kmpc_end_taskq() */ | 
|  | if (!(queue->tq_flags & TQF_DEALLOCATED)) { | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | if ((queue->tq_taskq_slot != NULL) && | 
|  | (queue->tq_nfull <= queue->tq_hiwat)) { | 
|  | /* if there's enough room in the queue and the dispatcher */ | 
|  | /* (taskq task) is available, schedule more tasks         */ | 
|  | pt = CCAST(kmpc_thunk_t *, queue->tq_taskq_slot); | 
|  | queue->tq_taskq_slot = NULL; | 
|  | } else if (queue->tq_nfull == 0 || | 
|  | queue->tq_th_thunks[tid].ai_data >= | 
|  | __KMP_TASKQ_THUNKS_PER_TH) { | 
|  | /* do nothing if no thunks available or this thread can't */ | 
|  | /* run any because it already is executing too many       */ | 
|  | pt = NULL; | 
|  | } else if (queue->tq_nfull > 1) { | 
|  | /*  always safe to schedule a task even if TQF_IS_LASTPRIVATE  */ | 
|  |  | 
|  | pt = __kmp_dequeue_task(global_tid, queue, TRUE); | 
|  | } else if (!(queue->tq_flags & TQF_IS_LASTPRIVATE)) { | 
|  | // one thing in queue, always safe to schedule if !TQF_IS_LASTPRIVATE | 
|  | pt = __kmp_dequeue_task(global_tid, queue, TRUE); | 
|  | } else if (queue->tq_flags & TQF_IS_LAST_TASK) { | 
|  | /* TQF_IS_LASTPRIVATE, one thing in queue, kmpc_end_taskq_task()   */ | 
|  | /* has been run so this is last task, run with TQF_IS_LAST_TASK so */ | 
|  | /* instrumentation does copy-out.                                  */ | 
|  | pt = __kmp_dequeue_task(global_tid, queue, TRUE); | 
|  | pt->th_flags |= | 
|  | TQF_IS_LAST_TASK; /* don't need test_then_or since already locked */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* GEH - What happens here if is lastprivate, but not last task? */ | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  | } | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | /* Walk a tree of queues starting at queue's first child and return a non-NULL | 
|  | thunk if one can be scheduled. Must only be called when in_parallel=TRUE */ | 
|  |  | 
|  | static kmpc_thunk_t * | 
|  | __kmp_find_task_in_descendant_queue(kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *curr_queue) { | 
|  | kmpc_thunk_t *pt = NULL; | 
|  | kmpc_task_queue_t *queue = curr_queue; | 
|  |  | 
|  | if (curr_queue->tq_first_child != NULL) { | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child); | 
|  | if (queue == NULL) { | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | while (queue != NULL) { | 
|  | int ct; | 
|  | kmpc_task_queue_t *next; | 
|  |  | 
|  | ct = ++(queue->tq_ref_count); | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); | 
|  |  | 
|  | pt = __kmp_find_task_in_queue(global_tid, queue); | 
|  |  | 
|  | if (pt != NULL) { | 
|  | int ct; | 
|  |  | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, | 
|  | global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0); | 
|  |  | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | /* although reference count stays active during descendant walk, shouldn't | 
|  | matter  since if children still exist, reference counts aren't being | 
|  | monitored anyway   */ | 
|  |  | 
|  | pt = __kmp_find_task_in_descendant_queue(global_tid, queue); | 
|  |  | 
|  | if (pt != NULL) { | 
|  | int ct; | 
|  |  | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, | 
|  | global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  |  | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | next = queue->tq_next_child; | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  |  | 
|  | queue = next; | 
|  | } | 
|  |  | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | } | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | /* Walk up the taskq tree looking for a task to execute. If we get to the root, | 
|  | search the tree for a descendent queue task. Must only be called when | 
|  | in_parallel=TRUE */ | 
|  | static kmpc_thunk_t * | 
|  | __kmp_find_task_in_ancestor_queue(kmp_taskq_t *tq, kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *curr_queue) { | 
|  | kmpc_task_queue_t *queue; | 
|  | kmpc_thunk_t *pt; | 
|  |  | 
|  | pt = NULL; | 
|  |  | 
|  | if (curr_queue->tq.tq_parent != NULL) { | 
|  | queue = curr_queue->tq.tq_parent; | 
|  |  | 
|  | while (queue != NULL) { | 
|  | if (queue->tq.tq_parent != NULL) { | 
|  | int ct; | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | ct = ++(queue->tq_ref_count); | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__, | 
|  | global_tid, queue, ct)); | 
|  | } | 
|  |  | 
|  | pt = __kmp_find_task_in_queue(global_tid, queue); | 
|  | if (pt != NULL) { | 
|  | if (queue->tq.tq_parent != NULL) { | 
|  | int ct; | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, | 
|  | global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  |  | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | } | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | if (queue->tq.tq_parent != NULL) { | 
|  | int ct; | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, | 
|  | global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  | } | 
|  | queue = queue->tq.tq_parent; | 
|  |  | 
|  | if (queue != NULL) | 
|  | __kmp_release_lock(&queue->tq_link_lck, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | pt = __kmp_find_task_in_descendant_queue(global_tid, tq->tq_root); | 
|  |  | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | static int __kmp_taskq_tasks_finished(kmpc_task_queue_t *queue) { | 
|  | int i; | 
|  |  | 
|  | /* KMP_MB(); */ /* is this really necessary? */ | 
|  |  | 
|  | for (i = 0; i < queue->tq_nproc; i++) { | 
|  | if (queue->tq_th_thunks[i].ai_data != 0) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | static int __kmp_taskq_has_any_children(kmpc_task_queue_t *queue) { | 
|  | return (queue->tq_first_child != NULL); | 
|  | } | 
|  |  | 
|  | static void __kmp_remove_queue_from_tree(kmp_taskq_t *tq, kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *queue, | 
|  | int in_parallel) { | 
|  | #ifdef KMP_DEBUG | 
|  | kmp_int32 i; | 
|  | kmpc_thunk_t *thunk; | 
|  | #endif | 
|  |  | 
|  | KF_TRACE(50, | 
|  | ("Before Deletion of TaskQ at %p on (%d):\n", queue, global_tid)); | 
|  | KF_DUMP(50, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | /*  sub-queue in a recursion, not the root task queue  */ | 
|  | KMP_DEBUG_ASSERT(queue->tq.tq_parent != NULL); | 
|  |  | 
|  | if (in_parallel) { | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_first_child == NULL); | 
|  |  | 
|  | /*  unlink queue from its siblings if any at this level  */ | 
|  | if (queue->tq_prev_child != NULL) | 
|  | queue->tq_prev_child->tq_next_child = queue->tq_next_child; | 
|  | if (queue->tq_next_child != NULL) | 
|  | queue->tq_next_child->tq_prev_child = queue->tq_prev_child; | 
|  | if (queue->tq.tq_parent->tq_first_child == queue) | 
|  | queue->tq.tq_parent->tq_first_child = queue->tq_next_child; | 
|  |  | 
|  | queue->tq_prev_child = NULL; | 
|  | queue->tq_next_child = NULL; | 
|  |  | 
|  | if (in_parallel) { | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p waiting for ref_count of %d to reach 1\n", | 
|  | __LINE__, global_tid, queue, queue->tq_ref_count)); | 
|  |  | 
|  | /* wait until all other threads have stopped accessing this queue */ | 
|  | while (queue->tq_ref_count > 1) { | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  |  | 
|  | KMP_WAIT_YIELD((volatile kmp_uint32 *)&queue->tq_ref_count, 1, KMP_LE, | 
|  | NULL); | 
|  |  | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  | } | 
|  |  | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p freeing queue\n", __LINE__, global_tid, queue)); | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | KMP_DEBUG_ASSERT(queue->tq_flags & TQF_ALL_TASKS_QUEUED); | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull == 0); | 
|  |  | 
|  | for (i = 0; i < queue->tq_nproc; i++) { | 
|  | KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (thunk = queue->tq_free_thunks; thunk != NULL; | 
|  | thunk = thunk->th.th_next_free) | 
|  | ++i; | 
|  |  | 
|  | KMP_ASSERT(i == | 
|  | queue->tq_nslots + (queue->tq_nproc * __KMP_TASKQ_THUNKS_PER_TH)); | 
|  | #endif | 
|  |  | 
|  | /*  release storage for queue entry  */ | 
|  | __kmp_free_taskq(tq, queue, TRUE, global_tid); | 
|  |  | 
|  | KF_TRACE(50, ("After Deletion of TaskQ at %p on (%d):\n", queue, global_tid)); | 
|  | KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid)); | 
|  | } | 
|  |  | 
|  | /* Starting from indicated queue, proceed downward through tree and remove all | 
|  | taskqs which are finished, but only go down to taskqs which have the "nowait" | 
|  | clause present.  Assume this is only called when in_parallel=TRUE. */ | 
|  |  | 
|  | static void __kmp_find_and_remove_finished_child_taskq( | 
|  | kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue) { | 
|  | kmpc_task_queue_t *queue = curr_queue; | 
|  |  | 
|  | if (curr_queue->tq_first_child != NULL) { | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this call for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child); | 
|  | if (queue != NULL) { | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (queue != NULL) { | 
|  | kmpc_task_queue_t *next; | 
|  | int ct = ++(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); | 
|  |  | 
|  | /* although reference count stays active during descendant walk, */ | 
|  | /* shouldn't matter since if children still exist, reference     */ | 
|  | /* counts aren't being monitored anyway                          */ | 
|  |  | 
|  | if (queue->tq_flags & TQF_IS_NOWAIT) { | 
|  | __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue); | 
|  |  | 
|  | if ((queue->tq_flags & TQF_ALL_TASKS_QUEUED) && | 
|  | (queue->tq_nfull == 0) && __kmp_taskq_tasks_finished(queue) && | 
|  | !__kmp_taskq_has_any_children(queue)) { | 
|  |  | 
|  | /* Only remove this if we have not already marked it for deallocation. | 
|  | This should prevent multiple threads from trying to free this. */ | 
|  |  | 
|  | if (__kmp_test_lock(&queue->tq_queue_lck, global_tid)) { | 
|  | if (!(queue->tq_flags & TQF_DEALLOCATED)) { | 
|  | queue->tq_flags |= TQF_DEALLOCATED; | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | __kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE); | 
|  |  | 
|  | /* Can't do any more here since can't be sure where sibling queue | 
|  | * is so just exit this level */ | 
|  | return; | 
|  | } else { | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  | } | 
|  | } | 
|  | /* otherwise, just fall through and decrement reference count */ | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | next = queue->tq_next_child; | 
|  |  | 
|  | ct = --(queue->tq_ref_count); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  |  | 
|  | queue = next; | 
|  | } | 
|  |  | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Starting from indicated queue, proceed downward through tree and remove all | 
|  | taskq's assuming all are finished and assuming NO other threads are executing | 
|  | at this point. */ | 
|  | static void __kmp_remove_all_child_taskq(kmp_taskq_t *tq, kmp_int32 global_tid, | 
|  | kmpc_task_queue_t *queue) { | 
|  | kmpc_task_queue_t *next_child; | 
|  |  | 
|  | queue = CCAST(kmpc_task_queue_t *, queue->tq_first_child); | 
|  |  | 
|  | while (queue != NULL) { | 
|  | __kmp_remove_all_child_taskq(tq, global_tid, queue); | 
|  |  | 
|  | next_child = queue->tq_next_child; | 
|  | queue->tq_flags |= TQF_DEALLOCATED; | 
|  | __kmp_remove_queue_from_tree(tq, global_tid, queue, FALSE); | 
|  | queue = next_child; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_execute_task_from_queue(kmp_taskq_t *tq, ident_t *loc, | 
|  | kmp_int32 global_tid, | 
|  | kmpc_thunk_t *thunk, | 
|  | int in_parallel) { | 
|  | kmpc_task_queue_t *queue = thunk->th.th_shareds->sv_queue; | 
|  | kmp_int32 tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | KF_TRACE(100, ("After dequeueing this Task on (%d):\n", global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid)); | 
|  | KF_TRACE(100, ("Task Queue: %p looks like this (%d):\n", queue, global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | /* For the taskq task, the curr_thunk pushes and pop pairs are set up as | 
|  | * follows: | 
|  | * | 
|  | * happens exactly once: | 
|  | * 1) __kmpc_taskq             : push (if returning thunk only) | 
|  | * 4) __kmpc_end_taskq_task    : pop | 
|  | * | 
|  | * optionally happens *each* time taskq task is dequeued/enqueued: | 
|  | * 2) __kmpc_taskq_task        : pop | 
|  | * 3) __kmp_execute_task_from_queue  : push | 
|  | * | 
|  | * execution ordering:  1,(2,3)*,4 | 
|  | */ | 
|  |  | 
|  | if (!(thunk->th_flags & TQF_TASKQ_TASK)) { | 
|  | kmp_int32 index = (queue == tq->tq_root) ? tid : 0; | 
|  | thunk->th.th_shareds = | 
|  | CCAST(kmpc_shared_vars_t *, queue->tq_shareds[index].ai_data); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | __kmp_push_workshare(global_tid, | 
|  | (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered | 
|  | : ct_task, | 
|  | queue->tq_loc); | 
|  | } | 
|  | } else { | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_push_workshare(global_tid, ct_taskq, queue->tq_loc); | 
|  | } | 
|  |  | 
|  | if (in_parallel) { | 
|  | thunk->th_encl_thunk = tq->tq_curr_thunk[tid]; | 
|  | tq->tq_curr_thunk[tid] = thunk; | 
|  |  | 
|  | KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid)); | 
|  | } | 
|  |  | 
|  | KF_TRACE(50, ("Begin Executing Thunk %p from queue %p on (%d)\n", thunk, | 
|  | queue, global_tid)); | 
|  | thunk->th_task(global_tid, thunk); | 
|  | KF_TRACE(50, ("End Executing Thunk %p from queue %p on (%d)\n", thunk, queue, | 
|  | global_tid)); | 
|  |  | 
|  | if (!(thunk->th_flags & TQF_TASKQ_TASK)) { | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_pop_workshare(global_tid, | 
|  | (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered | 
|  | : ct_task, | 
|  | queue->tq_loc); | 
|  |  | 
|  | if (in_parallel) { | 
|  | tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; | 
|  | thunk->th_encl_thunk = NULL; | 
|  | KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid)); | 
|  | } | 
|  |  | 
|  | if ((thunk->th_flags & TQF_IS_ORDERED) && in_parallel) { | 
|  | __kmp_taskq_check_ordered(global_tid, thunk); | 
|  | } | 
|  |  | 
|  | __kmp_free_thunk(queue, thunk, in_parallel, global_tid); | 
|  |  | 
|  | KF_TRACE(100, ("T#%d After freeing thunk: %p, TaskQ looks like this:\n", | 
|  | global_tid, thunk)); | 
|  | KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | if (in_parallel) { | 
|  | KMP_MB(); /* needed so thunk put on free list before outstanding thunk | 
|  | count is decremented */ | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data >= 1); | 
|  |  | 
|  | KF_TRACE( | 
|  | 200, | 
|  | ("__kmp_execute_task_from_queue: T#%d has %d thunks in queue %p\n", | 
|  | global_tid, queue->tq_th_thunks[tid].ai_data - 1, queue)); | 
|  |  | 
|  | queue->tq_th_thunks[tid].ai_data--; | 
|  |  | 
|  | /* KMP_MB(); */ /* is MB really necessary ? */ | 
|  | } | 
|  |  | 
|  | if (queue->tq.tq_parent != NULL && in_parallel) { | 
|  | int ct; | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | ct = --(queue->tq_ref_count); | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | KMP_DEBUG_REF_CTS( | 
|  | ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); | 
|  | KMP_DEBUG_ASSERT(ct >= 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* starts a taskq; creates and returns a thunk for the taskq_task        */ | 
|  | /* also, returns pointer to shared vars for this thread in "shareds" arg */ | 
|  | kmpc_thunk_t *__kmpc_taskq(ident_t *loc, kmp_int32 global_tid, | 
|  | kmpc_task_t taskq_task, size_t sizeof_thunk, | 
|  | size_t sizeof_shareds, kmp_int32 flags, | 
|  | kmpc_shared_vars_t **shareds) { | 
|  | int in_parallel; | 
|  | kmp_int32 nslots, nthunks, nshareds, nproc; | 
|  | kmpc_task_queue_t *new_queue, *curr_queue; | 
|  | kmpc_thunk_t *new_taskq_thunk; | 
|  | kmp_info_t *th; | 
|  | kmp_team_t *team; | 
|  | kmp_taskq_t *tq; | 
|  | kmp_int32 tid; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_taskq called (%d)\n", global_tid)); | 
|  |  | 
|  | th = __kmp_threads[global_tid]; | 
|  | team = th->th.th_team; | 
|  | tq = &team->t.t_taskq; | 
|  | nproc = team->t.t_nproc; | 
|  | tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | /* find out whether this is a parallel taskq or serialized one. */ | 
|  | in_parallel = in_parallel_context(team); | 
|  |  | 
|  | if (!tq->tq_root) { | 
|  | if (in_parallel) { | 
|  | /* Vector ORDERED SECTION to taskq version */ | 
|  | th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo; | 
|  |  | 
|  | /* Vector ORDERED SECTION to taskq version */ | 
|  | th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo; | 
|  | } | 
|  |  | 
|  | if (in_parallel) { | 
|  | // This shouldn't be a barrier region boundary, it will confuse the user. | 
|  | /* Need the boundary to be at the end taskq instead. */ | 
|  | if (__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) { | 
|  | /* Creating the active root queue, and we are not the master thread. */ | 
|  | /* The master thread below created the queue and tasks have been     */ | 
|  | /* enqueued, and the master thread released this barrier.  This      */ | 
|  | /* worker thread can now proceed and execute tasks.  See also the    */ | 
|  | /* TQF_RELEASE_WORKERS which is used to handle this case.            */ | 
|  | *shareds = | 
|  | CCAST(kmpc_shared_vars_t *, tq->tq_root->tq_shareds[tid].ai_data); | 
|  | KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid)); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* master thread only executes this code */ | 
|  | if (tq->tq_curr_thunk_capacity < nproc) { | 
|  | if (tq->tq_curr_thunk) | 
|  | __kmp_free(tq->tq_curr_thunk); | 
|  | else { | 
|  | /* only need to do this once at outer level, i.e. when tq_curr_thunk is | 
|  | * still NULL */ | 
|  | __kmp_init_lock(&tq->tq_freelist_lck); | 
|  | } | 
|  |  | 
|  | tq->tq_curr_thunk = | 
|  | (kmpc_thunk_t **)__kmp_allocate(nproc * sizeof(kmpc_thunk_t *)); | 
|  | tq->tq_curr_thunk_capacity = nproc; | 
|  | } | 
|  |  | 
|  | if (in_parallel) | 
|  | tq->tq_global_flags = TQF_RELEASE_WORKERS; | 
|  | } | 
|  |  | 
|  | /* dkp: in future, if flags & TQF_HEURISTICS, will choose nslots based */ | 
|  | /*      on some heuristics (e.g., depth of queue nesting?).            */ | 
|  | nslots = (in_parallel) ? (2 * nproc) : 1; | 
|  |  | 
|  | /* There must be nproc * __KMP_TASKQ_THUNKS_PER_TH extra slots for pending */ | 
|  | /* jobs being executed by other threads, and one extra for taskq slot */ | 
|  | nthunks = (in_parallel) ? (nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH) + 1) | 
|  | : nslots + 2; | 
|  |  | 
|  | /* Only the root taskq gets a per-thread array of shareds.       */ | 
|  | /* The rest of the taskq's only get one copy of the shared vars. */ | 
|  | nshareds = (!tq->tq_root && in_parallel) ? nproc : 1; | 
|  |  | 
|  | /*  create overall queue data structure and its components that require | 
|  | * allocation */ | 
|  | new_queue = __kmp_alloc_taskq(tq, in_parallel, nslots, nthunks, nshareds, | 
|  | nproc, sizeof_thunk, sizeof_shareds, | 
|  | &new_taskq_thunk, global_tid); | 
|  |  | 
|  | /*  rest of new_queue initializations  */ | 
|  | new_queue->tq_flags = flags & TQF_INTERFACE_FLAGS; | 
|  |  | 
|  | if (in_parallel) { | 
|  | new_queue->tq_tasknum_queuing = 0; | 
|  | new_queue->tq_tasknum_serving = 0; | 
|  | new_queue->tq_flags |= TQF_PARALLEL_CONTEXT; | 
|  | } | 
|  |  | 
|  | new_queue->tq_taskq_slot = NULL; | 
|  | new_queue->tq_nslots = nslots; | 
|  | new_queue->tq_hiwat = HIGH_WATER_MARK(nslots); | 
|  | new_queue->tq_nfull = 0; | 
|  | new_queue->tq_head = 0; | 
|  | new_queue->tq_tail = 0; | 
|  | new_queue->tq_loc = loc; | 
|  |  | 
|  | if ((new_queue->tq_flags & TQF_IS_ORDERED) && in_parallel) { | 
|  | /* prepare to serve the first-queued task's ORDERED directive */ | 
|  | new_queue->tq_tasknum_serving = 1; | 
|  |  | 
|  | /* Vector ORDERED SECTION to taskq version */ | 
|  | th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo; | 
|  |  | 
|  | /* Vector ORDERED SECTION to taskq version */ | 
|  | th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo; | 
|  | } | 
|  |  | 
|  | /*  create a new thunk for the taskq_task in the new_queue  */ | 
|  | *shareds = CCAST(kmpc_shared_vars_t *, new_queue->tq_shareds[0].ai_data); | 
|  |  | 
|  | new_taskq_thunk->th.th_shareds = *shareds; | 
|  | new_taskq_thunk->th_task = taskq_task; | 
|  | new_taskq_thunk->th_flags = new_queue->tq_flags | TQF_TASKQ_TASK; | 
|  | new_taskq_thunk->th_status = 0; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(new_taskq_thunk->th_flags & TQF_TASKQ_TASK); | 
|  |  | 
|  | // Make sure these inits complete before threads start using this queue | 
|  | /* KMP_MB(); */ // (necessary?) | 
|  |  | 
|  | /* insert the new task queue into the tree, but only after all fields | 
|  | * initialized */ | 
|  |  | 
|  | if (in_parallel) { | 
|  | if (!tq->tq_root) { | 
|  | new_queue->tq.tq_parent = NULL; | 
|  | new_queue->tq_first_child = NULL; | 
|  | new_queue->tq_next_child = NULL; | 
|  | new_queue->tq_prev_child = NULL; | 
|  | new_queue->tq_ref_count = 1; | 
|  | tq->tq_root = new_queue; | 
|  | } else { | 
|  | curr_queue = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue; | 
|  | new_queue->tq.tq_parent = curr_queue; | 
|  | new_queue->tq_first_child = NULL; | 
|  | new_queue->tq_prev_child = NULL; | 
|  | new_queue->tq_ref_count = | 
|  | 1; /* for this the thread that built the queue */ | 
|  |  | 
|  | KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p alloc %d\n", __LINE__, | 
|  | global_tid, new_queue, new_queue->tq_ref_count)); | 
|  |  | 
|  | __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | new_queue->tq_next_child = | 
|  | CCAST(struct kmpc_task_queue_t *, curr_queue->tq_first_child); | 
|  |  | 
|  | if (curr_queue->tq_first_child != NULL) | 
|  | curr_queue->tq_first_child->tq_prev_child = new_queue; | 
|  |  | 
|  | curr_queue->tq_first_child = new_queue; | 
|  |  | 
|  | __kmp_release_lock(&curr_queue->tq_link_lck, global_tid); | 
|  | } | 
|  |  | 
|  | /* set up thunk stack only after code that determines curr_queue above */ | 
|  | new_taskq_thunk->th_encl_thunk = tq->tq_curr_thunk[tid]; | 
|  | tq->tq_curr_thunk[tid] = new_taskq_thunk; | 
|  |  | 
|  | KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid)); | 
|  | } else { | 
|  | new_taskq_thunk->th_encl_thunk = 0; | 
|  | new_queue->tq.tq_parent = NULL; | 
|  | new_queue->tq_first_child = NULL; | 
|  | new_queue->tq_next_child = NULL; | 
|  | new_queue->tq_prev_child = NULL; | 
|  | new_queue->tq_ref_count = 1; | 
|  | } | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | KF_TRACE(150, ("Creating TaskQ Task on (%d):\n", global_tid)); | 
|  | KF_DUMP(150, __kmp_dump_thunk(tq, new_taskq_thunk, global_tid)); | 
|  |  | 
|  | if (in_parallel) { | 
|  | KF_TRACE(25, | 
|  | ("After TaskQ at %p Creation on (%d):\n", new_queue, global_tid)); | 
|  | } else { | 
|  | KF_TRACE(25, ("After Serial TaskQ at %p Creation on (%d):\n", new_queue, | 
|  | global_tid)); | 
|  | } | 
|  |  | 
|  | KF_DUMP(25, __kmp_dump_task_queue(tq, new_queue, global_tid)); | 
|  |  | 
|  | if (in_parallel) { | 
|  | KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid)); | 
|  | } | 
|  | #endif /* KMP_DEBUG */ | 
|  |  | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_push_workshare(global_tid, ct_taskq, new_queue->tq_loc); | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid)); | 
|  |  | 
|  | return new_taskq_thunk; | 
|  | } | 
|  |  | 
|  | /*  ends a taskq; last thread out destroys the queue  */ | 
|  |  | 
|  | void __kmpc_end_taskq(ident_t *loc, kmp_int32 global_tid, | 
|  | kmpc_thunk_t *taskq_thunk) { | 
|  | #ifdef KMP_DEBUG | 
|  | kmp_int32 i; | 
|  | #endif | 
|  | kmp_taskq_t *tq; | 
|  | int in_parallel; | 
|  | kmp_info_t *th; | 
|  | kmp_int32 is_outermost; | 
|  | kmpc_task_queue_t *queue; | 
|  | kmpc_thunk_t *thunk; | 
|  | int nproc; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_end_taskq called (%d)\n", global_tid)); | 
|  |  | 
|  | tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq; | 
|  | nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc; | 
|  |  | 
|  | /* For the outermost taskq only, all but one thread will have taskq_thunk == | 
|  | * NULL */ | 
|  | queue = (taskq_thunk == NULL) ? tq->tq_root | 
|  | : taskq_thunk->th.th_shareds->sv_queue; | 
|  |  | 
|  | KE_TRACE(50, ("__kmpc_end_taskq queue=%p (%d) \n", queue, global_tid)); | 
|  | is_outermost = (queue == tq->tq_root); | 
|  | in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); | 
|  |  | 
|  | if (in_parallel) { | 
|  | kmp_uint32 spins; | 
|  |  | 
|  | /* this is just a safeguard to release the waiting threads if */ | 
|  | /* the outermost taskq never queues a task                    */ | 
|  |  | 
|  | if (is_outermost && (KMP_MASTER_GTID(global_tid))) { | 
|  | if (tq->tq_global_flags & TQF_RELEASE_WORKERS) { | 
|  | /* no lock needed, workers are still in spin mode */ | 
|  | tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; | 
|  |  | 
|  | __kmp_end_split_barrier(bs_plain_barrier, global_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* keep dequeueing work until all tasks are queued and dequeued */ | 
|  |  | 
|  | do { | 
|  | /* wait until something is available to dequeue */ | 
|  | KMP_INIT_YIELD(spins); | 
|  |  | 
|  | while ((queue->tq_nfull == 0) && (queue->tq_taskq_slot == NULL) && | 
|  | (!__kmp_taskq_has_any_children(queue)) && | 
|  | (!(queue->tq_flags & TQF_ALL_TASKS_QUEUED))) { | 
|  | KMP_YIELD_WHEN(TRUE, spins); | 
|  | } | 
|  |  | 
|  | /* check to see if we can execute tasks in the queue */ | 
|  | while (((queue->tq_nfull != 0) || (queue->tq_taskq_slot != NULL)) && | 
|  | (thunk = __kmp_find_task_in_queue(global_tid, queue)) != NULL) { | 
|  | KF_TRACE(50, ("Found thunk: %p in primary queue %p (%d)\n", thunk, | 
|  | queue, global_tid)); | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | /* see if work found can be found in a descendant queue */ | 
|  | if ((__kmp_taskq_has_any_children(queue)) && | 
|  | (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != | 
|  | NULL) { | 
|  |  | 
|  | KF_TRACE(50, | 
|  | ("Stole thunk: %p in descendant queue: %p while waiting in " | 
|  | "queue: %p (%d)\n", | 
|  | thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); | 
|  |  | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | } while ((!(queue->tq_flags & TQF_ALL_TASKS_QUEUED)) || | 
|  | (queue->tq_nfull != 0)); | 
|  |  | 
|  | KF_TRACE(50, ("All tasks queued and dequeued in queue: %p (%d)\n", queue, | 
|  | global_tid)); | 
|  |  | 
|  | /* wait while all tasks are not finished and more work found | 
|  | in descendant queues */ | 
|  |  | 
|  | while ((!__kmp_taskq_tasks_finished(queue)) && | 
|  | (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != | 
|  | NULL) { | 
|  |  | 
|  | KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in " | 
|  | "queue: %p (%d)\n", | 
|  | thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); | 
|  |  | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | KF_TRACE(50, ("No work found in descendent queues or all work finished in " | 
|  | "queue: %p (%d)\n", | 
|  | queue, global_tid)); | 
|  |  | 
|  | if (!is_outermost) { | 
|  | /* need to return if NOWAIT present and not outermost taskq */ | 
|  |  | 
|  | if (queue->tq_flags & TQF_IS_NOWAIT) { | 
|  | __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  | queue->tq_ref_count--; | 
|  | KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0); | 
|  | __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid); | 
|  |  | 
|  | KE_TRACE( | 
|  | 10, ("__kmpc_end_taskq return for nowait case (%d)\n", global_tid)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue); | 
|  |  | 
|  | /* WAIT until all tasks are finished and no child queues exist before | 
|  | * proceeding */ | 
|  | KMP_INIT_YIELD(spins); | 
|  |  | 
|  | while (!__kmp_taskq_tasks_finished(queue) || | 
|  | __kmp_taskq_has_any_children(queue)) { | 
|  | thunk = __kmp_find_task_in_ancestor_queue(tq, global_tid, queue); | 
|  |  | 
|  | if (thunk != NULL) { | 
|  | KF_TRACE(50, | 
|  | ("Stole thunk: %p in ancestor queue: %p while waiting in " | 
|  | "queue: %p (%d)\n", | 
|  | thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, | 
|  | in_parallel); | 
|  | } | 
|  |  | 
|  | KMP_YIELD_WHEN(thunk == NULL, spins); | 
|  |  | 
|  | __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue); | 
|  | } | 
|  |  | 
|  | __kmp_acquire_lock(&queue->tq_queue_lck, global_tid); | 
|  | if (!(queue->tq_flags & TQF_DEALLOCATED)) { | 
|  | queue->tq_flags |= TQF_DEALLOCATED; | 
|  | } | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | /* only the allocating thread can deallocate the queue */ | 
|  | if (taskq_thunk != NULL) { | 
|  | __kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE); | 
|  | } | 
|  |  | 
|  | KE_TRACE( | 
|  | 10, | 
|  | ("__kmpc_end_taskq return for non_outermost queue, wait case (%d)\n", | 
|  | global_tid)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Outermost Queue: steal work from descendants until all tasks are finished | 
|  |  | 
|  | KMP_INIT_YIELD(spins); | 
|  |  | 
|  | while (!__kmp_taskq_tasks_finished(queue)) { | 
|  | thunk = __kmp_find_task_in_descendant_queue(global_tid, queue); | 
|  |  | 
|  | if (thunk != NULL) { | 
|  | KF_TRACE(50, | 
|  | ("Stole thunk: %p in descendant queue: %p while waiting in " | 
|  | "queue: %p (%d)\n", | 
|  | thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); | 
|  |  | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | KMP_YIELD_WHEN(thunk == NULL, spins); | 
|  | } | 
|  |  | 
|  | /* Need this barrier to prevent destruction of queue before threads have all | 
|  | * executed above code */ | 
|  | /* This may need to be done earlier when NOWAIT is implemented for the | 
|  | * outermost level */ | 
|  |  | 
|  | if (!__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) { | 
|  | /* the queue->tq_flags & TQF_IS_NOWAIT case is not yet handled here;   */ | 
|  | /* for right now, everybody waits, and the master thread destroys the  */ | 
|  | /* remaining queues.                                                   */ | 
|  |  | 
|  | __kmp_remove_all_child_taskq(tq, global_tid, queue); | 
|  |  | 
|  | /* Now destroy the root queue */ | 
|  | KF_TRACE(100, ("T#%d Before Deletion of top-level TaskQ at %p:\n", | 
|  | global_tid, queue)); | 
|  | KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | /*  the root queue entry  */ | 
|  | KMP_DEBUG_ASSERT((queue->tq.tq_parent == NULL) && | 
|  | (queue->tq_next_child == NULL)); | 
|  |  | 
|  | /*  children must all be gone by now because of barrier above */ | 
|  | KMP_DEBUG_ASSERT(queue->tq_first_child == NULL); | 
|  |  | 
|  | for (i = 0; i < nproc; i++) { | 
|  | KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0); | 
|  | } | 
|  |  | 
|  | for (i = 0, thunk = queue->tq_free_thunks; thunk != NULL; | 
|  | i++, thunk = thunk->th.th_next_free) | 
|  | ; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(i == | 
|  | queue->tq_nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH)); | 
|  |  | 
|  | for (i = 0; i < nproc; i++) { | 
|  | KMP_DEBUG_ASSERT(!tq->tq_curr_thunk[i]); | 
|  | } | 
|  | #endif | 
|  | /*  unlink the root queue entry  */ | 
|  | tq->tq_root = NULL; | 
|  |  | 
|  | /*  release storage for root queue entry  */ | 
|  | KF_TRACE(50, ("After Deletion of top-level TaskQ at %p on (%d):\n", queue, | 
|  | global_tid)); | 
|  |  | 
|  | queue->tq_flags |= TQF_DEALLOCATED; | 
|  | __kmp_free_taskq(tq, queue, in_parallel, global_tid); | 
|  |  | 
|  | KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid)); | 
|  |  | 
|  | /* release the workers now that the data structures are up to date */ | 
|  | __kmp_end_split_barrier(bs_plain_barrier, global_tid); | 
|  | } | 
|  |  | 
|  | th = __kmp_threads[global_tid]; | 
|  |  | 
|  | /* Reset ORDERED SECTION to parallel version */ | 
|  | th->th.th_dispatch->th_deo_fcn = 0; | 
|  |  | 
|  | /* Reset ORDERED SECTION to parallel version */ | 
|  | th->th.th_dispatch->th_dxo_fcn = 0; | 
|  | } else { | 
|  | /* in serial execution context, dequeue the last task  */ | 
|  | /* and execute it, if there were any tasks encountered */ | 
|  |  | 
|  | if (queue->tq_nfull > 0) { | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull == 1); | 
|  |  | 
|  | thunk = __kmp_dequeue_task(global_tid, queue, in_parallel); | 
|  |  | 
|  | if (queue->tq_flags & TQF_IS_LAST_TASK) { | 
|  | /* TQF_IS_LASTPRIVATE, one thing in queue, __kmpc_end_taskq_task() */ | 
|  | /* has been run so this is last task, run with TQF_IS_LAST_TASK so */ | 
|  | /* instrumentation does copy-out.                                  */ | 
|  |  | 
|  | /* no need for test_then_or call since already locked */ | 
|  | thunk->th_flags |= TQF_IS_LAST_TASK; | 
|  | } | 
|  |  | 
|  | KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, | 
|  | thunk, queue)); | 
|  |  | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | // destroy the unattached serial queue now that there is no more work to do | 
|  | KF_TRACE(100, ("Before Deletion of Serialized TaskQ at %p on (%d):\n", | 
|  | queue, global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | #ifdef KMP_DEBUG | 
|  | i = 0; | 
|  | for (thunk = queue->tq_free_thunks; thunk != NULL; | 
|  | thunk = thunk->th.th_next_free) | 
|  | ++i; | 
|  | KMP_DEBUG_ASSERT(i == queue->tq_nslots + 1); | 
|  | #endif | 
|  | /*  release storage for unattached serial queue  */ | 
|  | KF_TRACE(50, | 
|  | ("Serialized TaskQ at %p deleted on (%d).\n", queue, global_tid)); | 
|  |  | 
|  | queue->tq_flags |= TQF_DEALLOCATED; | 
|  | __kmp_free_taskq(tq, queue, in_parallel, global_tid); | 
|  | } | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_end_taskq return (%d)\n", global_tid)); | 
|  | } | 
|  |  | 
|  | /*  Enqueues a task for thunk previously created by __kmpc_task_buffer. */ | 
|  | /*  Returns nonzero if just filled up queue  */ | 
|  |  | 
|  | kmp_int32 __kmpc_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk) { | 
|  | kmp_int32 ret; | 
|  | kmpc_task_queue_t *queue; | 
|  | int in_parallel; | 
|  | kmp_taskq_t *tq; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_task called (%d)\n", global_tid)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(!(thunk->th_flags & | 
|  | TQF_TASKQ_TASK)); /*  thunk->th_task is a regular task  */ | 
|  |  | 
|  | tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq; | 
|  | queue = thunk->th.th_shareds->sv_queue; | 
|  | in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); | 
|  |  | 
|  | if (in_parallel && (thunk->th_flags & TQF_IS_ORDERED)) | 
|  | thunk->th_tasknum = ++queue->tq_tasknum_queuing; | 
|  |  | 
|  | /* For serial execution dequeue the preceding task and execute it, if one | 
|  | * exists */ | 
|  | /* This cannot be the last task.  That one is handled in __kmpc_end_taskq */ | 
|  |  | 
|  | if (!in_parallel && queue->tq_nfull > 0) { | 
|  | kmpc_thunk_t *prev_thunk; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(queue->tq_nfull == 1); | 
|  |  | 
|  | prev_thunk = __kmp_dequeue_task(global_tid, queue, in_parallel); | 
|  |  | 
|  | KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, | 
|  | prev_thunk, queue)); | 
|  |  | 
|  | __kmp_execute_task_from_queue(tq, loc, global_tid, prev_thunk, in_parallel); | 
|  | } | 
|  |  | 
|  | /* The instrumentation sequence is:  __kmpc_task_buffer(), initialize private | 
|  | variables, __kmpc_task().  The __kmpc_task_buffer routine checks that the | 
|  | task queue is not full and allocates a thunk (which is then passed to | 
|  | __kmpc_task()).  So, the enqueue below should never fail due to a full | 
|  | queue. */ | 
|  |  | 
|  | KF_TRACE(100, ("After enqueueing this Task on (%d):\n", global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid)); | 
|  |  | 
|  | ret = __kmp_enqueue_task(tq, global_tid, queue, thunk, in_parallel); | 
|  |  | 
|  | KF_TRACE(100, ("Task Queue looks like this on (%d):\n", global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid)); | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_task return (%d)\n", global_tid)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /*  enqueues a taskq_task for thunk previously created by __kmpc_taskq  */ | 
|  | /*  this should never be called unless in a parallel context            */ | 
|  |  | 
|  | void __kmpc_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, | 
|  | kmp_int32 status) { | 
|  | kmpc_task_queue_t *queue; | 
|  | kmp_taskq_t *tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq; | 
|  | int tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_taskq_task called (%d)\n", global_tid)); | 
|  | KF_TRACE(100, ("TaskQ Task argument thunk on (%d):\n", global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid)); | 
|  |  | 
|  | queue = thunk->th.th_shareds->sv_queue; | 
|  |  | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_pop_workshare(global_tid, ct_taskq, loc); | 
|  |  | 
|  | /*  thunk->th_task is the taskq_task  */ | 
|  | KMP_DEBUG_ASSERT(thunk->th_flags & TQF_TASKQ_TASK); | 
|  |  | 
|  | /*  not supposed to call __kmpc_taskq_task if it's already enqueued  */ | 
|  | KMP_DEBUG_ASSERT(queue->tq_taskq_slot == NULL); | 
|  |  | 
|  | /* dequeue taskq thunk from curr_thunk stack */ | 
|  | tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; | 
|  | thunk->th_encl_thunk = NULL; | 
|  |  | 
|  | KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid)); | 
|  |  | 
|  | thunk->th_status = status; | 
|  |  | 
|  | // Flush thunk->th_status before taskq_task enqueued to avoid race condition | 
|  | KMP_MB(); | 
|  |  | 
|  | /* enqueue taskq_task in thunk into special slot in queue     */ | 
|  | /* GEH - probably don't need to lock taskq slot since only one */ | 
|  | /*       thread enqueues & already a lock set at dequeue point */ | 
|  |  | 
|  | queue->tq_taskq_slot = thunk; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_taskq_task return (%d)\n", global_tid)); | 
|  | } | 
|  |  | 
|  | /* ends a taskq_task; done generating tasks  */ | 
|  |  | 
|  | void __kmpc_end_taskq_task(ident_t *loc, kmp_int32 global_tid, | 
|  | kmpc_thunk_t *thunk) { | 
|  | kmp_taskq_t *tq; | 
|  | kmpc_task_queue_t *queue; | 
|  | int in_parallel; | 
|  | int tid; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_end_taskq_task called (%d)\n", global_tid)); | 
|  |  | 
|  | tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq; | 
|  | queue = thunk->th.th_shareds->sv_queue; | 
|  | in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); | 
|  | tid = __kmp_tid_from_gtid(global_tid); | 
|  |  | 
|  | if (__kmp_env_consistency_check) | 
|  | __kmp_pop_workshare(global_tid, ct_taskq, loc); | 
|  |  | 
|  | if (in_parallel) { | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags), | 
|  | TQF_ALL_TASKS_QUEUED); | 
|  | #else | 
|  | { | 
|  | __kmp_acquire_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures are in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | queue->tq_flags |= TQF_ALL_TASKS_QUEUED; | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (thunk->th_flags & TQF_IS_LASTPRIVATE) { | 
|  | /* Normally, __kmp_find_task_in_queue() refuses to schedule the last task in | 
|  | the queue if TQF_IS_LASTPRIVATE so we can positively identify that last | 
|  | task and run it with its TQF_IS_LAST_TASK bit turned on in th_flags. | 
|  | When __kmpc_end_taskq_task() is called we are done generating all the | 
|  | tasks, so we know the last one in the queue is the lastprivate task. | 
|  | Mark the queue as having gotten to this state via tq_flags & | 
|  | TQF_IS_LAST_TASK; when that task actually executes mark it via th_flags & | 
|  | TQF_IS_LAST_TASK (this th_flags bit signals the instrumented code to do | 
|  | copy-outs after execution). */ | 
|  | if (!in_parallel) { | 
|  | /* No synchronization needed for serial context */ | 
|  | queue->tq_flags |= TQF_IS_LAST_TASK; | 
|  | } else { | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  | KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags), | 
|  | TQF_IS_LAST_TASK); | 
|  | #else | 
|  | { | 
|  | __kmp_acquire_lock(&queue->tq_queue_lck, global_tid); | 
|  |  | 
|  | // Make sure data structures in consistent state before querying them | 
|  | // Seems to work without this for digital/alpha, needed for IBM/RS6000 | 
|  | KMP_MB(); | 
|  |  | 
|  | queue->tq_flags |= TQF_IS_LAST_TASK; | 
|  | __kmp_release_lock(&queue->tq_queue_lck, global_tid); | 
|  | } | 
|  | #endif | 
|  | /* to prevent race condition where last task is dequeued but */ | 
|  | /* flag isn't visible yet (not sure about this)              */ | 
|  | KMP_MB(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* dequeue taskq thunk from curr_thunk stack */ | 
|  | if (in_parallel) { | 
|  | tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; | 
|  | thunk->th_encl_thunk = NULL; | 
|  |  | 
|  | KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid)); | 
|  | } | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_end_taskq_task return (%d)\n", global_tid)); | 
|  | } | 
|  |  | 
|  | /* returns thunk for a regular task based on taskq_thunk              */ | 
|  | /* (__kmpc_taskq_task does the analogous thing for a TQF_TASKQ_TASK)  */ | 
|  |  | 
|  | kmpc_thunk_t *__kmpc_task_buffer(ident_t *loc, kmp_int32 global_tid, | 
|  | kmpc_thunk_t *taskq_thunk, kmpc_task_t task) { | 
|  | kmp_taskq_t *tq; | 
|  | kmpc_task_queue_t *queue; | 
|  | kmpc_thunk_t *new_thunk; | 
|  | int in_parallel; | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_task_buffer called (%d)\n", global_tid)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT( | 
|  | taskq_thunk->th_flags & | 
|  | TQF_TASKQ_TASK); /*  taskq_thunk->th_task is the taskq_task  */ | 
|  |  | 
|  | tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq; | 
|  | queue = taskq_thunk->th.th_shareds->sv_queue; | 
|  | in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); | 
|  |  | 
|  | /* The instrumentation sequence is:  __kmpc_task_buffer(), initialize private | 
|  | variables, __kmpc_task().  The __kmpc_task_buffer routine checks that the | 
|  | task queue is not full and allocates a thunk (which is then passed to | 
|  | __kmpc_task()).  So, we can pre-allocate a thunk here assuming it will be | 
|  | the next to be enqueued in __kmpc_task(). */ | 
|  |  | 
|  | new_thunk = __kmp_alloc_thunk(queue, in_parallel, global_tid); | 
|  | new_thunk->th.th_shareds = | 
|  | CCAST(kmpc_shared_vars_t *, queue->tq_shareds[0].ai_data); | 
|  | new_thunk->th_encl_thunk = NULL; | 
|  | new_thunk->th_task = task; | 
|  |  | 
|  | /* GEH - shouldn't need to lock the read of tq_flags here */ | 
|  | new_thunk->th_flags = queue->tq_flags & TQF_INTERFACE_FLAGS; | 
|  |  | 
|  | new_thunk->th_status = 0; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(!(new_thunk->th_flags & TQF_TASKQ_TASK)); | 
|  |  | 
|  | KF_TRACE(100, ("Creating Regular Task on (%d):\n", global_tid)); | 
|  | KF_DUMP(100, __kmp_dump_thunk(tq, new_thunk, global_tid)); | 
|  |  | 
|  | KE_TRACE(10, ("__kmpc_task_buffer return (%d)\n", global_tid)); | 
|  |  | 
|  | return new_thunk; | 
|  | } |