|  | /* | 
|  | * kmp_affinity.cpp -- affinity management | 
|  | */ | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is dual licensed under the MIT and the University of Illinois Open | 
|  | // Source Licenses. See LICENSE.txt for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "kmp.h" | 
|  | #include "kmp_affinity.h" | 
|  | #include "kmp_i18n.h" | 
|  | #include "kmp_io.h" | 
|  | #include "kmp_str.h" | 
|  | #include "kmp_wrapper_getpid.h" | 
|  | #if KMP_USE_HIER_SCHED | 
|  | #include "kmp_dispatch_hier.h" | 
|  | #endif | 
|  |  | 
|  | // Store the real or imagined machine hierarchy here | 
|  | static hierarchy_info machine_hierarchy; | 
|  |  | 
|  | void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } | 
|  |  | 
|  | void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { | 
|  | kmp_uint32 depth; | 
|  | // The test below is true if affinity is available, but set to "none". Need to | 
|  | // init on first use of hierarchical barrier. | 
|  | if (TCR_1(machine_hierarchy.uninitialized)) | 
|  | machine_hierarchy.init(NULL, nproc); | 
|  |  | 
|  | // Adjust the hierarchy in case num threads exceeds original | 
|  | if (nproc > machine_hierarchy.base_num_threads) | 
|  | machine_hierarchy.resize(nproc); | 
|  |  | 
|  | depth = machine_hierarchy.depth; | 
|  | KMP_DEBUG_ASSERT(depth > 0); | 
|  |  | 
|  | thr_bar->depth = depth; | 
|  | thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; | 
|  | thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; | 
|  | } | 
|  |  | 
|  | #if KMP_AFFINITY_SUPPORTED | 
|  |  | 
|  | bool KMPAffinity::picked_api = false; | 
|  |  | 
|  | void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } | 
|  | void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } | 
|  | void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } | 
|  | void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } | 
|  | void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } | 
|  | void KMPAffinity::operator delete(void *p) { __kmp_free(p); } | 
|  |  | 
|  | void KMPAffinity::pick_api() { | 
|  | KMPAffinity *affinity_dispatch; | 
|  | if (picked_api) | 
|  | return; | 
|  | #if KMP_USE_HWLOC | 
|  | // Only use Hwloc if affinity isn't explicitly disabled and | 
|  | // user requests Hwloc topology method | 
|  | if (__kmp_affinity_top_method == affinity_top_method_hwloc && | 
|  | __kmp_affinity_type != affinity_disabled) { | 
|  | affinity_dispatch = new KMPHwlocAffinity(); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | affinity_dispatch = new KMPNativeAffinity(); | 
|  | } | 
|  | __kmp_affinity_dispatch = affinity_dispatch; | 
|  | picked_api = true; | 
|  | } | 
|  |  | 
|  | void KMPAffinity::destroy_api() { | 
|  | if (__kmp_affinity_dispatch != NULL) { | 
|  | delete __kmp_affinity_dispatch; | 
|  | __kmp_affinity_dispatch = NULL; | 
|  | picked_api = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define KMP_ADVANCE_SCAN(scan)                                                 \ | 
|  | while (*scan != '\0') {                                                      \ | 
|  | scan++;                                                                    \ | 
|  | } | 
|  |  | 
|  | // Print the affinity mask to the character array in a pretty format. | 
|  | // The format is a comma separated list of non-negative integers or integer | 
|  | // ranges: e.g., 1,2,3-5,7,9-15 | 
|  | // The format can also be the string "{<empty>}" if no bits are set in mask | 
|  | char *__kmp_affinity_print_mask(char *buf, int buf_len, | 
|  | kmp_affin_mask_t *mask) { | 
|  | int start = 0, finish = 0, previous = 0; | 
|  | bool first_range; | 
|  | KMP_ASSERT(buf); | 
|  | KMP_ASSERT(buf_len >= 40); | 
|  | KMP_ASSERT(mask); | 
|  | char *scan = buf; | 
|  | char *end = buf + buf_len - 1; | 
|  |  | 
|  | // Check for empty set. | 
|  | if (mask->begin() == mask->end()) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | KMP_ASSERT(scan <= end); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | first_range = true; | 
|  | start = mask->begin(); | 
|  | while (1) { | 
|  | // Find next range | 
|  | // [start, previous] is inclusive range of contiguous bits in mask | 
|  | for (finish = mask->next(start), previous = start; | 
|  | finish == previous + 1 && finish != mask->end(); | 
|  | finish = mask->next(finish)) { | 
|  | previous = finish; | 
|  | } | 
|  |  | 
|  | // The first range does not need a comma printed before it, but the rest | 
|  | // of the ranges do need a comma beforehand | 
|  | if (!first_range) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | } else { | 
|  | first_range = false; | 
|  | } | 
|  | // Range with three or more contiguous bits in the affinity mask | 
|  | if (previous - start > 1) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), | 
|  | static_cast<int>(previous)); | 
|  | } else { | 
|  | // Range with one or two contiguous bits in the affinity mask | 
|  | KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | if (previous - start > 0) { | 
|  | KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); | 
|  | } | 
|  | } | 
|  | KMP_ADVANCE_SCAN(scan); | 
|  | // Start over with new start point | 
|  | start = finish; | 
|  | if (start == mask->end()) | 
|  | break; | 
|  | // Check for overflow | 
|  | if (end - scan < 2) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check for overflow | 
|  | KMP_ASSERT(scan <= end); | 
|  | return buf; | 
|  | } | 
|  | #undef KMP_ADVANCE_SCAN | 
|  |  | 
|  | // Print the affinity mask to the string buffer object in a pretty format | 
|  | // The format is a comma separated list of non-negative integers or integer | 
|  | // ranges: e.g., 1,2,3-5,7,9-15 | 
|  | // The format can also be the string "{<empty>}" if no bits are set in mask | 
|  | kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, | 
|  | kmp_affin_mask_t *mask) { | 
|  | int start = 0, finish = 0, previous = 0; | 
|  | bool first_range; | 
|  | KMP_ASSERT(buf); | 
|  | KMP_ASSERT(mask); | 
|  |  | 
|  | __kmp_str_buf_clear(buf); | 
|  |  | 
|  | // Check for empty set. | 
|  | if (mask->begin() == mask->end()) { | 
|  | __kmp_str_buf_print(buf, "%s", "{<empty>}"); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | first_range = true; | 
|  | start = mask->begin(); | 
|  | while (1) { | 
|  | // Find next range | 
|  | // [start, previous] is inclusive range of contiguous bits in mask | 
|  | for (finish = mask->next(start), previous = start; | 
|  | finish == previous + 1 && finish != mask->end(); | 
|  | finish = mask->next(finish)) { | 
|  | previous = finish; | 
|  | } | 
|  |  | 
|  | // The first range does not need a comma printed before it, but the rest | 
|  | // of the ranges do need a comma beforehand | 
|  | if (!first_range) { | 
|  | __kmp_str_buf_print(buf, "%s", ","); | 
|  | } else { | 
|  | first_range = false; | 
|  | } | 
|  | // Range with three or more contiguous bits in the affinity mask | 
|  | if (previous - start > 1) { | 
|  | __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), | 
|  | static_cast<int>(previous)); | 
|  | } else { | 
|  | // Range with one or two contiguous bits in the affinity mask | 
|  | __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); | 
|  | if (previous - start > 0) { | 
|  | __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); | 
|  | } | 
|  | } | 
|  | // Start over with new start point | 
|  | start = finish; | 
|  | if (start == mask->end()) | 
|  | break; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  |  | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | int group; | 
|  | KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); | 
|  | for (group = 0; group < __kmp_num_proc_groups; group++) { | 
|  | int i; | 
|  | int num = __kmp_GetActiveProcessorCount(group); | 
|  | for (i = 0; i < num; i++) { | 
|  | KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); | 
|  | } | 
|  | } | 
|  | } else | 
|  |  | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | { | 
|  | int proc; | 
|  | for (proc = 0; proc < __kmp_xproc; proc++) { | 
|  | KMP_CPU_SET(proc, mask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // When sorting by labels, __kmp_affinity_assign_child_nums() must first be | 
|  | // called to renumber the labels from [0..n] and place them into the child_num | 
|  | // vector of the address object.  This is done in case the labels used for | 
|  | // the children at one node of the hierarchy differ from those used for | 
|  | // another node at the same level.  Example:  suppose the machine has 2 nodes | 
|  | // with 2 packages each.  The first node contains packages 601 and 602, and | 
|  | // second node contains packages 603 and 604.  If we try to sort the table | 
|  | // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 | 
|  | // because we are paying attention to the labels themselves, not the ordinal | 
|  | // child numbers.  By using the child numbers in the sort, the result is | 
|  | // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. | 
|  | static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, | 
|  | int numAddrs) { | 
|  | KMP_DEBUG_ASSERT(numAddrs > 0); | 
|  | int depth = address2os->first.depth; | 
|  | unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | int labCt; | 
|  | for (labCt = 0; labCt < depth; labCt++) { | 
|  | address2os[0].first.childNums[labCt] = counts[labCt] = 0; | 
|  | lastLabel[labCt] = address2os[0].first.labels[labCt]; | 
|  | } | 
|  | int i; | 
|  | for (i = 1; i < numAddrs; i++) { | 
|  | for (labCt = 0; labCt < depth; labCt++) { | 
|  | if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { | 
|  | int labCt2; | 
|  | for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { | 
|  | counts[labCt2] = 0; | 
|  | lastLabel[labCt2] = address2os[i].first.labels[labCt2]; | 
|  | } | 
|  | counts[labCt]++; | 
|  | lastLabel[labCt] = address2os[i].first.labels[labCt]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (labCt = 0; labCt < depth; labCt++) { | 
|  | address2os[i].first.childNums[labCt] = counts[labCt]; | 
|  | } | 
|  | for (; labCt < (int)Address::maxDepth; labCt++) { | 
|  | address2os[i].first.childNums[labCt] = 0; | 
|  | } | 
|  | } | 
|  | __kmp_free(lastLabel); | 
|  | __kmp_free(counts); | 
|  | } | 
|  |  | 
|  | // All of the __kmp_affinity_create_*_map() routines should set | 
|  | // __kmp_affinity_masks to a vector of affinity mask objects of length | 
|  | // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return | 
|  | // the number of levels in the machine topology tree (zero if | 
|  | // __kmp_affinity_type == affinity_none). | 
|  | // | 
|  | // All of the __kmp_affinity_create_*_map() routines should set | 
|  | // *__kmp_affin_fullMask to the affinity mask for the initialization thread. | 
|  | // They need to save and restore the mask, and it could be needed later, so | 
|  | // saving it is just an optimization to avoid calling kmp_get_system_affinity() | 
|  | // again. | 
|  | kmp_affin_mask_t *__kmp_affin_fullMask = NULL; | 
|  |  | 
|  | static int nCoresPerPkg, nPackages; | 
|  | static int __kmp_nThreadsPerCore; | 
|  | #ifndef KMP_DFLT_NTH_CORES | 
|  | static int __kmp_ncores; | 
|  | #endif | 
|  | static int *__kmp_pu_os_idx = NULL; | 
|  |  | 
|  | // __kmp_affinity_uniform_topology() doesn't work when called from | 
|  | // places which support arbitrarily many levels in the machine topology | 
|  | // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() | 
|  | // __kmp_affinity_create_x2apicid_map(). | 
|  | inline static bool __kmp_affinity_uniform_topology() { | 
|  | return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); | 
|  | } | 
|  |  | 
|  | // Print out the detailed machine topology map, i.e. the physical locations | 
|  | // of each OS proc. | 
|  | static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, | 
|  | int depth, int pkgLevel, | 
|  | int coreLevel, int threadLevel) { | 
|  | int proc; | 
|  |  | 
|  | KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); | 
|  | for (proc = 0; proc < len; proc++) { | 
|  | int level; | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | for (level = 0; level < depth; level++) { | 
|  | if (level == threadLevel) { | 
|  | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); | 
|  | } else if (level == coreLevel) { | 
|  | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); | 
|  | } else if (level == pkgLevel) { | 
|  | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); | 
|  | } else if (level > pkgLevel) { | 
|  | __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), | 
|  | level - pkgLevel - 1); | 
|  | } else { | 
|  | __kmp_str_buf_print(&buf, "L%d ", level); | 
|  | } | 
|  | __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); | 
|  | } | 
|  | KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, | 
|  | buf.str); | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_USE_HWLOC | 
|  |  | 
|  | static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, | 
|  | int depth, int *levels) { | 
|  | int proc; | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); | 
|  | for (proc = 0; proc < len; proc++) { | 
|  | __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), | 
|  | addrP[proc].first.labels[0]); | 
|  | if (depth > 1) { | 
|  | int level = 1; // iterate over levels | 
|  | int label = 1; // iterate over labels | 
|  | if (__kmp_numa_detected) | 
|  | // node level follows package | 
|  | if (levels[level++] > 0) | 
|  | __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), | 
|  | addrP[proc].first.labels[label++]); | 
|  | if (__kmp_tile_depth > 0) | 
|  | // tile level follows node if any, or package | 
|  | if (levels[level++] > 0) | 
|  | __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), | 
|  | addrP[proc].first.labels[label++]); | 
|  | if (levels[level++] > 0) | 
|  | // core level follows | 
|  | __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), | 
|  | addrP[proc].first.labels[label++]); | 
|  | if (levels[level++] > 0) | 
|  | // thread level is the latest | 
|  | __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), | 
|  | addrP[proc].first.labels[label++]); | 
|  | KMP_DEBUG_ASSERT(label == depth); | 
|  | } | 
|  | KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); | 
|  | __kmp_str_buf_clear(&buf); | 
|  | } | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  |  | 
|  | static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; | 
|  |  | 
|  | // This function removes the topology levels that are radix 1 and don't offer | 
|  | // further information about the topology.  The most common example is when you | 
|  | // have one thread context per core, we don't want the extra thread context | 
|  | // level if it offers no unique labels.  So they are removed. | 
|  | // return value: the new depth of address2os | 
|  | static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, | 
|  | int depth, int *levels) { | 
|  | int level; | 
|  | int i; | 
|  | int radix1_detected; | 
|  | int new_depth = depth; | 
|  | for (level = depth - 1; level > 0; --level) { | 
|  | // Detect if this level is radix 1 | 
|  | radix1_detected = 1; | 
|  | for (i = 1; i < nTh; ++i) { | 
|  | if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { | 
|  | // There are differing label values for this level so it stays | 
|  | radix1_detected = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!radix1_detected) | 
|  | continue; | 
|  | // Radix 1 was detected | 
|  | --new_depth; | 
|  | levels[level] = -1; // mark level as not present in address2os array | 
|  | if (level == new_depth) { | 
|  | // "turn off" deepest level, just decrement the depth that removes | 
|  | // the level from address2os array | 
|  | for (i = 0; i < nTh; ++i) { | 
|  | addrP[i].first.depth--; | 
|  | } | 
|  | } else { | 
|  | // For other levels, we move labels over and also reduce the depth | 
|  | int j; | 
|  | for (j = level; j < new_depth; ++j) { | 
|  | for (i = 0; i < nTh; ++i) { | 
|  | addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; | 
|  | addrP[i].first.depth--; | 
|  | } | 
|  | levels[j + 1] -= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return new_depth; | 
|  | } | 
|  |  | 
|  | // Returns the number of objects of type 'type' below 'obj' within the topology | 
|  | // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is | 
|  | // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET | 
|  | // object. | 
|  | static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, | 
|  | hwloc_obj_type_t type) { | 
|  | int retval = 0; | 
|  | hwloc_obj_t first; | 
|  | for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, | 
|  | obj->logical_index, type, 0); | 
|  | first != NULL && | 
|  | hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == | 
|  | obj; | 
|  | first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, | 
|  | first)) { | 
|  | ++retval; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, | 
|  | hwloc_obj_t o, unsigned depth, | 
|  | hwloc_obj_t *f) { | 
|  | if (o->depth == depth) { | 
|  | if (*f == NULL) | 
|  | *f = o; // output first descendant found | 
|  | return 1; | 
|  | } | 
|  | int sum = 0; | 
|  | for (unsigned i = 0; i < o->arity; i++) | 
|  | sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); | 
|  | return sum; // will be 0 if no one found (as PU arity is 0) | 
|  | } | 
|  |  | 
|  | static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, | 
|  | hwloc_obj_type_t type, | 
|  | hwloc_obj_t *f) { | 
|  | if (!hwloc_compare_types(o->type, type)) { | 
|  | if (*f == NULL) | 
|  | *f = o; // output first descendant found | 
|  | return 1; | 
|  | } | 
|  | int sum = 0; | 
|  | for (unsigned i = 0; i < o->arity; i++) | 
|  | sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); | 
|  | return sum; // will be 0 if no one found (as PU arity is 0) | 
|  | } | 
|  |  | 
|  | static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, | 
|  | int &nActiveThreads, | 
|  | int &num_active_cores, | 
|  | hwloc_obj_t obj, int depth, | 
|  | int *labels) { | 
|  | hwloc_obj_t core = NULL; | 
|  | hwloc_topology_t &tp = __kmp_hwloc_topology; | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); | 
|  | for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { | 
|  | hwloc_obj_t pu = NULL; | 
|  | KMP_DEBUG_ASSERT(core != NULL); | 
|  | int num_active_threads = 0; | 
|  | int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); | 
|  | // int NT = core->arity; pu = core->first_child; // faster? | 
|  | for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { | 
|  | KMP_DEBUG_ASSERT(pu != NULL); | 
|  | if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) | 
|  | continue; // skip inactive (inaccessible) unit | 
|  | Address addr(depth + 2); | 
|  | KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", | 
|  | obj->os_index, obj->logical_index, core->os_index, | 
|  | core->logical_index, pu->os_index, pu->logical_index)); | 
|  | for (int i = 0; i < depth; ++i) | 
|  | addr.labels[i] = labels[i]; // package, etc. | 
|  | addr.labels[depth] = core_id; // core | 
|  | addr.labels[depth + 1] = pu_id; // pu | 
|  | addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); | 
|  | __kmp_pu_os_idx[nActiveThreads] = pu->os_index; | 
|  | nActiveThreads++; | 
|  | ++num_active_threads; // count active threads per core | 
|  | } | 
|  | if (num_active_threads) { // were there any active threads on the core? | 
|  | ++__kmp_ncores; // count total active cores | 
|  | ++num_active_cores; // count active cores per socket | 
|  | if (num_active_threads > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = num_active_threads; // calc maximum | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check if NUMA node detected below the package, | 
|  | // and if tile object is detected and return its depth | 
|  | static int __kmp_hwloc_check_numa() { | 
|  | hwloc_topology_t &tp = __kmp_hwloc_topology; | 
|  | hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) | 
|  | int depth; | 
|  |  | 
|  | // Get some PU | 
|  | hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); | 
|  | if (hT == NULL) // something has gone wrong | 
|  | return 1; | 
|  |  | 
|  | // check NUMA node below PACKAGE | 
|  | hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); | 
|  | hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); | 
|  | KMP_DEBUG_ASSERT(hS != NULL); | 
|  | if (hN != NULL && hN->depth > hS->depth) { | 
|  | __kmp_numa_detected = TRUE; // socket includes node(s) | 
|  | if (__kmp_affinity_gran == affinity_gran_node) { | 
|  | __kmp_affinity_gran == affinity_gran_numa; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check tile, get object by depth because of multiple caches possible | 
|  | depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); | 
|  | hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); | 
|  | hC = NULL; // not used, but reset it here just in case | 
|  | if (hL != NULL && | 
|  | __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) | 
|  | __kmp_tile_depth = depth; // tile consists of multiple cores | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // Save the affinity mask for the current thread. | 
|  | kmp_affin_mask_t *oldMask; | 
|  | KMP_CPU_ALLOC(oldMask); | 
|  | __kmp_get_system_affinity(oldMask, TRUE); | 
|  | __kmp_hwloc_check_numa(); | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from cpuid on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none); | 
|  |  | 
|  | nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( | 
|  | hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); | 
|  | __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( | 
|  | hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); | 
|  | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (__kmp_affinity_uniform_topology()) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int depth = 3; | 
|  | int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread | 
|  | int labels[3] = {0}; // package [,node] [,tile] - head of lables array | 
|  | if (__kmp_numa_detected) | 
|  | ++depth; | 
|  | if (__kmp_tile_depth) | 
|  | ++depth; | 
|  |  | 
|  | // Allocate the data structure to be returned. | 
|  | AddrUnsPair *retval = | 
|  | (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, | 
|  | // nCoresPerPkg, & nPackages.  Make sure all these vars are set | 
|  | // correctly, and return if affinity is not enabled. | 
|  |  | 
|  | hwloc_obj_t socket, node, tile; | 
|  | int nActiveThreads = 0; | 
|  | int socket_id = 0; | 
|  | // re-calculate globals to count only accessible resources | 
|  | __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; | 
|  | nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; | 
|  | for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; | 
|  | socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), | 
|  | socket_id++) { | 
|  | labels[0] = socket_id; | 
|  | if (__kmp_numa_detected) { | 
|  | int NN; | 
|  | int n_active_nodes = 0; | 
|  | node = NULL; | 
|  | NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, | 
|  | &node); | 
|  | for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { | 
|  | labels[1] = node_id; | 
|  | if (__kmp_tile_depth) { | 
|  | // NUMA + tiles | 
|  | int NT; | 
|  | int n_active_tiles = 0; | 
|  | tile = NULL; | 
|  | NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, | 
|  | &tile); | 
|  | for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { | 
|  | labels[2] = tl_id; | 
|  | int n_active_cores = 0; | 
|  | __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, | 
|  | n_active_cores, tile, 3, labels); | 
|  | if (n_active_cores) { // were there any active cores on the socket? | 
|  | ++n_active_tiles; // count active tiles per node | 
|  | if (n_active_cores > nCorePerTile) | 
|  | nCorePerTile = n_active_cores; // calc maximum | 
|  | } | 
|  | } | 
|  | if (n_active_tiles) { // were there any active tiles on the socket? | 
|  | ++n_active_nodes; // count active nodes per package | 
|  | if (n_active_tiles > nTilePerNode) | 
|  | nTilePerNode = n_active_tiles; // calc maximum | 
|  | } | 
|  | } else { | 
|  | // NUMA, no tiles | 
|  | int n_active_cores = 0; | 
|  | __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, | 
|  | n_active_cores, node, 2, labels); | 
|  | if (n_active_cores) { // were there any active cores on the socket? | 
|  | ++n_active_nodes; // count active nodes per package | 
|  | if (n_active_cores > nCorePerNode) | 
|  | nCorePerNode = n_active_cores; // calc maximum | 
|  | } | 
|  | } | 
|  | } | 
|  | if (n_active_nodes) { // were there any active nodes on the socket? | 
|  | ++nPackages; // count total active packages | 
|  | if (n_active_nodes > nNodePerPkg) | 
|  | nNodePerPkg = n_active_nodes; // calc maximum | 
|  | } | 
|  | } else { | 
|  | if (__kmp_tile_depth) { | 
|  | // no NUMA, tiles | 
|  | int NT; | 
|  | int n_active_tiles = 0; | 
|  | tile = NULL; | 
|  | NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, | 
|  | &tile); | 
|  | for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { | 
|  | labels[1] = tl_id; | 
|  | int n_active_cores = 0; | 
|  | __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, | 
|  | n_active_cores, tile, 2, labels); | 
|  | if (n_active_cores) { // were there any active cores on the socket? | 
|  | ++n_active_tiles; // count active tiles per package | 
|  | if (n_active_cores > nCorePerTile) | 
|  | nCorePerTile = n_active_cores; // calc maximum | 
|  | } | 
|  | } | 
|  | if (n_active_tiles) { // were there any active tiles on the socket? | 
|  | ++nPackages; // count total active packages | 
|  | if (n_active_tiles > nTilePerPkg) | 
|  | nTilePerPkg = n_active_tiles; // calc maximum | 
|  | } | 
|  | } else { | 
|  | // no NUMA, no tiles | 
|  | int n_active_cores = 0; | 
|  | __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, | 
|  | socket, 1, labels); | 
|  | if (n_active_cores) { // were there any active cores on the socket? | 
|  | ++nPackages; // count total active packages | 
|  | if (n_active_cores > nCoresPerPkg) | 
|  | nCoresPerPkg = n_active_cores; // calc maximum | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there's only one thread context to bind to, return now. | 
|  | KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); | 
|  | KMP_ASSERT(nActiveThreads > 0); | 
|  | if (nActiveThreads == 1) { | 
|  | __kmp_ncores = nPackages = 1; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  |  | 
|  | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(retval); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Form an Address object which only includes the package level. | 
|  | Address addr(1); | 
|  | addr.labels[0] = retval[0].first.labels[0]; | 
|  | retval[0].first = addr; | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); | 
|  | } | 
|  |  | 
|  | *address2os = retval; | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Sort the table by physical Id. | 
|  | qsort(retval, nActiveThreads, sizeof(*retval), | 
|  | __kmp_affinity_cmp_Address_labels); | 
|  |  | 
|  | // Check to see if the machine topology is uniform | 
|  | int nPUs = nPackages * __kmp_nThreadsPerCore; | 
|  | if (__kmp_numa_detected) { | 
|  | if (__kmp_tile_depth) { // NUMA + tiles | 
|  | nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); | 
|  | } else { // NUMA, no tiles | 
|  | nPUs *= (nNodePerPkg * nCorePerNode); | 
|  | } | 
|  | } else { | 
|  | if (__kmp_tile_depth) { // no NUMA, tiles | 
|  | nPUs *= (nTilePerPkg * nCorePerTile); | 
|  | } else { // no NUMA, no tiles | 
|  | nPUs *= nCoresPerPkg; | 
|  | } | 
|  | } | 
|  | unsigned uniform = (nPUs == nActiveThreads); | 
|  |  | 
|  | // Print the machine topology summary. | 
|  | if (__kmp_affinity_verbose) { | 
|  | char mask[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (uniform) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | if (__kmp_numa_detected) { | 
|  | if (__kmp_tile_depth) { // NUMA + tiles | 
|  | KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, | 
|  | nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, | 
|  | __kmp_ncores); | 
|  | } else { // NUMA, no tiles | 
|  | KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, | 
|  | nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | nPUs *= (nNodePerPkg * nCorePerNode); | 
|  | } | 
|  | } else { | 
|  | if (__kmp_tile_depth) { // no NUMA, tiles | 
|  | KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, | 
|  | nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } else { // no NUMA, no tiles | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | __kmp_str_buf_print(&buf, "%d", nPackages); | 
|  | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(retval); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int depth_full = depth; // number of levels before compressing | 
|  | // Find any levels with radiix 1, and remove them from the map | 
|  | // (except for the package level). | 
|  | depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, | 
|  | levels); | 
|  | KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | // Set the granularity level based on what levels are modeled | 
|  | // in the machine topology map. | 
|  | __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) | 
|  | if (__kmp_affinity_gran > affinity_gran_thread) { | 
|  | for (int i = 1; i <= depth_full; ++i) { | 
|  | if (__kmp_affinity_gran <= i) // only count deeper levels | 
|  | break; | 
|  | if (levels[depth_full - i] > 0) | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | } | 
|  | if (__kmp_affinity_gran > affinity_gran_package) | 
|  | __kmp_affinity_gran_levels++; // e.g. granularity = group | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) | 
|  | __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); | 
|  |  | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *address2os = retval; | 
|  | return depth; | 
|  | } | 
|  | #endif // KMP_USE_HWLOC | 
|  |  | 
|  | // If we don't know how to retrieve the machine's processor topology, or | 
|  | // encounter an error in doing so, this routine is called to form a "flat" | 
|  | // mapping of os thread id's <-> processor id's. | 
|  | static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // Even if __kmp_affinity_type == affinity_none, this routine might still | 
|  | // called to set __kmp_ncores, as well as | 
|  | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none); | 
|  | __kmp_ncores = nPackages = __kmp_xproc; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return now if affinity is | 
|  | // not enabled. | 
|  | __kmp_ncores = nPackages = __kmp_avail_proc; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  |  | 
|  | KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | int avail_ct = 0; | 
|  | int i; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) | 
|  | continue; | 
|  | __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Contruct the data structure to be returned. | 
|  | *address2os = | 
|  | (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); | 
|  | int avail_ct = 0; | 
|  | int i; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat | 
|  | Address addr(1); | 
|  | addr.labels[0] = i; | 
|  | (*address2os)[avail_ct++] = AddrUnsPair(addr, i); | 
|  | } | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | // Only the package level is modeled in the machine topology map, | 
|  | // so the #levels of granularity is either 0 or 1. | 
|  | if (__kmp_affinity_gran > affinity_gran_package) { | 
|  | __kmp_affinity_gran_levels = 1; | 
|  | } else { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  |  | 
|  | // If multiple Windows* OS processor groups exist, we can create a 2-level | 
|  | // topology map with the groups at level 0 and the individual procs at level 1. | 
|  | // This facilitates letting the threads float among all procs in a group, | 
|  | // if granularity=group (the default when there are multiple groups). | 
|  | static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // If we aren't affinity capable, then return now. | 
|  | // The flat mapping will be used. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // FIXME set *msg_id | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Contruct the data structure to be returned. | 
|  | *address2os = | 
|  | (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  | int avail_ct = 0; | 
|  | int i; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat | 
|  | Address addr(2); | 
|  | addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); | 
|  | addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); | 
|  | (*address2os)[avail_ct++] = AddrUnsPair(addr, i); | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], | 
|  | addr.labels[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | if (__kmp_affinity_gran == affinity_gran_group) { | 
|  | __kmp_affinity_gran_levels = 1; | 
|  | } else if ((__kmp_affinity_gran == affinity_gran_fine) || | 
|  | (__kmp_affinity_gran == affinity_gran_thread)) { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } else { | 
|  | const char *gran_str = NULL; | 
|  | if (__kmp_affinity_gran == affinity_gran_core) { | 
|  | gran_str = "core"; | 
|  | } else if (__kmp_affinity_gran == affinity_gran_package) { | 
|  | gran_str = "package"; | 
|  | } else if (__kmp_affinity_gran == affinity_gran_node) { | 
|  | gran_str = "node"; | 
|  | } else { | 
|  | KMP_ASSERT(0); | 
|  | } | 
|  |  | 
|  | // Warning: can't use affinity granularity \"gran\" with group topology | 
|  | // method, using "thread" | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  | } | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  |  | 
|  | static int __kmp_cpuid_mask_width(int count) { | 
|  | int r = 0; | 
|  |  | 
|  | while ((1 << r) < count) | 
|  | ++r; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | class apicThreadInfo { | 
|  | public: | 
|  | unsigned osId; // param to __kmp_affinity_bind_thread | 
|  | unsigned apicId; // from cpuid after binding | 
|  | unsigned maxCoresPerPkg; //      "" | 
|  | unsigned maxThreadsPerPkg; //      "" | 
|  | unsigned pkgId; // inferred from above values | 
|  | unsigned coreId; //      "" | 
|  | unsigned threadId; //      "" | 
|  | }; | 
|  |  | 
|  | static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, | 
|  | const void *b) { | 
|  | const apicThreadInfo *aa = (const apicThreadInfo *)a; | 
|  | const apicThreadInfo *bb = (const apicThreadInfo *)b; | 
|  | if (aa->pkgId < bb->pkgId) | 
|  | return -1; | 
|  | if (aa->pkgId > bb->pkgId) | 
|  | return 1; | 
|  | if (aa->coreId < bb->coreId) | 
|  | return -1; | 
|  | if (aa->coreId > bb->coreId) | 
|  | return 1; | 
|  | if (aa->threadId < bb->threadId) | 
|  | return -1; | 
|  | if (aa->threadId > bb->threadId) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use | 
|  | // an algorithm which cycles through the available os threads, setting | 
|  | // the current thread's affinity mask to that thread, and then retrieves | 
|  | // the Apic Id for each thread context using the cpuid instruction. | 
|  | static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | kmp_cpuid buf; | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // Check if cpuid leaf 4 is supported. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax < 4) { | 
|  | *msg_id = kmp_i18n_str_NoLeaf4Support; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // The algorithm used starts by setting the affinity to each available thread | 
|  | // and retrieving info from the cpuid instruction, so if we are not capable of | 
|  | // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we | 
|  | // need to do something else - use the defaults that we calculated from | 
|  | // issuing cpuid without binding to each proc. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from cpuid on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none); | 
|  |  | 
|  | // Get an upper bound on the number of threads per package using cpuid(1). | 
|  | // On some OS/chps combinations where HT is supported by the chip but is | 
|  | // disabled, this value will be 2 on a single core chip. Usually, it will be | 
|  | // 2 if HT is enabled and 1 if HT is disabled. | 
|  | __kmp_x86_cpuid(1, 0, &buf); | 
|  | int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; | 
|  | if (maxThreadsPerPkg == 0) { | 
|  | maxThreadsPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded | 
|  | // value. | 
|  | // | 
|  | // The author of cpu_count.cpp treated this only an upper bound on the | 
|  | // number of cores, but I haven't seen any cases where it was greater than | 
|  | // the actual number of cores, so we will treat it as exact in this block of | 
|  | // code. | 
|  | // | 
|  | // First, we need to check if cpuid(4) is supported on this chip. To see if | 
|  | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or | 
|  | // greater. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax >= 4) { | 
|  | __kmp_x86_cpuid(4, 0, &buf); | 
|  | nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; | 
|  | } else { | 
|  | nCoresPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // There is no way to reliably tell if HT is enabled without issuing the | 
|  | // cpuid instruction from every thread, can correlating the cpuid info, so | 
|  | // if the machine is not affinity capable, we assume that HT is off. We have | 
|  | // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine | 
|  | // does not support HT. | 
|  | // | 
|  | // - Older OSes are usually found on machines with older chips, which do not | 
|  | //   support HT. | 
|  | // - The performance penalty for mistakenly identifying a machine as HT when | 
|  | //   it isn't (which results in blocktime being incorrecly set to 0) is | 
|  | //   greater than the penalty when for mistakenly identifying a machine as | 
|  | //   being 1 thread/core when it is really HT enabled (which results in | 
|  | //   blocktime being incorrectly set to a positive value). | 
|  | __kmp_ncores = __kmp_xproc; | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (__kmp_affinity_uniform_topology()) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // From here on, we can assume that it is safe to call | 
|  | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if | 
|  | // __kmp_affinity_type = affinity_none. | 
|  |  | 
|  | // Save the affinity mask for the current thread. | 
|  | kmp_affin_mask_t *oldMask; | 
|  | KMP_CPU_ALLOC(oldMask); | 
|  | KMP_ASSERT(oldMask != NULL); | 
|  | __kmp_get_system_affinity(oldMask, TRUE); | 
|  |  | 
|  | // Run through each of the available contexts, binding the current thread | 
|  | // to it, and obtaining the pertinent information using the cpuid instr. | 
|  | // | 
|  | // The relevant information is: | 
|  | // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context | 
|  | //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#. | 
|  | // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value | 
|  | //     of this field determines the width of the core# + thread# fields in the | 
|  | //     Apic Id. It is also an upper bound on the number of threads per | 
|  | //     package, but it has been verified that situations happen were it is not | 
|  | //     exact. In particular, on certain OS/chip combinations where Intel(R) | 
|  | //     Hyper-Threading Technology is supported by the chip but has been | 
|  | //     disabled, the value of this field will be 2 (for a single core chip). | 
|  | //     On other OS/chip combinations supporting Intel(R) Hyper-Threading | 
|  | //     Technology, the value of this field will be 1 when Intel(R) | 
|  | //     Hyper-Threading Technology is disabled and 2 when it is enabled. | 
|  | // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value | 
|  | //     of this field (+1) determines the width of the core# field in the Apic | 
|  | //     Id. The comments in "cpucount.cpp" say that this value is an upper | 
|  | //     bound, but the IA-32 architecture manual says that it is exactly the | 
|  | //     number of cores per package, and I haven't seen any case where it | 
|  | //     wasn't. | 
|  | // | 
|  | // From this information, deduce the package Id, core Id, and thread Id, | 
|  | // and set the corresponding fields in the apicThreadInfo struct. | 
|  | unsigned i; | 
|  | apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( | 
|  | __kmp_avail_proc * sizeof(apicThreadInfo)); | 
|  | unsigned nApics = 0; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); | 
|  |  | 
|  | __kmp_affinity_dispatch->bind_thread(i); | 
|  | threadInfo[nApics].osId = i; | 
|  |  | 
|  | // The apic id and max threads per pkg come from cpuid(1). | 
|  | __kmp_x86_cpuid(1, 0, &buf); | 
|  | if (((buf.edx >> 9) & 1) == 0) { | 
|  | __kmp_set_system_affinity(oldMask, TRUE); | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_ApicNotPresent; | 
|  | return -1; | 
|  | } | 
|  | threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; | 
|  | threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; | 
|  | if (threadInfo[nApics].maxThreadsPerPkg == 0) { | 
|  | threadInfo[nApics].maxThreadsPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded | 
|  | // value. | 
|  | // | 
|  | // First, we need to check if cpuid(4) is supported on this chip. To see if | 
|  | // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n | 
|  | // or greater. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax >= 4) { | 
|  | __kmp_x86_cpuid(4, 0, &buf); | 
|  | threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; | 
|  | } else { | 
|  | threadInfo[nApics].maxCoresPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // Infer the pkgId / coreId / threadId using only the info obtained locally. | 
|  | int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); | 
|  | threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; | 
|  |  | 
|  | int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); | 
|  | int widthT = widthCT - widthC; | 
|  | if (widthT < 0) { | 
|  | // I've never seen this one happen, but I suppose it could, if the cpuid | 
|  | // instruction on a chip was really screwed up. Make sure to restore the | 
|  | // affinity mask before the tail call. | 
|  | __kmp_set_system_affinity(oldMask, TRUE); | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int maskC = (1 << widthC) - 1; | 
|  | threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; | 
|  |  | 
|  | int maskT = (1 << widthT) - 1; | 
|  | threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; | 
|  |  | 
|  | nApics++; | 
|  | } | 
|  |  | 
|  | // We've collected all the info we need. | 
|  | // Restore the old affinity mask for this thread. | 
|  | __kmp_set_system_affinity(oldMask, TRUE); | 
|  |  | 
|  | // If there's only one thread context to bind to, form an Address object | 
|  | // with depth 1 and return immediately (or, if affinity is off, set | 
|  | // address2os to NULL and return). | 
|  | // | 
|  | // If it is configured to omit the package level when there is only a single | 
|  | // package, the logic at the end of this routine won't work if there is only | 
|  | // a single thread - it would try to form an Address object with depth 0. | 
|  | KMP_ASSERT(nApics > 0); | 
|  | if (nApics == 1) { | 
|  | __kmp_ncores = nPackages = 1; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  |  | 
|  | KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); | 
|  | Address addr(1); | 
|  | addr.labels[0] = threadInfo[0].pkgId; | 
|  | (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); | 
|  | } | 
|  |  | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Sort the threadInfo table by physical Id. | 
|  | qsort(threadInfo, nApics, sizeof(*threadInfo), | 
|  | __kmp_affinity_cmp_apicThreadInfo_phys_id); | 
|  |  | 
|  | // The table is now sorted by pkgId / coreId / threadId, but we really don't | 
|  | // know the radix of any of the fields. pkgId's may be sparsely assigned among | 
|  | // the chips on a system. Although coreId's are usually assigned | 
|  | // [0 .. coresPerPkg-1] and threadId's are usually assigned | 
|  | // [0..threadsPerCore-1], we don't want to make any such assumptions. | 
|  | // | 
|  | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the | 
|  | // total # packages) are at this point - we want to determine that now. We | 
|  | // only have an upper bound on the first two figures. | 
|  | // | 
|  | // We also perform a consistency check at this point: the values returned by | 
|  | // the cpuid instruction for any thread bound to a given package had better | 
|  | // return the same info for maxThreadsPerPkg and maxCoresPerPkg. | 
|  | nPackages = 1; | 
|  | nCoresPerPkg = 1; | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | unsigned nCores = 1; | 
|  |  | 
|  | unsigned pkgCt = 1; // to determine radii | 
|  | unsigned lastPkgId = threadInfo[0].pkgId; | 
|  | unsigned coreCt = 1; | 
|  | unsigned lastCoreId = threadInfo[0].coreId; | 
|  | unsigned threadCt = 1; | 
|  | unsigned lastThreadId = threadInfo[0].threadId; | 
|  |  | 
|  | // intra-pkg consist checks | 
|  | unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; | 
|  | unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; | 
|  |  | 
|  | for (i = 1; i < nApics; i++) { | 
|  | if (threadInfo[i].pkgId != lastPkgId) { | 
|  | nCores++; | 
|  | pkgCt++; | 
|  | lastPkgId = threadInfo[i].pkgId; | 
|  | if ((int)coreCt > nCoresPerPkg) | 
|  | nCoresPerPkg = coreCt; | 
|  | coreCt = 1; | 
|  | lastCoreId = threadInfo[i].coreId; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  | threadCt = 1; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  |  | 
|  | // This is a different package, so go on to the next iteration without | 
|  | // doing any consistency checks. Reset the consistency check vars, though. | 
|  | prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; | 
|  | prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (threadInfo[i].coreId != lastCoreId) { | 
|  | nCores++; | 
|  | coreCt++; | 
|  | lastCoreId = threadInfo[i].coreId; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  | threadCt = 1; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  | } else if (threadInfo[i].threadId != lastThreadId) { | 
|  | threadCt++; | 
|  | lastThreadId = threadInfo[i].threadId; | 
|  | } else { | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg | 
|  | // fields agree between all the threads bounds to a given package. | 
|  | if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || | 
|  | (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | nPackages = pkgCt; | 
|  | if ((int)coreCt > nCoresPerPkg) | 
|  | nCoresPerPkg = coreCt; | 
|  | if ((int)threadCt > __kmp_nThreadsPerCore) | 
|  | __kmp_nThreadsPerCore = threadCt; | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return now if affinity is | 
|  | // not enabled. | 
|  | __kmp_ncores = nCores; | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  |  | 
|  | KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (__kmp_affinity_uniform_topology()) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  | for (i = 0; i < nApics; ++i) { | 
|  | __kmp_pu_os_idx[i] = threadInfo[i].osId; | 
|  | } | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Now that we've determined the number of packages, the number of cores per | 
|  | // package, and the number of threads per core, we can construct the data | 
|  | // structure that is to be returned. | 
|  | int pkgLevel = 0; | 
|  | int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; | 
|  | int threadLevel = | 
|  | (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); | 
|  | unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); | 
|  |  | 
|  | KMP_ASSERT(depth > 0); | 
|  | *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); | 
|  |  | 
|  | for (i = 0; i < nApics; ++i) { | 
|  | Address addr(depth); | 
|  | unsigned os = threadInfo[i].osId; | 
|  | int d = 0; | 
|  |  | 
|  | if (pkgLevel >= 0) { | 
|  | addr.labels[d++] = threadInfo[i].pkgId; | 
|  | } | 
|  | if (coreLevel >= 0) { | 
|  | addr.labels[d++] = threadInfo[i].coreId; | 
|  | } | 
|  | if (threadLevel >= 0) { | 
|  | addr.labels[d++] = threadInfo[i].threadId; | 
|  | } | 
|  | (*address2os)[i] = AddrUnsPair(addr, os); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | // Set the granularity level based on what levels are modeled in the machine | 
|  | // topology map. | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, | 
|  | coreLevel, threadLevel); | 
|  | } | 
|  |  | 
|  | __kmp_free(threadInfo); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | // Intel(R) microarchitecture code name Nehalem, Dunnington and later | 
|  | // architectures support a newer interface for specifying the x2APIC Ids, | 
|  | // based on cpuid leaf 11. | 
|  | static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, | 
|  | kmp_i18n_id_t *const msg_id) { | 
|  | kmp_cpuid buf; | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // Check to see if cpuid leaf 11 is supported. | 
|  | __kmp_x86_cpuid(0, 0, &buf); | 
|  | if (buf.eax < 11) { | 
|  | *msg_id = kmp_i18n_str_NoLeaf11Support; | 
|  | return -1; | 
|  | } | 
|  | __kmp_x86_cpuid(11, 0, &buf); | 
|  | if (buf.ebx == 0) { | 
|  | *msg_id = kmp_i18n_str_NoLeaf11Support; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Find the number of levels in the machine topology. While we're at it, get | 
|  | // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to | 
|  | // get more accurate values later by explicitly counting them, but get | 
|  | // reasonable defaults now, in case we return early. | 
|  | int level; | 
|  | int threadLevel = -1; | 
|  | int coreLevel = -1; | 
|  | int pkgLevel = -1; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; | 
|  |  | 
|  | for (level = 0;; level++) { | 
|  | if (level > 31) { | 
|  | // FIXME: Hack for DPD200163180 | 
|  | // | 
|  | // If level is big then something went wrong -> exiting | 
|  | // | 
|  | // There could actually be 32 valid levels in the machine topology, but so | 
|  | // far, the only machine we have seen which does not exit this loop before | 
|  | // iteration 32 has fubar x2APIC settings. | 
|  | // | 
|  | // For now, just reject this case based upon loop trip count. | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | __kmp_x86_cpuid(11, level, &buf); | 
|  | if (buf.ebx == 0) { | 
|  | if (pkgLevel < 0) { | 
|  | // Will infer nPackages from __kmp_xproc | 
|  | pkgLevel = level; | 
|  | level++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | int kind = (buf.ecx >> 8) & 0xff; | 
|  | if (kind == 1) { | 
|  | // SMT level | 
|  | threadLevel = level; | 
|  | coreLevel = -1; | 
|  | pkgLevel = -1; | 
|  | __kmp_nThreadsPerCore = buf.ebx & 0xffff; | 
|  | if (__kmp_nThreadsPerCore == 0) { | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | } else if (kind == 2) { | 
|  | // core level | 
|  | coreLevel = level; | 
|  | pkgLevel = -1; | 
|  | nCoresPerPkg = buf.ebx & 0xffff; | 
|  | if (nCoresPerPkg == 0) { | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | if (level <= 0) { | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | if (pkgLevel >= 0) { | 
|  | continue; | 
|  | } | 
|  | pkgLevel = level; | 
|  | nPackages = buf.ebx & 0xffff; | 
|  | if (nPackages == 0) { | 
|  | *msg_id = kmp_i18n_str_InvalidCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | int depth = level; | 
|  |  | 
|  | // In the above loop, "level" was counted from the finest level (usually | 
|  | // thread) to the coarsest.  The caller expects that we will place the labels | 
|  | // in (*address2os)[].first.labels[] in the inverse order, so we need to | 
|  | // invert the vars saying which level means what. | 
|  | if (threadLevel >= 0) { | 
|  | threadLevel = depth - threadLevel - 1; | 
|  | } | 
|  | if (coreLevel >= 0) { | 
|  | coreLevel = depth - coreLevel - 1; | 
|  | } | 
|  | KMP_DEBUG_ASSERT(pkgLevel >= 0); | 
|  | pkgLevel = depth - pkgLevel - 1; | 
|  |  | 
|  | // The algorithm used starts by setting the affinity to each available thread | 
|  | // and retrieving info from the cpuid instruction, so if we are not capable of | 
|  | // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we | 
|  | // need to do something else - use the defaults that we calculated from | 
|  | // issuing cpuid without binding to each proc. | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | // Hack to try and infer the machine topology using only the data | 
|  | // available from cpuid on the current thread, and __kmp_xproc. | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none); | 
|  |  | 
|  | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; | 
|  | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (__kmp_affinity_uniform_topology()) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // From here on, we can assume that it is safe to call | 
|  | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if | 
|  | // __kmp_affinity_type = affinity_none. | 
|  |  | 
|  | // Save the affinity mask for the current thread. | 
|  | kmp_affin_mask_t *oldMask; | 
|  | KMP_CPU_ALLOC(oldMask); | 
|  | __kmp_get_system_affinity(oldMask, TRUE); | 
|  |  | 
|  | // Allocate the data structure to be returned. | 
|  | AddrUnsPair *retval = | 
|  | (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); | 
|  |  | 
|  | // Run through each of the available contexts, binding the current thread | 
|  | // to it, and obtaining the pertinent information using the cpuid instr. | 
|  | unsigned int proc; | 
|  | int nApics = 0; | 
|  | KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); | 
|  |  | 
|  | __kmp_affinity_dispatch->bind_thread(proc); | 
|  |  | 
|  | // Extract labels for each level in the machine topology map from Apic ID. | 
|  | Address addr(depth); | 
|  | int prev_shift = 0; | 
|  |  | 
|  | for (level = 0; level < depth; level++) { | 
|  | __kmp_x86_cpuid(11, level, &buf); | 
|  | unsigned apicId = buf.edx; | 
|  | if (buf.ebx == 0) { | 
|  | if (level != depth - 1) { | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  | addr.labels[depth - level - 1] = apicId >> prev_shift; | 
|  | level++; | 
|  | break; | 
|  | } | 
|  | int shift = buf.eax & 0x1f; | 
|  | int mask = (1 << shift) - 1; | 
|  | addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; | 
|  | prev_shift = shift; | 
|  | } | 
|  | if (level != depth) { | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | retval[nApics] = AddrUnsPair(addr, proc); | 
|  | nApics++; | 
|  | } | 
|  |  | 
|  | // We've collected all the info we need. | 
|  | // Restore the old affinity mask for this thread. | 
|  | __kmp_set_system_affinity(oldMask, TRUE); | 
|  |  | 
|  | // If there's only one thread context to bind to, return now. | 
|  | KMP_ASSERT(nApics > 0); | 
|  | if (nApics == 1) { | 
|  | __kmp_ncores = nPackages = 1; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  |  | 
|  | KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(retval); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Form an Address object which only includes the package level. | 
|  | Address addr(1); | 
|  | addr.labels[0] = retval[0].first.labels[pkgLevel]; | 
|  | retval[0].first = addr; | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); | 
|  | } | 
|  |  | 
|  | *address2os = retval; | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Sort the table by physical Id. | 
|  | qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); | 
|  |  | 
|  | // Find the radix at each of the levels. | 
|  | unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); | 
|  | for (level = 0; level < depth; level++) { | 
|  | totals[level] = 1; | 
|  | maxCt[level] = 1; | 
|  | counts[level] = 1; | 
|  | last[level] = retval[0].first.labels[level]; | 
|  | } | 
|  |  | 
|  | // From here on, the iteration variable "level" runs from the finest level to | 
|  | // the coarsest, i.e. we iterate forward through | 
|  | // (*address2os)[].first.labels[] - in the previous loops, we iterated | 
|  | // backwards. | 
|  | for (proc = 1; (int)proc < nApics; proc++) { | 
|  | int level; | 
|  | for (level = 0; level < depth; level++) { | 
|  | if (retval[proc].first.labels[level] != last[level]) { | 
|  | int j; | 
|  | for (j = level + 1; j < depth; j++) { | 
|  | totals[j]++; | 
|  | counts[j] = 1; | 
|  | // The line below causes printing incorrect topology information in | 
|  | // case the max value for some level (maxCt[level]) is encountered | 
|  | // earlier than some less value while going through the array. For | 
|  | // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then | 
|  | // maxCt[1] == 2 | 
|  | // whereas it must be 4. | 
|  | // TODO!!! Check if it can be commented safely | 
|  | // maxCt[j] = 1; | 
|  | last[j] = retval[proc].first.labels[j]; | 
|  | } | 
|  | totals[level]++; | 
|  | counts[level]++; | 
|  | if (counts[level] > maxCt[level]) { | 
|  | maxCt[level] = counts[level]; | 
|  | } | 
|  | last[level] = retval[proc].first.labels[level]; | 
|  | break; | 
|  | } else if (level == depth - 1) { | 
|  | __kmp_free(last); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(retval); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return if affinity is not | 
|  | // enabled. | 
|  | if (threadLevel >= 0) { | 
|  | __kmp_nThreadsPerCore = maxCt[threadLevel]; | 
|  | } else { | 
|  | __kmp_nThreadsPerCore = 1; | 
|  | } | 
|  | nPackages = totals[pkgLevel]; | 
|  |  | 
|  | if (coreLevel >= 0) { | 
|  | __kmp_ncores = totals[coreLevel]; | 
|  | nCoresPerPkg = maxCt[coreLevel]; | 
|  | } else { | 
|  | __kmp_ncores = nPackages; | 
|  | nCoresPerPkg = 1; | 
|  | } | 
|  |  | 
|  | // Check to see if the machine topology is uniform | 
|  | unsigned prod = maxCt[0]; | 
|  | for (level = 1; level < depth; level++) { | 
|  | prod *= maxCt[level]; | 
|  | } | 
|  | bool uniform = (prod == totals[level - 1]); | 
|  |  | 
|  | // Print the machine topology summary. | 
|  | if (__kmp_affinity_verbose) { | 
|  | char mask[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); | 
|  |  | 
|  | KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (uniform) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  |  | 
|  | __kmp_str_buf_print(&buf, "%d", totals[0]); | 
|  | for (level = 1; level <= pkgLevel; level++) { | 
|  | __kmp_str_buf_print(&buf, " x %d", maxCt[level]); | 
|  | } | 
|  | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  |  | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  | for (proc = 0; (int)proc < nApics; ++proc) { | 
|  | __kmp_pu_os_idx[proc] = retval[proc].second; | 
|  | } | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(last); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(retval); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Find any levels with radiix 1, and remove them from the map | 
|  | // (except for the package level). | 
|  | int new_depth = 0; | 
|  | for (level = 0; level < depth; level++) { | 
|  | if ((maxCt[level] == 1) && (level != pkgLevel)) { | 
|  | continue; | 
|  | } | 
|  | new_depth++; | 
|  | } | 
|  |  | 
|  | // If we are removing any levels, allocate a new vector to return, | 
|  | // and copy the relevant information to it. | 
|  | if (new_depth != depth) { | 
|  | AddrUnsPair *new_retval = | 
|  | (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); | 
|  | for (proc = 0; (int)proc < nApics; proc++) { | 
|  | Address addr(new_depth); | 
|  | new_retval[proc] = AddrUnsPair(addr, retval[proc].second); | 
|  | } | 
|  | int new_level = 0; | 
|  | int newPkgLevel = -1; | 
|  | int newCoreLevel = -1; | 
|  | int newThreadLevel = -1; | 
|  | for (level = 0; level < depth; level++) { | 
|  | if ((maxCt[level] == 1) && (level != pkgLevel)) { | 
|  | // Remove this level. Never remove the package level | 
|  | continue; | 
|  | } | 
|  | if (level == pkgLevel) { | 
|  | newPkgLevel = new_level; | 
|  | } | 
|  | if (level == coreLevel) { | 
|  | newCoreLevel = new_level; | 
|  | } | 
|  | if (level == threadLevel) { | 
|  | newThreadLevel = new_level; | 
|  | } | 
|  | for (proc = 0; (int)proc < nApics; proc++) { | 
|  | new_retval[proc].first.labels[new_level] = | 
|  | retval[proc].first.labels[level]; | 
|  | } | 
|  | new_level++; | 
|  | } | 
|  |  | 
|  | __kmp_free(retval); | 
|  | retval = new_retval; | 
|  | depth = new_depth; | 
|  | pkgLevel = newPkgLevel; | 
|  | coreLevel = newCoreLevel; | 
|  | threadLevel = newThreadLevel; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | // Set the granularity level based on what levels are modeled | 
|  | // in the machine topology map. | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | if (__kmp_affinity_gran > affinity_gran_package) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, | 
|  | threadLevel); | 
|  | } | 
|  |  | 
|  | __kmp_free(last); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | __kmp_free(totals); | 
|  | KMP_CPU_FREE(oldMask); | 
|  | *address2os = retval; | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | #define osIdIndex 0 | 
|  | #define threadIdIndex 1 | 
|  | #define coreIdIndex 2 | 
|  | #define pkgIdIndex 3 | 
|  | #define nodeIdIndex 4 | 
|  |  | 
|  | typedef unsigned *ProcCpuInfo; | 
|  | static unsigned maxIndex = pkgIdIndex; | 
|  |  | 
|  | static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, | 
|  | const void *b) { | 
|  | unsigned i; | 
|  | const unsigned *aa = *(unsigned *const *)a; | 
|  | const unsigned *bb = *(unsigned *const *)b; | 
|  | for (i = maxIndex;; i--) { | 
|  | if (aa[i] < bb[i]) | 
|  | return -1; | 
|  | if (aa[i] > bb[i]) | 
|  | return 1; | 
|  | if (i == osIdIndex) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if KMP_USE_HIER_SCHED | 
|  | // Set the array sizes for the hierarchy layers | 
|  | static void __kmp_dispatch_set_hierarchy_values() { | 
|  | // Set the maximum number of L1's to number of cores | 
|  | // Set the maximum number of L2's to to either number of cores / 2 for | 
|  | // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing | 
|  | // Or the number of cores for Intel(R) Xeon(R) processors | 
|  | // Set the maximum number of NUMA nodes and L3's to number of packages | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = | 
|  | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; | 
|  | #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | if (__kmp_mic_type >= mic3) | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; | 
|  | else | 
|  | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; | 
|  | __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; | 
|  | // Set the number of threads per unit | 
|  | // Number of hardware threads per L1/L2/L3/NUMA/LOOP | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = | 
|  | __kmp_nThreadsPerCore; | 
|  | #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | if (__kmp_mic_type >= mic3) | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = | 
|  | 2 * __kmp_nThreadsPerCore; | 
|  | else | 
|  | #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = | 
|  | __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = | 
|  | nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = | 
|  | nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = | 
|  | nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | } | 
|  |  | 
|  | // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) | 
|  | // i.e., this thread's L1 or this thread's L2, etc. | 
|  | int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { | 
|  | int index = type + 1; | 
|  | int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; | 
|  | KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); | 
|  | if (type == kmp_hier_layer_e::LAYER_THREAD) | 
|  | return tid; | 
|  | else if (type == kmp_hier_layer_e::LAYER_LOOP) | 
|  | return 0; | 
|  | KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); | 
|  | if (tid >= num_hw_threads) | 
|  | tid = tid % num_hw_threads; | 
|  | return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; | 
|  | } | 
|  |  | 
|  | // Return the number of t1's per t2 | 
|  | int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { | 
|  | int i1 = t1 + 1; | 
|  | int i2 = t2 + 1; | 
|  | KMP_DEBUG_ASSERT(i1 <= i2); | 
|  | KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); | 
|  | KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); | 
|  | KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); | 
|  | // (nthreads/t2) / (nthreads/t1) = t1 / t2 | 
|  | return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; | 
|  | } | 
|  | #endif // KMP_USE_HIER_SCHED | 
|  |  | 
|  | // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the | 
|  | // affinity map. | 
|  | static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, | 
|  | int *line, | 
|  | kmp_i18n_id_t *const msg_id, | 
|  | FILE *f) { | 
|  | *address2os = NULL; | 
|  | *msg_id = kmp_i18n_null; | 
|  |  | 
|  | // Scan of the file, and count the number of "processor" (osId) fields, | 
|  | // and find the highest value of <n> for a node_<n> field. | 
|  | char buf[256]; | 
|  | unsigned num_records = 0; | 
|  | while (!feof(f)) { | 
|  | buf[sizeof(buf) - 1] = 1; | 
|  | if (!fgets(buf, sizeof(buf), f)) { | 
|  | // Read errors presumably because of EOF | 
|  | break; | 
|  | } | 
|  |  | 
|  | char s1[] = "processor"; | 
|  | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { | 
|  | num_records++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME - this will match "node_<n> <garbage>" | 
|  | unsigned level; | 
|  | if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { | 
|  | if (nodeIdIndex + level >= maxIndex) { | 
|  | maxIndex = nodeIdIndex + level; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for empty file / no valid processor records, or too many. The number | 
|  | // of records can't exceed the number of valid bits in the affinity mask. | 
|  | if (num_records == 0) { | 
|  | *line = 0; | 
|  | *msg_id = kmp_i18n_str_NoProcRecords; | 
|  | return -1; | 
|  | } | 
|  | if (num_records > (unsigned)__kmp_xproc) { | 
|  | *line = 0; | 
|  | *msg_id = kmp_i18n_str_TooManyProcRecords; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Set the file pointer back to the begginning, so that we can scan the file | 
|  | // again, this time performing a full parse of the data. Allocate a vector of | 
|  | // ProcCpuInfo object, where we will place the data. Adding an extra element | 
|  | // at the end allows us to remove a lot of extra checks for termination | 
|  | // conditions. | 
|  | if (fseek(f, 0, SEEK_SET) != 0) { | 
|  | *line = 0; | 
|  | *msg_id = kmp_i18n_str_CantRewindCpuinfo; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Allocate the array of records to store the proc info in.  The dummy | 
|  | // element at the end makes the logic in filling them out easier to code. | 
|  | unsigned **threadInfo = | 
|  | (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); | 
|  | unsigned i; | 
|  | for (i = 0; i <= num_records; i++) { | 
|  | threadInfo[i] = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | } | 
|  |  | 
|  | #define CLEANUP_THREAD_INFO                                                    \ | 
|  | for (i = 0; i <= num_records; i++) {                                         \ | 
|  | __kmp_free(threadInfo[i]);                                                 \ | 
|  | }                                                                            \ | 
|  | __kmp_free(threadInfo); | 
|  |  | 
|  | // A value of UINT_MAX means that we didn't find the field | 
|  | unsigned __index; | 
|  |  | 
|  | #define INIT_PROC_INFO(p)                                                      \ | 
|  | for (__index = 0; __index <= maxIndex; __index++) {                          \ | 
|  | (p)[__index] = UINT_MAX;                                                   \ | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= num_records; i++) { | 
|  | INIT_PROC_INFO(threadInfo[i]); | 
|  | } | 
|  |  | 
|  | unsigned num_avail = 0; | 
|  | *line = 0; | 
|  | while (!feof(f)) { | 
|  | // Create an inner scoping level, so that all the goto targets at the end of | 
|  | // the loop appear in an outer scoping level. This avoids warnings about | 
|  | // jumping past an initialization to a target in the same block. | 
|  | { | 
|  | buf[sizeof(buf) - 1] = 1; | 
|  | bool long_line = false; | 
|  | if (!fgets(buf, sizeof(buf), f)) { | 
|  | // Read errors presumably because of EOF | 
|  | // If there is valid data in threadInfo[num_avail], then fake | 
|  | // a blank line in ensure that the last address gets parsed. | 
|  | bool valid = false; | 
|  | for (i = 0; i <= maxIndex; i++) { | 
|  | if (threadInfo[num_avail][i] != UINT_MAX) { | 
|  | valid = true; | 
|  | } | 
|  | } | 
|  | if (!valid) { | 
|  | break; | 
|  | } | 
|  | buf[0] = 0; | 
|  | } else if (!buf[sizeof(buf) - 1]) { | 
|  | // The line is longer than the buffer.  Set a flag and don't | 
|  | // emit an error if we were going to ignore the line, anyway. | 
|  | long_line = true; | 
|  |  | 
|  | #define CHECK_LINE                                                             \ | 
|  | if (long_line) {                                                             \ | 
|  | CLEANUP_THREAD_INFO;                                                       \ | 
|  | *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \ | 
|  | return -1;                                                                 \ | 
|  | } | 
|  | } | 
|  | (*line)++; | 
|  |  | 
|  | char s1[] = "processor"; | 
|  | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s1) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][osIdIndex] != UINT_MAX) | 
|  | #if KMP_ARCH_AARCH64 | 
|  | // Handle the old AArch64 /proc/cpuinfo layout differently, | 
|  | // it contains all of the 'processor' entries listed in a | 
|  | // single 'Processor' section, therefore the normal looking | 
|  | // for duplicates in that section will always fail. | 
|  | num_avail++; | 
|  | #else | 
|  | goto dup_field; | 
|  | #endif | 
|  | threadInfo[num_avail][osIdIndex] = val; | 
|  | #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) | 
|  | char path[256]; | 
|  | KMP_SNPRINTF( | 
|  | path, sizeof(path), | 
|  | "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", | 
|  | threadInfo[num_avail][osIdIndex]); | 
|  | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); | 
|  |  | 
|  | KMP_SNPRINTF(path, sizeof(path), | 
|  | "/sys/devices/system/cpu/cpu%u/topology/core_id", | 
|  | threadInfo[num_avail][osIdIndex]); | 
|  | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); | 
|  | continue; | 
|  | #else | 
|  | } | 
|  | char s2[] = "physical id"; | 
|  | if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s2) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][pkgIdIndex] = val; | 
|  | continue; | 
|  | } | 
|  | char s3[] = "core id"; | 
|  | if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s3) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][coreIdIndex] = val; | 
|  | continue; | 
|  | #endif // KMP_OS_LINUX && USE_SYSFS_INFO | 
|  | } | 
|  | char s4[] = "thread id"; | 
|  | if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s4) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][threadIdIndex] = val; | 
|  | continue; | 
|  | } | 
|  | unsigned level; | 
|  | if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { | 
|  | CHECK_LINE; | 
|  | char *p = strchr(buf + sizeof(s4) - 1, ':'); | 
|  | unsigned val; | 
|  | if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) | 
|  | goto no_val; | 
|  | KMP_ASSERT(nodeIdIndex + level <= maxIndex); | 
|  | if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) | 
|  | goto dup_field; | 
|  | threadInfo[num_avail][nodeIdIndex + level] = val; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We didn't recognize the leading token on the line. There are lots of | 
|  | // leading tokens that we don't recognize - if the line isn't empty, go on | 
|  | // to the next line. | 
|  | if ((*buf != 0) && (*buf != '\n')) { | 
|  | // If the line is longer than the buffer, read characters | 
|  | // until we find a newline. | 
|  | if (long_line) { | 
|  | int ch; | 
|  | while (((ch = fgetc(f)) != EOF) && (ch != '\n')) | 
|  | ; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A newline has signalled the end of the processor record. | 
|  | // Check that there aren't too many procs specified. | 
|  | if ((int)num_avail == __kmp_xproc) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_TooManyEntries; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Check for missing fields.  The osId field must be there, and we | 
|  | // currently require that the physical id field is specified, also. | 
|  | if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingProcField; | 
|  | return -1; | 
|  | } | 
|  | if (threadInfo[0][pkgIdIndex] == UINT_MAX) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingPhysicalIDField; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Skip this proc if it is not included in the machine model. | 
|  | if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], | 
|  | __kmp_affin_fullMask)) { | 
|  | INIT_PROC_INFO(threadInfo[num_avail]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We have a successful parse of this proc's info. | 
|  | // Increment the counter, and prepare for the next proc. | 
|  | num_avail++; | 
|  | KMP_ASSERT(num_avail <= num_records); | 
|  | INIT_PROC_INFO(threadInfo[num_avail]); | 
|  | } | 
|  | continue; | 
|  |  | 
|  | no_val: | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_MissingValCpuinfo; | 
|  | return -1; | 
|  |  | 
|  | dup_field: | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; | 
|  | return -1; | 
|  | } | 
|  | *line = 0; | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | unsigned teamSize = 0; | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | // check for num_records == __kmp_xproc ??? | 
|  |  | 
|  | // If there's only one thread context to bind to, form an Address object with | 
|  | // depth 1 and return immediately (or, if affinity is off, set address2os to | 
|  | // NULL and return). | 
|  | // | 
|  | // If it is configured to omit the package level when there is only a single | 
|  | // package, the logic at the end of this routine won't work if there is only a | 
|  | // single thread - it would try to form an Address object with depth 0. | 
|  | KMP_ASSERT(num_avail > 0); | 
|  | KMP_ASSERT(num_avail <= num_records); | 
|  | if (num_avail == 1) { | 
|  | __kmp_ncores = 1; | 
|  | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; | 
|  | if (__kmp_affinity_verbose) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  | KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } | 
|  | int index; | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | __kmp_str_buf_print(&buf, "1"); | 
|  | for (index = maxIndex - 1; index > pkgIdIndex; index--) { | 
|  | __kmp_str_buf_print(&buf, " x 1"); | 
|  | } | 
|  | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | CLEANUP_THREAD_INFO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); | 
|  | Address addr(1); | 
|  | addr.labels[0] = threadInfo[0][pkgIdIndex]; | 
|  | (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); | 
|  | } | 
|  |  | 
|  | CLEANUP_THREAD_INFO; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Sort the threadInfo table by physical Id. | 
|  | qsort(threadInfo, num_avail, sizeof(*threadInfo), | 
|  | __kmp_affinity_cmp_ProcCpuInfo_phys_id); | 
|  |  | 
|  | // The table is now sorted by pkgId / coreId / threadId, but we really don't | 
|  | // know the radix of any of the fields. pkgId's may be sparsely assigned among | 
|  | // the chips on a system. Although coreId's are usually assigned | 
|  | // [0 .. coresPerPkg-1] and threadId's are usually assigned | 
|  | // [0..threadsPerCore-1], we don't want to make any such assumptions. | 
|  | // | 
|  | // For that matter, we don't know what coresPerPkg and threadsPerCore (or the | 
|  | // total # packages) are at this point - we want to determine that now. We | 
|  | // only have an upper bound on the first two figures. | 
|  | unsigned *counts = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *maxCt = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *totals = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  | unsigned *lastId = | 
|  | (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); | 
|  |  | 
|  | bool assign_thread_ids = false; | 
|  | unsigned threadIdCt; | 
|  | unsigned index; | 
|  |  | 
|  | restart_radix_check: | 
|  | threadIdCt = 0; | 
|  |  | 
|  | // Initialize the counter arrays with data from threadInfo[0]. | 
|  | if (assign_thread_ids) { | 
|  | if (threadInfo[0][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[0][threadIdIndex] = threadIdCt++; | 
|  | } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[0][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | for (index = 0; index <= maxIndex; index++) { | 
|  | counts[index] = 1; | 
|  | maxCt[index] = 1; | 
|  | totals[index] = 1; | 
|  | lastId[index] = threadInfo[0][index]; | 
|  | ; | 
|  | } | 
|  |  | 
|  | // Run through the rest of the OS procs. | 
|  | for (i = 1; i < num_avail; i++) { | 
|  | // Find the most significant index whose id differs from the id for the | 
|  | // previous OS proc. | 
|  | for (index = maxIndex; index >= threadIdIndex; index--) { | 
|  | if (assign_thread_ids && (index == threadIdIndex)) { | 
|  | // Auto-assign the thread id field if it wasn't specified. | 
|  | if (threadInfo[i][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[i][threadIdIndex] = threadIdCt++; | 
|  | } | 
|  | // Apparently the thread id field was specified for some entries and not | 
|  | // others. Start the thread id counter off at the next higher thread id. | 
|  | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[i][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | if (threadInfo[i][index] != lastId[index]) { | 
|  | // Run through all indices which are less significant, and reset the | 
|  | // counts to 1. At all levels up to and including index, we need to | 
|  | // increment the totals and record the last id. | 
|  | unsigned index2; | 
|  | for (index2 = threadIdIndex; index2 < index; index2++) { | 
|  | totals[index2]++; | 
|  | if (counts[index2] > maxCt[index2]) { | 
|  | maxCt[index2] = counts[index2]; | 
|  | } | 
|  | counts[index2] = 1; | 
|  | lastId[index2] = threadInfo[i][index2]; | 
|  | } | 
|  | counts[index]++; | 
|  | totals[index]++; | 
|  | lastId[index] = threadInfo[i][index]; | 
|  |  | 
|  | if (assign_thread_ids && (index > threadIdIndex)) { | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // The default team size is the total #threads in the machine | 
|  | // minus 1 thread for every core that has 3 or more threads. | 
|  | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | // Restart the thread counter, as we are on a new core. | 
|  | threadIdCt = 0; | 
|  |  | 
|  | // Auto-assign the thread id field if it wasn't specified. | 
|  | if (threadInfo[i][threadIdIndex] == UINT_MAX) { | 
|  | threadInfo[i][threadIdIndex] = threadIdCt++; | 
|  | } | 
|  |  | 
|  | // Aparrently the thread id field was specified for some entries and | 
|  | // not others. Start the thread id counter off at the next higher | 
|  | // thread id. | 
|  | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { | 
|  | threadIdCt = threadInfo[i][threadIdIndex] + 1; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (index < threadIdIndex) { | 
|  | // If thread ids were specified, it is an error if they are not unique. | 
|  | // Also, check that we waven't already restarted the loop (to be safe - | 
|  | // shouldn't need to). | 
|  | if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { | 
|  | __kmp_free(lastId); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | CLEANUP_THREAD_INFO; | 
|  | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If the thread ids were not specified and we see entries entries that | 
|  | // are duplicates, start the loop over and assign the thread ids manually. | 
|  | assign_thread_ids = true; | 
|  | goto restart_radix_check; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // The default team size is the total #threads in the machine | 
|  | // minus 1 thread for every core that has 3 or more threads. | 
|  | teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | for (index = threadIdIndex; index <= maxIndex; index++) { | 
|  | if (counts[index] > maxCt[index]) { | 
|  | maxCt[index] = counts[index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | __kmp_nThreadsPerCore = maxCt[threadIdIndex]; | 
|  | nCoresPerPkg = maxCt[coreIdIndex]; | 
|  | nPackages = totals[pkgIdIndex]; | 
|  |  | 
|  | // Check to see if the machine topology is uniform | 
|  | unsigned prod = totals[maxIndex]; | 
|  | for (index = threadIdIndex; index < maxIndex; index++) { | 
|  | prod *= maxCt[index]; | 
|  | } | 
|  | bool uniform = (prod == totals[threadIdIndex]); | 
|  |  | 
|  | // When affinity is off, this routine will still be called to set | 
|  | // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. | 
|  | // Make sure all these vars are set correctly, and return now if affinity is | 
|  | // not enabled. | 
|  | __kmp_ncores = totals[coreIdIndex]; | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (uniform) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | } else { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  | KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); | 
|  | if (uniform) { | 
|  | KMP_INFORM(Uniform, "KMP_AFFINITY"); | 
|  | } else { | 
|  | KMP_INFORM(NonUniform, "KMP_AFFINITY"); | 
|  | } | 
|  | } | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  |  | 
|  | __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); | 
|  | for (index = maxIndex - 1; index >= pkgIdIndex; index--) { | 
|  | __kmp_str_buf_print(&buf, " x %d", maxCt[index]); | 
|  | } | 
|  | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], | 
|  | maxCt[threadIdIndex], __kmp_ncores); | 
|  |  | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  |  | 
|  | #if KMP_MIC && REDUCE_TEAM_SIZE | 
|  | // Set the default team size. | 
|  | if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { | 
|  | __kmp_dflt_team_nth = teamSize; | 
|  | KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " | 
|  | "__kmp_dflt_team_nth = %d\n", | 
|  | __kmp_dflt_team_nth)); | 
|  | } | 
|  | #endif // KMP_MIC && REDUCE_TEAM_SIZE | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); | 
|  | KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); | 
|  | __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); | 
|  | for (i = 0; i < num_avail; ++i) { // fill the os indices | 
|  | __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_free(lastId); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | CLEANUP_THREAD_INFO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Count the number of levels which have more nodes at that level than at the | 
|  | // parent's level (with there being an implicit root node of the top level). | 
|  | // This is equivalent to saying that there is at least one node at this level | 
|  | // which has a sibling. These levels are in the map, and the package level is | 
|  | // always in the map. | 
|  | bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); | 
|  | for (index = threadIdIndex; index < maxIndex; index++) { | 
|  | KMP_ASSERT(totals[index] >= totals[index + 1]); | 
|  | inMap[index] = (totals[index] > totals[index + 1]); | 
|  | } | 
|  | inMap[maxIndex] = (totals[maxIndex] > 1); | 
|  | inMap[pkgIdIndex] = true; | 
|  |  | 
|  | int depth = 0; | 
|  | for (index = threadIdIndex; index <= maxIndex; index++) { | 
|  | if (inMap[index]) { | 
|  | depth++; | 
|  | } | 
|  | } | 
|  | KMP_ASSERT(depth > 0); | 
|  |  | 
|  | // Construct the data structure that is to be returned. | 
|  | *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); | 
|  | int pkgLevel = -1; | 
|  | int coreLevel = -1; | 
|  | int threadLevel = -1; | 
|  |  | 
|  | for (i = 0; i < num_avail; ++i) { | 
|  | Address addr(depth); | 
|  | unsigned os = threadInfo[i][osIdIndex]; | 
|  | int src_index; | 
|  | int dst_index = 0; | 
|  |  | 
|  | for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { | 
|  | if (!inMap[src_index]) { | 
|  | continue; | 
|  | } | 
|  | addr.labels[dst_index] = threadInfo[i][src_index]; | 
|  | if (src_index == pkgIdIndex) { | 
|  | pkgLevel = dst_index; | 
|  | } else if (src_index == coreIdIndex) { | 
|  | coreLevel = dst_index; | 
|  | } else if (src_index == threadIdIndex) { | 
|  | threadLevel = dst_index; | 
|  | } | 
|  | dst_index++; | 
|  | } | 
|  | (*address2os)[i] = AddrUnsPair(addr, os); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran_levels < 0) { | 
|  | // Set the granularity level based on what levels are modeled | 
|  | // in the machine topology map. | 
|  | unsigned src_index; | 
|  | __kmp_affinity_gran_levels = 0; | 
|  | for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { | 
|  | if (!inMap[src_index]) { | 
|  | continue; | 
|  | } | 
|  | switch (src_index) { | 
|  | case threadIdIndex: | 
|  | if (__kmp_affinity_gran > affinity_gran_thread) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case coreIdIndex: | 
|  | if (__kmp_affinity_gran > affinity_gran_core) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case pkgIdIndex: | 
|  | if (__kmp_affinity_gran > affinity_gran_package) { | 
|  | __kmp_affinity_gran_levels++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, | 
|  | coreLevel, threadLevel); | 
|  | } | 
|  |  | 
|  | __kmp_free(inMap); | 
|  | __kmp_free(lastId); | 
|  | __kmp_free(totals); | 
|  | __kmp_free(maxCt); | 
|  | __kmp_free(counts); | 
|  | CLEANUP_THREAD_INFO; | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | // Create and return a table of affinity masks, indexed by OS thread ID. | 
|  | // This routine handles OR'ing together all the affinity masks of threads | 
|  | // that are sufficiently close, if granularity > fine. | 
|  | static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, | 
|  | unsigned *numUnique, | 
|  | AddrUnsPair *address2os, | 
|  | unsigned numAddrs) { | 
|  | // First form a table of affinity masks in order of OS thread id. | 
|  | unsigned depth; | 
|  | unsigned maxOsId; | 
|  | unsigned i; | 
|  |  | 
|  | KMP_ASSERT(numAddrs > 0); | 
|  | depth = address2os[0].first.depth; | 
|  |  | 
|  | maxOsId = 0; | 
|  | for (i = numAddrs - 1;; --i) { | 
|  | unsigned osId = address2os[i].second; | 
|  | if (osId > maxOsId) { | 
|  | maxOsId = osId; | 
|  | } | 
|  | if (i == 0) | 
|  | break; | 
|  | } | 
|  | kmp_affin_mask_t *osId2Mask; | 
|  | KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); | 
|  |  | 
|  | // Sort the address2os table according to physical order. Doing so will put | 
|  | // all threads on the same core/package/node in consecutive locations. | 
|  | qsort(address2os, numAddrs, sizeof(*address2os), | 
|  | __kmp_affinity_cmp_Address_labels); | 
|  |  | 
|  | KMP_ASSERT(__kmp_affinity_gran_levels >= 0); | 
|  | if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { | 
|  | KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); | 
|  | } | 
|  | if (__kmp_affinity_gran_levels >= (int)depth) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffThreadsMayMigrate); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Run through the table, forming the masks for all threads on each core. | 
|  | // Threads on the same core will have identical "Address" objects, not | 
|  | // considering the last level, which must be the thread id. All threads on a | 
|  | // core will appear consecutively. | 
|  | unsigned unique = 0; | 
|  | unsigned j = 0; // index of 1st thread on core | 
|  | unsigned leader = 0; | 
|  | Address *leaderAddr = &(address2os[0].first); | 
|  | kmp_affin_mask_t *sum; | 
|  | KMP_CPU_ALLOC_ON_STACK(sum); | 
|  | KMP_CPU_ZERO(sum); | 
|  | KMP_CPU_SET(address2os[0].second, sum); | 
|  | for (i = 1; i < numAddrs; i++) { | 
|  | // If this thread is sufficiently close to the leader (within the | 
|  | // granularity setting), then set the bit for this os thread in the | 
|  | // affinity mask for this group, and go on to the next thread. | 
|  | if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { | 
|  | KMP_CPU_SET(address2os[i].second, sum); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For every thread in this group, copy the mask to the thread's entry in | 
|  | // the osId2Mask table.  Mark the first address as a leader. | 
|  | for (; j < i; j++) { | 
|  | unsigned osId = address2os[j].second; | 
|  | KMP_DEBUG_ASSERT(osId <= maxOsId); | 
|  | kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); | 
|  | KMP_CPU_COPY(mask, sum); | 
|  | address2os[j].first.leader = (j == leader); | 
|  | } | 
|  | unique++; | 
|  |  | 
|  | // Start a new mask. | 
|  | leader = i; | 
|  | leaderAddr = &(address2os[i].first); | 
|  | KMP_CPU_ZERO(sum); | 
|  | KMP_CPU_SET(address2os[i].second, sum); | 
|  | } | 
|  |  | 
|  | // For every thread in last group, copy the mask to the thread's | 
|  | // entry in the osId2Mask table. | 
|  | for (; j < i; j++) { | 
|  | unsigned osId = address2os[j].second; | 
|  | KMP_DEBUG_ASSERT(osId <= maxOsId); | 
|  | kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); | 
|  | KMP_CPU_COPY(mask, sum); | 
|  | address2os[j].first.leader = (j == leader); | 
|  | } | 
|  | unique++; | 
|  | KMP_CPU_FREE_FROM_STACK(sum); | 
|  |  | 
|  | *maxIndex = maxOsId; | 
|  | *numUnique = unique; | 
|  | return osId2Mask; | 
|  | } | 
|  |  | 
|  | // Stuff for the affinity proclist parsers.  It's easier to declare these vars | 
|  | // as file-static than to try and pass them through the calling sequence of | 
|  | // the recursive-descent OMP_PLACES parser. | 
|  | static kmp_affin_mask_t *newMasks; | 
|  | static int numNewMasks; | 
|  | static int nextNewMask; | 
|  |  | 
|  | #define ADD_MASK(_mask)                                                        \ | 
|  | {                                                                            \ | 
|  | if (nextNewMask >= numNewMasks) {                                          \ | 
|  | int i;                                                                   \ | 
|  | numNewMasks *= 2;                                                        \ | 
|  | kmp_affin_mask_t *temp;                                                  \ | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \ | 
|  | for (i = 0; i < numNewMasks / 2; i++) {                                  \ | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \ | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \ | 
|  | KMP_CPU_COPY(dest, src);                                               \ | 
|  | }                                                                        \ | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \ | 
|  | newMasks = temp;                                                         \ | 
|  | }                                                                          \ | 
|  | KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \ | 
|  | nextNewMask++;                                                             \ | 
|  | } | 
|  |  | 
|  | #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \ | 
|  | {                                                                            \ | 
|  | if (((_osId) > _maxOsId) ||                                                \ | 
|  | (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \ | 
|  | if (__kmp_affinity_verbose ||                                            \ | 
|  | (__kmp_affinity_warnings &&                                          \ | 
|  | (__kmp_affinity_type != affinity_none))) {                          \ | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, _osId);                            \ | 
|  | }                                                                        \ | 
|  | } else {                                                                   \ | 
|  | ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \ | 
|  | }                                                                          \ | 
|  | } | 
|  |  | 
|  | // Re-parse the proclist (for the explicit affinity type), and form the list | 
|  | // of affinity newMasks indexed by gtid. | 
|  | static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, | 
|  | unsigned int *out_numMasks, | 
|  | const char *proclist, | 
|  | kmp_affin_mask_t *osId2Mask, | 
|  | int maxOsId) { | 
|  | int i; | 
|  | const char *scan = proclist; | 
|  | const char *next = proclist; | 
|  |  | 
|  | // We use malloc() for the temporary mask vector, so that we can use | 
|  | // realloc() to extend it. | 
|  | numNewMasks = 2; | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); | 
|  | nextNewMask = 0; | 
|  | kmp_affin_mask_t *sumMask; | 
|  | KMP_CPU_ALLOC(sumMask); | 
|  | int setSize = 0; | 
|  |  | 
|  | for (;;) { | 
|  | int start, end, stride; | 
|  |  | 
|  | SKIP_WS(scan); | 
|  | next = scan; | 
|  | if (*next == '\0') { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (*next == '{') { | 
|  | int num; | 
|  | setSize = 0; | 
|  | next++; // skip '{' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  |  | 
|  | // Read the first integer in the set. | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); | 
|  | SKIP_DIGITS(next); | 
|  | num = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(num >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Copy the mask for that osId to the sum (union) mask. | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, num); | 
|  | } | 
|  | KMP_CPU_ZERO(sumMask); | 
|  | } else { | 
|  | KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | setSize = 1; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | // Check for end of set. | 
|  | SKIP_WS(next); | 
|  | if (*next == '}') { | 
|  | next++; // skip '}' | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Skip optional comma. | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | SKIP_WS(next); | 
|  |  | 
|  | // Read the next integer in the set. | 
|  | scan = next; | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  |  | 
|  | SKIP_DIGITS(next); | 
|  | num = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(num >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Add the mask for that osId to the sum mask. | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, num); | 
|  | } | 
|  | } else { | 
|  | KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | setSize++; | 
|  | } | 
|  | } | 
|  | if (setSize > 0) { | 
|  | ADD_MASK(sumMask); | 
|  | } | 
|  |  | 
|  | SKIP_WS(next); | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Read the first integer. | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | start = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(start >= 0, "bad explicit proc list"); | 
|  | SKIP_WS(next); | 
|  |  | 
|  | // If this isn't a range, then add a mask to the list and go on. | 
|  | if (*next != '-') { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  |  | 
|  | // Skip optional comma. | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This is a range.  Skip over the '-' and read in the 2nd int. | 
|  | next++; // skip '-' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | end = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(end >= 0, "bad explicit proc list"); | 
|  |  | 
|  | // Check for a stride parameter | 
|  | stride = 1; | 
|  | SKIP_WS(next); | 
|  | if (*next == ':') { | 
|  | // A stride is specified.  Skip over the ':" and read the 3rd int. | 
|  | int sign = +1; | 
|  | next++; // skip ':' | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | if (*next == '-') { | 
|  | sign = -1; | 
|  | next++; | 
|  | SKIP_WS(next); | 
|  | scan = next; | 
|  | } | 
|  | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT2(stride >= 0, "bad explicit proc list"); | 
|  | stride *= sign; | 
|  | } | 
|  |  | 
|  | // Do some range checks. | 
|  | KMP_ASSERT2(stride != 0, "bad explicit proc list"); | 
|  | if (stride > 0) { | 
|  | KMP_ASSERT2(start <= end, "bad explicit proc list"); | 
|  | } else { | 
|  | KMP_ASSERT2(start >= end, "bad explicit proc list"); | 
|  | } | 
|  | KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); | 
|  |  | 
|  | // Add the mask for each OS proc # to the list. | 
|  | if (stride > 0) { | 
|  | do { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  | start += stride; | 
|  | } while (start <= end); | 
|  | } else { | 
|  | do { | 
|  | ADD_MASK_OSID(start, osId2Mask, maxOsId); | 
|  | start += stride; | 
|  | } while (start >= end); | 
|  | } | 
|  |  | 
|  | // Skip optional comma. | 
|  | SKIP_WS(next); | 
|  | if (*next == ',') { | 
|  | next++; | 
|  | } | 
|  | scan = next; | 
|  | } | 
|  |  | 
|  | *out_numMasks = nextNewMask; | 
|  | if (nextNewMask == 0) { | 
|  | *out_masks = NULL; | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | return; | 
|  | } | 
|  | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); | 
|  | for (i = 0; i < nextNewMask; i++) { | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | } | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | KMP_CPU_FREE(sumMask); | 
|  | } | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  |  | 
|  | /*----------------------------------------------------------------------------- | 
|  | Re-parse the OMP_PLACES proc id list, forming the newMasks for the different | 
|  | places.  Again, Here is the grammar: | 
|  |  | 
|  | place_list := place | 
|  | place_list := place , place_list | 
|  | place := num | 
|  | place := place : num | 
|  | place := place : num : signed | 
|  | place := { subplacelist } | 
|  | place := ! place                  // (lowest priority) | 
|  | subplace_list := subplace | 
|  | subplace_list := subplace , subplace_list | 
|  | subplace := num | 
|  | subplace := num : num | 
|  | subplace := num : num : signed | 
|  | signed := num | 
|  | signed := + signed | 
|  | signed := - signed | 
|  | -----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void __kmp_process_subplace_list(const char **scan, | 
|  | kmp_affin_mask_t *osId2Mask, | 
|  | int maxOsId, kmp_affin_mask_t *tempMask, | 
|  | int *setSize) { | 
|  | const char *next; | 
|  |  | 
|  | for (;;) { | 
|  | int start, count, stride, i; | 
|  |  | 
|  | // Read in the starting proc id | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | start = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(start >= 0); | 
|  | *scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, start); | 
|  | } | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | (*setSize)++; | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  | KMP_ASSERT2(**scan == ':', "bad explicit places list"); | 
|  | (*scan)++; // skip ':' | 
|  |  | 
|  | // Read count parameter | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | count = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(count >= 0); | 
|  | *scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | for (i = 0; i < count; i++) { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, start); | 
|  | } | 
|  | break; // don't proliferate warnings for large count | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | start++; | 
|  | (*setSize)++; | 
|  | } | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  | KMP_ASSERT2(**scan == ':', "bad explicit places list"); | 
|  | (*scan)++; // skip ':' | 
|  |  | 
|  | // Read stride parameter | 
|  | int sign = +1; | 
|  | for (;;) { | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '+') { | 
|  | (*scan)++; // skip '+' | 
|  | continue; | 
|  | } | 
|  | if (**scan == '-') { | 
|  | sign *= -1; | 
|  | (*scan)++; // skip '-' | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | SKIP_WS(*scan); | 
|  | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(stride >= 0); | 
|  | *scan = next; | 
|  | stride *= sign; | 
|  |  | 
|  | // valid follow sets are ',' and '}' | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '}' || **scan == ',') { | 
|  | for (i = 0; i < count; i++) { | 
|  | if ((start > maxOsId) || | 
|  | (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, start); | 
|  | } | 
|  | break; // don't proliferate warnings for large count | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); | 
|  | start += stride; | 
|  | (*setSize)++; | 
|  | } | 
|  | } | 
|  | if (**scan == '}') { | 
|  | break; | 
|  | } | 
|  | (*scan)++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, | 
|  | int maxOsId, kmp_affin_mask_t *tempMask, | 
|  | int *setSize) { | 
|  | const char *next; | 
|  |  | 
|  | // valid follow sets are '{' '!' and num | 
|  | SKIP_WS(*scan); | 
|  | if (**scan == '{') { | 
|  | (*scan)++; // skip '{' | 
|  | __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); | 
|  | KMP_ASSERT2(**scan == '}', "bad explicit places list"); | 
|  | (*scan)++; // skip '}' | 
|  | } else if (**scan == '!') { | 
|  | (*scan)++; // skip '!' | 
|  | __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); | 
|  | KMP_CPU_COMPLEMENT(maxOsId, tempMask); | 
|  | } else if ((**scan >= '0') && (**scan <= '9')) { | 
|  | next = *scan; | 
|  | SKIP_DIGITS(next); | 
|  | int num = __kmp_str_to_int(*scan, *next); | 
|  | KMP_ASSERT(num >= 0); | 
|  | if ((num > maxOsId) || | 
|  | (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, num); | 
|  | } | 
|  | } else { | 
|  | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); | 
|  | (*setSize)++; | 
|  | } | 
|  | *scan = next; // skip num | 
|  | } else { | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static void | 
|  | void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, | 
|  | unsigned int *out_numMasks, | 
|  | const char *placelist, | 
|  | kmp_affin_mask_t *osId2Mask, | 
|  | int maxOsId) { | 
|  | int i, j, count, stride, sign; | 
|  | const char *scan = placelist; | 
|  | const char *next = placelist; | 
|  |  | 
|  | numNewMasks = 2; | 
|  | KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); | 
|  | nextNewMask = 0; | 
|  |  | 
|  | // tempMask is modified based on the previous or initial | 
|  | //   place to form the current place | 
|  | // previousMask contains the previous place | 
|  | kmp_affin_mask_t *tempMask; | 
|  | kmp_affin_mask_t *previousMask; | 
|  | KMP_CPU_ALLOC(tempMask); | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | KMP_CPU_ALLOC(previousMask); | 
|  | KMP_CPU_ZERO(previousMask); | 
|  | int setSize = 0; | 
|  |  | 
|  | for (;;) { | 
|  | __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); | 
|  |  | 
|  | // valid follow sets are ',' ':' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0' || *scan == ',') { | 
|  | if (setSize > 0) { | 
|  | ADD_MASK(tempMask); | 
|  | } | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  | if (*scan == '\0') { | 
|  | break; | 
|  | } | 
|  | scan++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(*scan == ':', "bad explicit places list"); | 
|  | scan++; // skip ':' | 
|  |  | 
|  | // Read count parameter | 
|  | SKIP_WS(scan); | 
|  | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); | 
|  | next = scan; | 
|  | SKIP_DIGITS(next); | 
|  | count = __kmp_str_to_int(scan, *next); | 
|  | KMP_ASSERT(count >= 0); | 
|  | scan = next; | 
|  |  | 
|  | // valid follow sets are ',' ':' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0' || *scan == ',') { | 
|  | stride = +1; | 
|  | } else { | 
|  | KMP_ASSERT2(*scan == ':', "bad explicit places list"); | 
|  | scan++; // skip ':' | 
|  |  | 
|  | // Read stride parameter | 
|  | sign = +1; | 
|  | for (;;) { | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '+') { | 
|  | scan++; // skip '+' | 
|  | continue; | 
|  | } | 
|  | if (*scan == '-') { | 
|  | sign *= -1; | 
|  | scan++; // skip '-' | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | SKIP_WS(scan); | 
|  | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); | 
|  | next = scan; | 
|  | SKIP_DIGITS(next); | 
|  | stride = __kmp_str_to_int(scan, *next); | 
|  | KMP_DEBUG_ASSERT(stride >= 0); | 
|  | scan = next; | 
|  | stride *= sign; | 
|  | } | 
|  |  | 
|  | // Add places determined by initial_place : count : stride | 
|  | for (i = 0; i < count; i++) { | 
|  | if (setSize == 0) { | 
|  | break; | 
|  | } | 
|  | // Add the current place, then build the next place (tempMask) from that | 
|  | KMP_CPU_COPY(previousMask, tempMask); | 
|  | ADD_MASK(previousMask); | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  | KMP_CPU_SET_ITERATE(j, previousMask) { | 
|  | if (!KMP_CPU_ISSET(j, previousMask)) { | 
|  | continue; | 
|  | } | 
|  | if ((j + stride > maxOsId) || (j + stride < 0) || | 
|  | (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || | 
|  | (!KMP_CPU_ISSET(j + stride, | 
|  | KMP_CPU_INDEX(osId2Mask, j + stride)))) { | 
|  | if ((__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) && | 
|  | i < count - 1) { | 
|  | KMP_WARNING(AffIgnoreInvalidProcID, j + stride); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | KMP_CPU_SET(j + stride, tempMask); | 
|  | setSize++; | 
|  | } | 
|  | } | 
|  | KMP_CPU_ZERO(tempMask); | 
|  | setSize = 0; | 
|  |  | 
|  | // valid follow sets are ',' and EOL | 
|  | SKIP_WS(scan); | 
|  | if (*scan == '\0') { | 
|  | break; | 
|  | } | 
|  | if (*scan == ',') { | 
|  | scan++; // skip ',' | 
|  | continue; | 
|  | } | 
|  |  | 
|  | KMP_ASSERT2(0, "bad explicit places list"); | 
|  | } | 
|  |  | 
|  | *out_numMasks = nextNewMask; | 
|  | if (nextNewMask == 0) { | 
|  | *out_masks = NULL; | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | return; | 
|  | } | 
|  | KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); | 
|  | KMP_CPU_FREE(tempMask); | 
|  | KMP_CPU_FREE(previousMask); | 
|  | for (i = 0; i < nextNewMask; i++) { | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | } | 
|  | KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); | 
|  | } | 
|  |  | 
|  | #endif /* OMP_40_ENABLED */ | 
|  |  | 
|  | #undef ADD_MASK | 
|  | #undef ADD_MASK_OSID | 
|  |  | 
|  | #if KMP_USE_HWLOC | 
|  | static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { | 
|  | // skip PUs descendants of the object o | 
|  | int skipped = 0; | 
|  | hwloc_obj_t hT = NULL; | 
|  | int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); | 
|  | for (int i = 0; i < N; ++i) { | 
|  | KMP_DEBUG_ASSERT(hT); | 
|  | unsigned idx = hT->os_index; | 
|  | if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { | 
|  | KMP_CPU_CLR(idx, __kmp_affin_fullMask); | 
|  | KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); | 
|  | ++skipped; | 
|  | } | 
|  | hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); | 
|  | } | 
|  | return skipped; // count number of skipped units | 
|  | } | 
|  |  | 
|  | static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { | 
|  | // check if obj has PUs present in fullMask | 
|  | hwloc_obj_t hT = NULL; | 
|  | int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); | 
|  | for (int i = 0; i < N; ++i) { | 
|  | KMP_DEBUG_ASSERT(hT); | 
|  | unsigned idx = hT->os_index; | 
|  | if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) | 
|  | return 1; // found PU | 
|  | hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); | 
|  | } | 
|  | return 0; // no PUs found | 
|  | } | 
|  | #endif // KMP_USE_HWLOC | 
|  |  | 
|  | static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { | 
|  | AddrUnsPair *newAddr; | 
|  | if (__kmp_hws_requested == 0) | 
|  | goto _exit; // no topology limiting actions requested, exit | 
|  | #if KMP_USE_HWLOC | 
|  | if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { | 
|  | // Number of subobjects calculated dynamically, this works fine for | 
|  | // any non-uniform topology. | 
|  | // L2 cache objects are determined by depth, other objects - by type. | 
|  | hwloc_topology_t tp = __kmp_hwloc_topology; | 
|  | int nS = 0, nN = 0, nL = 0, nC = 0, | 
|  | nT = 0; // logical index including skipped | 
|  | int nCr = 0, nTr = 0; // number of requested units | 
|  | int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters | 
|  | hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) | 
|  | int L2depth, idx; | 
|  |  | 
|  | // check support of extensions ---------------------------------- | 
|  | int numa_support = 0, tile_support = 0; | 
|  | if (__kmp_pu_os_idx) | 
|  | hT = hwloc_get_pu_obj_by_os_index(tp, | 
|  | __kmp_pu_os_idx[__kmp_avail_proc - 1]); | 
|  | else | 
|  | hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); | 
|  | if (hT == NULL) { // something's gone wrong | 
|  | KMP_WARNING(AffHWSubsetUnsupported); | 
|  | goto _exit; | 
|  | } | 
|  | // check NUMA node | 
|  | hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); | 
|  | hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); | 
|  | if (hN != NULL && hN->depth > hS->depth) { | 
|  | numa_support = 1; // 1 in case socket includes node(s) | 
|  | } else if (__kmp_hws_node.num > 0) { | 
|  | // don't support sockets inside NUMA node (no such HW found for testing) | 
|  | KMP_WARNING(AffHWSubsetUnsupported); | 
|  | goto _exit; | 
|  | } | 
|  | // check L2 cahce, get object by depth because of multiple caches | 
|  | L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); | 
|  | hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); | 
|  | if (hL != NULL && | 
|  | __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { | 
|  | tile_support = 1; // no sense to count L2 if it includes single core | 
|  | } else if (__kmp_hws_tile.num > 0) { | 
|  | if (__kmp_hws_core.num == 0) { | 
|  | __kmp_hws_core = __kmp_hws_tile; // replace L2 with core | 
|  | __kmp_hws_tile.num = 0; | 
|  | } else { | 
|  | // L2 and core are both requested, but represent same object | 
|  | KMP_WARNING(AffHWSubsetInvalid); | 
|  | goto _exit; | 
|  | } | 
|  | } | 
|  | // end of check of extensions ----------------------------------- | 
|  |  | 
|  | // fill in unset items, validate settings ----------------------- | 
|  | if (__kmp_hws_socket.num == 0) | 
|  | __kmp_hws_socket.num = nPackages; // use all available sockets | 
|  | if (__kmp_hws_socket.offset >= nPackages) { | 
|  | KMP_WARNING(AffHWSubsetManySockets); | 
|  | goto _exit; | 
|  | } | 
|  | if (numa_support) { | 
|  | hN = NULL; | 
|  | int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, | 
|  | &hN); // num nodes in socket | 
|  | if (__kmp_hws_node.num == 0) | 
|  | __kmp_hws_node.num = NN; // use all available nodes | 
|  | if (__kmp_hws_node.offset >= NN) { | 
|  | KMP_WARNING(AffHWSubsetManyNodes); | 
|  | goto _exit; | 
|  | } | 
|  | if (tile_support) { | 
|  | // get num tiles in node | 
|  | int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); | 
|  | if (__kmp_hws_tile.num == 0) { | 
|  | __kmp_hws_tile.num = NL + 1; | 
|  | } // use all available tiles, some node may have more tiles, thus +1 | 
|  | if (__kmp_hws_tile.offset >= NL) { | 
|  | KMP_WARNING(AffHWSubsetManyTiles); | 
|  | goto _exit; | 
|  | } | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, | 
|  | &hC); // num cores in tile | 
|  | if (__kmp_hws_core.num == 0) | 
|  | __kmp_hws_core.num = NC; // use all available cores | 
|  | if (__kmp_hws_core.offset >= NC) { | 
|  | KMP_WARNING(AffHWSubsetManyCores); | 
|  | goto _exit; | 
|  | } | 
|  | } else { // tile_support | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, | 
|  | &hC); // num cores in node | 
|  | if (__kmp_hws_core.num == 0) | 
|  | __kmp_hws_core.num = NC; // use all available cores | 
|  | if (__kmp_hws_core.offset >= NC) { | 
|  | KMP_WARNING(AffHWSubsetManyCores); | 
|  | goto _exit; | 
|  | } | 
|  | } // tile_support | 
|  | } else { // numa_support | 
|  | if (tile_support) { | 
|  | // get num tiles in socket | 
|  | int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); | 
|  | if (__kmp_hws_tile.num == 0) | 
|  | __kmp_hws_tile.num = NL; // use all available tiles | 
|  | if (__kmp_hws_tile.offset >= NL) { | 
|  | KMP_WARNING(AffHWSubsetManyTiles); | 
|  | goto _exit; | 
|  | } | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, | 
|  | &hC); // num cores in tile | 
|  | if (__kmp_hws_core.num == 0) | 
|  | __kmp_hws_core.num = NC; // use all available cores | 
|  | if (__kmp_hws_core.offset >= NC) { | 
|  | KMP_WARNING(AffHWSubsetManyCores); | 
|  | goto _exit; | 
|  | } | 
|  | } else { // tile_support | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, | 
|  | &hC); // num cores in socket | 
|  | if (__kmp_hws_core.num == 0) | 
|  | __kmp_hws_core.num = NC; // use all available cores | 
|  | if (__kmp_hws_core.offset >= NC) { | 
|  | KMP_WARNING(AffHWSubsetManyCores); | 
|  | goto _exit; | 
|  | } | 
|  | } // tile_support | 
|  | } | 
|  | if (__kmp_hws_proc.num == 0) | 
|  | __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs | 
|  | if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { | 
|  | KMP_WARNING(AffHWSubsetManyProcs); | 
|  | goto _exit; | 
|  | } | 
|  | // end of validation -------------------------------------------- | 
|  |  | 
|  | if (pAddr) // pAddr is NULL in case of affinity_none | 
|  | newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * | 
|  | __kmp_avail_proc); // max size | 
|  | // main loop to form HW subset ---------------------------------- | 
|  | hS = NULL; | 
|  | int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); | 
|  | for (int s = 0; s < NP; ++s) { | 
|  | // Check Socket ----------------------------------------------- | 
|  | hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hS)) | 
|  | continue; // skip socket if all PUs are out of fullMask | 
|  | ++nS; // only count objects those have PUs in affinity mask | 
|  | if (nS <= __kmp_hws_socket.offset || | 
|  | nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket | 
|  | continue; // move to next socket | 
|  | } | 
|  | nCr = 0; // count number of cores per socket | 
|  | // socket requested, go down the topology tree | 
|  | // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) | 
|  | if (numa_support) { | 
|  | nN = 0; | 
|  | hN = NULL; | 
|  | // num nodes in current socket | 
|  | int NN = | 
|  | __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); | 
|  | for (int n = 0; n < NN; ++n) { | 
|  | // Check NUMA Node ---------------------------------------- | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { | 
|  | hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); | 
|  | continue; // skip node if all PUs are out of fullMask | 
|  | } | 
|  | ++nN; | 
|  | if (nN <= __kmp_hws_node.offset || | 
|  | nN > __kmp_hws_node.num + __kmp_hws_node.offset) { | 
|  | // skip node as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node | 
|  | hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); | 
|  | continue; // move to next node | 
|  | } | 
|  | // node requested, go down the topology tree | 
|  | if (tile_support) { | 
|  | nL = 0; | 
|  | hL = NULL; | 
|  | int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); | 
|  | for (int l = 0; l < NL; ++l) { | 
|  | // Check L2 (tile) ------------------------------------ | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | continue; // skip tile if all PUs are out of fullMask | 
|  | } | 
|  | ++nL; | 
|  | if (nL <= __kmp_hws_tile.offset || | 
|  | nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { | 
|  | // skip tile as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | continue; // move to next tile | 
|  | } | 
|  | // tile requested, go down the topology tree | 
|  | nC = 0; | 
|  | hC = NULL; | 
|  | // num cores in current tile | 
|  | int NC = __kmp_hwloc_count_children_by_type(tp, hL, | 
|  | HWLOC_OBJ_CORE, &hC); | 
|  | for (int c = 0; c < NC; ++c) { | 
|  | // Check Core --------------------------------------- | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // skip core if all PUs are out of fullMask | 
|  | } | 
|  | ++nC; | 
|  | if (nC <= __kmp_hws_core.offset || | 
|  | nC > __kmp_hws_core.num + __kmp_hws_core.offset) { | 
|  | // skip node as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // move to next node | 
|  | } | 
|  | // core requested, go down to PUs | 
|  | nT = 0; | 
|  | nTr = 0; | 
|  | hT = NULL; | 
|  | // num procs in current core | 
|  | int NT = __kmp_hwloc_count_children_by_type(tp, hC, | 
|  | HWLOC_OBJ_PU, &hT); | 
|  | for (int t = 0; t < NT; ++t) { | 
|  | // Check PU --------------------------------------- | 
|  | idx = hT->os_index; | 
|  | if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // skip PU if not in fullMask | 
|  | } | 
|  | ++nT; | 
|  | if (nT <= __kmp_hws_proc.offset || | 
|  | nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { | 
|  | // skip PU | 
|  | KMP_CPU_CLR(idx, __kmp_affin_fullMask); | 
|  | ++n_old; | 
|  | KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // move to next node | 
|  | } | 
|  | ++nTr; | 
|  | if (pAddr) // collect requested thread's data | 
|  | newAddr[n_new] = (*pAddr)[n_old]; | 
|  | ++n_new; | 
|  | ++n_old; | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | } // threads loop | 
|  | if (nTr > 0) { | 
|  | ++nCr; // num cores per socket | 
|  | ++nCo; // total num cores | 
|  | if (nTr > nTpC) | 
|  | nTpC = nTr; // calc max threads per core | 
|  | } | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | } // cores loop | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | } // tiles loop | 
|  | } else { // tile_support | 
|  | // no tiles, check cores | 
|  | nC = 0; | 
|  | hC = NULL; | 
|  | // num cores in current node | 
|  | int NC = | 
|  | __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); | 
|  | for (int c = 0; c < NC; ++c) { | 
|  | // Check Core --------------------------------------- | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // skip core if all PUs are out of fullMask | 
|  | } | 
|  | ++nC; | 
|  | if (nC <= __kmp_hws_core.offset || | 
|  | nC > __kmp_hws_core.num + __kmp_hws_core.offset) { | 
|  | // skip node as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // move to next node | 
|  | } | 
|  | // core requested, go down to PUs | 
|  | nT = 0; | 
|  | nTr = 0; | 
|  | hT = NULL; | 
|  | int NT = | 
|  | __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); | 
|  | for (int t = 0; t < NT; ++t) { | 
|  | // Check PU --------------------------------------- | 
|  | idx = hT->os_index; | 
|  | if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // skip PU if not in fullMask | 
|  | } | 
|  | ++nT; | 
|  | if (nT <= __kmp_hws_proc.offset || | 
|  | nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { | 
|  | // skip PU | 
|  | KMP_CPU_CLR(idx, __kmp_affin_fullMask); | 
|  | ++n_old; | 
|  | KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // move to next node | 
|  | } | 
|  | ++nTr; | 
|  | if (pAddr) // collect requested thread's data | 
|  | newAddr[n_new] = (*pAddr)[n_old]; | 
|  | ++n_new; | 
|  | ++n_old; | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | } // threads loop | 
|  | if (nTr > 0) { | 
|  | ++nCr; // num cores per socket | 
|  | ++nCo; // total num cores | 
|  | if (nTr > nTpC) | 
|  | nTpC = nTr; // calc max threads per core | 
|  | } | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | } // cores loop | 
|  | } // tiles support | 
|  | hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); | 
|  | } // nodes loop | 
|  | } else { // numa_support | 
|  | // no NUMA support | 
|  | if (tile_support) { | 
|  | nL = 0; | 
|  | hL = NULL; | 
|  | // num tiles in current socket | 
|  | int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); | 
|  | for (int l = 0; l < NL; ++l) { | 
|  | // Check L2 (tile) ------------------------------------ | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | continue; // skip tile if all PUs are out of fullMask | 
|  | } | 
|  | ++nL; | 
|  | if (nL <= __kmp_hws_tile.offset || | 
|  | nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { | 
|  | // skip tile as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | continue; // move to next tile | 
|  | } | 
|  | // tile requested, go down the topology tree | 
|  | nC = 0; | 
|  | hC = NULL; | 
|  | // num cores per tile | 
|  | int NC = | 
|  | __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); | 
|  | for (int c = 0; c < NC; ++c) { | 
|  | // Check Core --------------------------------------- | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // skip core if all PUs are out of fullMask | 
|  | } | 
|  | ++nC; | 
|  | if (nC <= __kmp_hws_core.offset || | 
|  | nC > __kmp_hws_core.num + __kmp_hws_core.offset) { | 
|  | // skip node as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // move to next node | 
|  | } | 
|  | // core requested, go down to PUs | 
|  | nT = 0; | 
|  | nTr = 0; | 
|  | hT = NULL; | 
|  | // num procs per core | 
|  | int NT = | 
|  | __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); | 
|  | for (int t = 0; t < NT; ++t) { | 
|  | // Check PU --------------------------------------- | 
|  | idx = hT->os_index; | 
|  | if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // skip PU if not in fullMask | 
|  | } | 
|  | ++nT; | 
|  | if (nT <= __kmp_hws_proc.offset || | 
|  | nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { | 
|  | // skip PU | 
|  | KMP_CPU_CLR(idx, __kmp_affin_fullMask); | 
|  | ++n_old; | 
|  | KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // move to next node | 
|  | } | 
|  | ++nTr; | 
|  | if (pAddr) // collect requested thread's data | 
|  | newAddr[n_new] = (*pAddr)[n_old]; | 
|  | ++n_new; | 
|  | ++n_old; | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | } // threads loop | 
|  | if (nTr > 0) { | 
|  | ++nCr; // num cores per socket | 
|  | ++nCo; // total num cores | 
|  | if (nTr > nTpC) | 
|  | nTpC = nTr; // calc max threads per core | 
|  | } | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | } // cores loop | 
|  | hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); | 
|  | } // tiles loop | 
|  | } else { // tile_support | 
|  | // no tiles, check cores | 
|  | nC = 0; | 
|  | hC = NULL; | 
|  | // num cores in socket | 
|  | int NC = | 
|  | __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); | 
|  | for (int c = 0; c < NC; ++c) { | 
|  | // Check Core ------------------------------------------- | 
|  | if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // skip core if all PUs are out of fullMask | 
|  | } | 
|  | ++nC; | 
|  | if (nC <= __kmp_hws_core.offset || | 
|  | nC > __kmp_hws_core.num + __kmp_hws_core.offset) { | 
|  | // skip node as not requested | 
|  | n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | continue; // move to next node | 
|  | } | 
|  | // core requested, go down to PUs | 
|  | nT = 0; | 
|  | nTr = 0; | 
|  | hT = NULL; | 
|  | // num procs per core | 
|  | int NT = | 
|  | __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); | 
|  | for (int t = 0; t < NT; ++t) { | 
|  | // Check PU --------------------------------------- | 
|  | idx = hT->os_index; | 
|  | if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // skip PU if not in fullMask | 
|  | } | 
|  | ++nT; | 
|  | if (nT <= __kmp_hws_proc.offset || | 
|  | nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { | 
|  | // skip PU | 
|  | KMP_CPU_CLR(idx, __kmp_affin_fullMask); | 
|  | ++n_old; | 
|  | KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | continue; // move to next node | 
|  | } | 
|  | ++nTr; | 
|  | if (pAddr) // collect requested thread's data | 
|  | newAddr[n_new] = (*pAddr)[n_old]; | 
|  | ++n_new; | 
|  | ++n_old; | 
|  | hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); | 
|  | } // threads loop | 
|  | if (nTr > 0) { | 
|  | ++nCr; // num cores per socket | 
|  | ++nCo; // total num cores | 
|  | if (nTr > nTpC) | 
|  | nTpC = nTr; // calc max threads per core | 
|  | } | 
|  | hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); | 
|  | } // cores loop | 
|  | } // tiles support | 
|  | } // numa_support | 
|  | if (nCr > 0) { // found cores? | 
|  | ++nPkg; // num sockets | 
|  | if (nCr > nCpP) | 
|  | nCpP = nCr; // calc max cores per socket | 
|  | } | 
|  | } // sockets loop | 
|  |  | 
|  | // check the subset is valid | 
|  | KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); | 
|  | KMP_DEBUG_ASSERT(nPkg > 0); | 
|  | KMP_DEBUG_ASSERT(nCpP > 0); | 
|  | KMP_DEBUG_ASSERT(nTpC > 0); | 
|  | KMP_DEBUG_ASSERT(nCo > 0); | 
|  | KMP_DEBUG_ASSERT(nPkg <= nPackages); | 
|  | KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); | 
|  | KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); | 
|  | KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); | 
|  |  | 
|  | nPackages = nPkg; // correct num sockets | 
|  | nCoresPerPkg = nCpP; // correct num cores per socket | 
|  | __kmp_nThreadsPerCore = nTpC; // correct num threads per core | 
|  | __kmp_avail_proc = n_new; // correct num procs | 
|  | __kmp_ncores = nCo; // correct num cores | 
|  | // hwloc topology method end | 
|  | } else | 
|  | #endif // KMP_USE_HWLOC | 
|  | { | 
|  | int n_old = 0, n_new = 0, proc_num = 0; | 
|  | if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { | 
|  | KMP_WARNING(AffHWSubsetNoHWLOC); | 
|  | goto _exit; | 
|  | } | 
|  | if (__kmp_hws_socket.num == 0) | 
|  | __kmp_hws_socket.num = nPackages; // use all available sockets | 
|  | if (__kmp_hws_core.num == 0) | 
|  | __kmp_hws_core.num = nCoresPerPkg; // use all available cores | 
|  | if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) | 
|  | __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts | 
|  | if (!__kmp_affinity_uniform_topology()) { | 
|  | KMP_WARNING(AffHWSubsetNonUniform); | 
|  | goto _exit; // don't support non-uniform topology | 
|  | } | 
|  | if (depth > 3) { | 
|  | KMP_WARNING(AffHWSubsetNonThreeLevel); | 
|  | goto _exit; // don't support not-3-level topology | 
|  | } | 
|  | if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { | 
|  | KMP_WARNING(AffHWSubsetManySockets); | 
|  | goto _exit; | 
|  | } | 
|  | if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { | 
|  | KMP_WARNING(AffHWSubsetManyCores); | 
|  | goto _exit; | 
|  | } | 
|  | // Form the requested subset | 
|  | if (pAddr) // pAddr is NULL in case of affinity_none | 
|  | newAddr = (AddrUnsPair *)__kmp_allocate( | 
|  | sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * | 
|  | __kmp_hws_proc.num); | 
|  | for (int i = 0; i < nPackages; ++i) { | 
|  | if (i < __kmp_hws_socket.offset || | 
|  | i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { | 
|  | // skip not-requested socket | 
|  | n_old += nCoresPerPkg * __kmp_nThreadsPerCore; | 
|  | if (__kmp_pu_os_idx != NULL) { | 
|  | // walk through skipped socket | 
|  | for (int j = 0; j < nCoresPerPkg; ++j) { | 
|  | for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { | 
|  | KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); | 
|  | ++proc_num; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // walk through requested socket | 
|  | for (int j = 0; j < nCoresPerPkg; ++j) { | 
|  | if (j < __kmp_hws_core.offset || | 
|  | j >= __kmp_hws_core.offset + | 
|  | __kmp_hws_core.num) { // skip not-requested core | 
|  | n_old += __kmp_nThreadsPerCore; | 
|  | if (__kmp_pu_os_idx != NULL) { | 
|  | for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { | 
|  | KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); | 
|  | ++proc_num; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // walk through requested core | 
|  | for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { | 
|  | if (k < __kmp_hws_proc.num) { | 
|  | if (pAddr) // collect requested thread's data | 
|  | newAddr[n_new] = (*pAddr)[n_old]; | 
|  | n_new++; | 
|  | } else { | 
|  | if (__kmp_pu_os_idx != NULL) | 
|  | KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); | 
|  | } | 
|  | n_old++; | 
|  | ++proc_num; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); | 
|  | KMP_DEBUG_ASSERT(n_new == | 
|  | __kmp_hws_socket.num * __kmp_hws_core.num * | 
|  | __kmp_hws_proc.num); | 
|  | nPackages = __kmp_hws_socket.num; // correct nPackages | 
|  | nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg | 
|  | __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore | 
|  | __kmp_avail_proc = n_new; // correct avail_proc | 
|  | __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores | 
|  | } // non-hwloc topology method | 
|  | if (pAddr) { | 
|  | __kmp_free(*pAddr); | 
|  | *pAddr = newAddr; // replace old topology with new one | 
|  | } | 
|  | if (__kmp_affinity_verbose) { | 
|  | char m[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | __kmp_affin_fullMask); | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); | 
|  | } else { | 
|  | KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); | 
|  | } | 
|  | KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); | 
|  | kmp_str_buf_t buf; | 
|  | __kmp_str_buf_init(&buf); | 
|  | __kmp_str_buf_print(&buf, "%d", nPackages); | 
|  | KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, | 
|  | __kmp_nThreadsPerCore, __kmp_ncores); | 
|  | __kmp_str_buf_free(&buf); | 
|  | } | 
|  | _exit: | 
|  | if (__kmp_pu_os_idx != NULL) { | 
|  | __kmp_free(__kmp_pu_os_idx); | 
|  | __kmp_pu_os_idx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function figures out the deepest level at which there is at least one | 
|  | // cluster/core with more than one processing unit bound to it. | 
|  | static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, | 
|  | int nprocs, int bottom_level) { | 
|  | int core_level = 0; | 
|  |  | 
|  | for (int i = 0; i < nprocs; i++) { | 
|  | for (int j = bottom_level; j > 0; j--) { | 
|  | if (address2os[i].first.labels[j] > 0) { | 
|  | if (core_level < (j - 1)) { | 
|  | core_level = j - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return core_level; | 
|  | } | 
|  |  | 
|  | // This function counts number of clusters/cores at given level. | 
|  | static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, | 
|  | int nprocs, int bottom_level, | 
|  | int core_level) { | 
|  | int ncores = 0; | 
|  | int i, j; | 
|  |  | 
|  | j = bottom_level; | 
|  | for (i = 0; i < nprocs; i++) { | 
|  | for (j = bottom_level; j > core_level; j--) { | 
|  | if ((i + 1) < nprocs) { | 
|  | if (address2os[i + 1].first.labels[j] > 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (j == core_level) { | 
|  | ncores++; | 
|  | } | 
|  | } | 
|  | if (j > core_level) { | 
|  | // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one | 
|  | // core. May occur when called from __kmp_affinity_find_core(). | 
|  | ncores++; | 
|  | } | 
|  | return ncores; | 
|  | } | 
|  |  | 
|  | // This function finds to which cluster/core given processing unit is bound. | 
|  | static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, | 
|  | int bottom_level, int core_level) { | 
|  | return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, | 
|  | core_level) - | 
|  | 1; | 
|  | } | 
|  |  | 
|  | // This function finds maximal number of processing units bound to a | 
|  | // cluster/core at given level. | 
|  | static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, | 
|  | int nprocs, int bottom_level, | 
|  | int core_level) { | 
|  | int maxprocpercore = 0; | 
|  |  | 
|  | if (core_level < bottom_level) { | 
|  | for (int i = 0; i < nprocs; i++) { | 
|  | int percore = address2os[i].first.labels[core_level + 1] + 1; | 
|  |  | 
|  | if (percore > maxprocpercore) { | 
|  | maxprocpercore = percore; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | maxprocpercore = 1; | 
|  | } | 
|  | return maxprocpercore; | 
|  | } | 
|  |  | 
|  | static AddrUnsPair *address2os = NULL; | 
|  | static int *procarr = NULL; | 
|  | static int __kmp_aff_depth = 0; | 
|  |  | 
|  | #if KMP_USE_HIER_SCHED | 
|  | #define KMP_EXIT_AFF_NONE                                                      \ | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \ | 
|  | KMP_ASSERT(address2os == NULL);                                              \ | 
|  | __kmp_apply_thread_places(NULL, 0);                                          \ | 
|  | __kmp_create_affinity_none_places();                                         \ | 
|  | __kmp_dispatch_set_hierarchy_values();                                       \ | 
|  | return; | 
|  | #else | 
|  | #define KMP_EXIT_AFF_NONE                                                      \ | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \ | 
|  | KMP_ASSERT(address2os == NULL);                                              \ | 
|  | __kmp_apply_thread_places(NULL, 0);                                          \ | 
|  | __kmp_create_affinity_none_places();                                         \ | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | // Create a one element mask array (set of places) which only contains the | 
|  | // initial process's affinity mask | 
|  | static void __kmp_create_affinity_none_places() { | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | KMP_ASSERT(__kmp_affinity_type == affinity_none); | 
|  | __kmp_affinity_num_masks = 1; | 
|  | KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); | 
|  | KMP_CPU_COPY(dest, __kmp_affin_fullMask); | 
|  | } | 
|  |  | 
|  | static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { | 
|  | const Address *aa = &(((const AddrUnsPair *)a)->first); | 
|  | const Address *bb = &(((const AddrUnsPair *)b)->first); | 
|  | unsigned depth = aa->depth; | 
|  | unsigned i; | 
|  | KMP_DEBUG_ASSERT(depth == bb->depth); | 
|  | KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); | 
|  | KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); | 
|  | for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { | 
|  | int j = depth - i - 1; | 
|  | if (aa->childNums[j] < bb->childNums[j]) | 
|  | return -1; | 
|  | if (aa->childNums[j] > bb->childNums[j]) | 
|  | return 1; | 
|  | } | 
|  | for (; i < depth; i++) { | 
|  | int j = i - __kmp_affinity_compact; | 
|  | if (aa->childNums[j] < bb->childNums[j]) | 
|  | return -1; | 
|  | if (aa->childNums[j] > bb->childNums[j]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __kmp_aux_affinity_initialize(void) { | 
|  | if (__kmp_affinity_masks != NULL) { | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create the "full" mask - this defines all of the processors that we | 
|  | // consider to be in the machine model. If respect is set, then it is the | 
|  | // initialization thread's affinity mask. Otherwise, it is all processors that | 
|  | // we know about on the machine. | 
|  | if (__kmp_affin_fullMask == NULL) { | 
|  | KMP_CPU_ALLOC(__kmp_affin_fullMask); | 
|  | } | 
|  | if (KMP_AFFINITY_CAPABLE()) { | 
|  | if (__kmp_affinity_respect_mask) { | 
|  | __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); | 
|  |  | 
|  | // Count the number of available processors. | 
|  | unsigned i; | 
|  | __kmp_avail_proc = 0; | 
|  | KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { | 
|  | if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { | 
|  | continue; | 
|  | } | 
|  | __kmp_avail_proc++; | 
|  | } | 
|  | if (__kmp_avail_proc > __kmp_xproc) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && | 
|  | (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(ErrorInitializeAffinity); | 
|  | } | 
|  | __kmp_affinity_type = affinity_none; | 
|  | KMP_AFFINITY_DISABLE(); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); | 
|  | __kmp_avail_proc = __kmp_xproc; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran == affinity_gran_tile && | 
|  | // check if user's request is valid | 
|  | __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { | 
|  | KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); | 
|  | __kmp_affinity_gran = affinity_gran_package; | 
|  | } | 
|  |  | 
|  | int depth = -1; | 
|  | kmp_i18n_id_t msg_id = kmp_i18n_null; | 
|  |  | 
|  | // For backward compatibility, setting KMP_CPUINFO_FILE => | 
|  | // KMP_TOPOLOGY_METHOD=cpuinfo | 
|  | if ((__kmp_cpuinfo_file != NULL) && | 
|  | (__kmp_affinity_top_method == affinity_top_method_all)) { | 
|  | __kmp_affinity_top_method = affinity_top_method_cpuinfo; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_top_method == affinity_top_method_all) { | 
|  | // In the default code path, errors are not fatal - we just try using | 
|  | // another method. We only emit a warning message if affinity is on, or the | 
|  | // verbose flag is set, an the nowarnings flag was not set. | 
|  | const char *file_name = NULL; | 
|  | int line = 0; | 
|  | #if KMP_USE_HWLOC | 
|  | if (depth < 0 && | 
|  | __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); | 
|  | } | 
|  | if (!__kmp_hwloc_error) { | 
|  | depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } else if (depth < 0 && __kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); | 
|  | } | 
|  | } else if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  |  | 
|  | if (depth < 0) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); | 
|  | } | 
|  |  | 
|  | file_name = NULL; | 
|  | depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  |  | 
|  | if (depth < 0) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | if (msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", | 
|  | __kmp_i18n_catgets(msg_id), | 
|  | KMP_I18N_STR(DecodingLegacyAPIC)); | 
|  | } else { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", | 
|  | KMP_I18N_STR(DecodingLegacyAPIC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | file_name = NULL; | 
|  | depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | #if KMP_OS_LINUX | 
|  |  | 
|  | if (depth < 0) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | if (msg_id != kmp_i18n_null) { | 
|  | KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", | 
|  | __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); | 
|  | } else { | 
|  | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); | 
|  | } | 
|  | } | 
|  |  | 
|  | FILE *f = fopen("/proc/cpuinfo", "r"); | 
|  | if (f == NULL) { | 
|  | msg_id = kmp_i18n_str_CantOpenCpuinfo; | 
|  | } else { | 
|  | file_name = "/proc/cpuinfo"; | 
|  | depth = | 
|  | __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); | 
|  | fclose(f); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* KMP_OS_LINUX */ | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  |  | 
|  | if ((depth < 0) && (__kmp_num_proc_groups > 1)) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); | 
|  | KMP_ASSERT(depth != 0); | 
|  | } | 
|  |  | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | if (depth < 0) { | 
|  | if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { | 
|  | if (file_name == NULL) { | 
|  | KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); | 
|  | } else if (line == 0) { | 
|  | KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); | 
|  | } else { | 
|  | KMP_INFORM(UsingFlatOSFileLine, file_name, line, | 
|  | __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | // FIXME - print msg if msg_id = kmp_i18n_null ??? | 
|  |  | 
|  | file_name = ""; | 
|  | depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | KMP_ASSERT(depth > 0); | 
|  | KMP_ASSERT(address2os != NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_USE_HWLOC | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { | 
|  | KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); | 
|  | } | 
|  | depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | } | 
|  | #endif // KMP_USE_HWLOC | 
|  |  | 
|  | // If the user has specified that a paricular topology discovery method is to be | 
|  | // used, then we abort if that method fails. The exception is group affinity, | 
|  | // which might have been implicitly set. | 
|  |  | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); | 
|  | } | 
|  |  | 
|  | depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | if (depth < 0) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); | 
|  | } | 
|  |  | 
|  | depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | if (depth < 0) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { | 
|  | const char *filename; | 
|  | if (__kmp_cpuinfo_file != NULL) { | 
|  | filename = __kmp_cpuinfo_file; | 
|  | } else { | 
|  | filename = "/proc/cpuinfo"; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); | 
|  | } | 
|  |  | 
|  | FILE *f = fopen(filename, "r"); | 
|  | if (f == NULL) { | 
|  | int code = errno; | 
|  | if (__kmp_cpuinfo_file != NULL) { | 
|  | __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), | 
|  | KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); | 
|  | } else { | 
|  | __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), | 
|  | __kmp_msg_null); | 
|  | } | 
|  | } | 
|  | int line = 0; | 
|  | depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); | 
|  | fclose(f); | 
|  | if (depth < 0) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | if (line > 0) { | 
|  | KMP_FATAL(FileLineMsgExiting, filename, line, | 
|  | __kmp_i18n_catgets(msg_id)); | 
|  | } else { | 
|  | KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | KMP_ASSERT(depth == 0); | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_group) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); | 
|  | KMP_ASSERT(depth != 0); | 
|  | if (depth < 0) { | 
|  | KMP_ASSERT(msg_id != kmp_i18n_null); | 
|  | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  |  | 
|  | else if (__kmp_affinity_top_method == affinity_top_method_flat) { | 
|  | if (__kmp_affinity_verbose) { | 
|  | KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); | 
|  | if (depth == 0) { | 
|  | KMP_EXIT_AFF_NONE; | 
|  | } | 
|  | // should not fail | 
|  | KMP_ASSERT(depth > 0); | 
|  | KMP_ASSERT(address2os != NULL); | 
|  | } | 
|  |  | 
|  | #if KMP_USE_HIER_SCHED | 
|  | __kmp_dispatch_set_hierarchy_values(); | 
|  | #endif | 
|  |  | 
|  | if (address2os == NULL) { | 
|  | if (KMP_AFFINITY_CAPABLE() && | 
|  | (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { | 
|  | KMP_WARNING(ErrorInitializeAffinity); | 
|  | } | 
|  | __kmp_affinity_type = affinity_none; | 
|  | __kmp_create_affinity_none_places(); | 
|  | KMP_AFFINITY_DISABLE(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_gran == affinity_gran_tile | 
|  | #if KMP_USE_HWLOC | 
|  | && __kmp_tile_depth == 0 | 
|  | #endif | 
|  | ) { | 
|  | // tiles requested but not detected, warn user on this | 
|  | KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); | 
|  | } | 
|  |  | 
|  | __kmp_apply_thread_places(&address2os, depth); | 
|  |  | 
|  | // Create the table of masks, indexed by thread Id. | 
|  | unsigned maxIndex; | 
|  | unsigned numUnique; | 
|  | kmp_affin_mask_t *osId2Mask = | 
|  | __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); | 
|  | if (__kmp_affinity_gran_levels == 0) { | 
|  | KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); | 
|  | } | 
|  |  | 
|  | // Set the childNums vector in all Address objects. This must be done before | 
|  | // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into | 
|  | // account the setting of __kmp_affinity_compact. | 
|  | __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); | 
|  |  | 
|  | switch (__kmp_affinity_type) { | 
|  |  | 
|  | case affinity_explicit: | 
|  | KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); | 
|  | #if OMP_40_ENABLED | 
|  | if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) | 
|  | #endif | 
|  | { | 
|  | __kmp_affinity_process_proclist( | 
|  | &__kmp_affinity_masks, &__kmp_affinity_num_masks, | 
|  | __kmp_affinity_proclist, osId2Mask, maxIndex); | 
|  | } | 
|  | #if OMP_40_ENABLED | 
|  | else { | 
|  | __kmp_affinity_process_placelist( | 
|  | &__kmp_affinity_masks, &__kmp_affinity_num_masks, | 
|  | __kmp_affinity_proclist, osId2Mask, maxIndex); | 
|  | } | 
|  | #endif | 
|  | if (__kmp_affinity_num_masks == 0) { | 
|  | if (__kmp_affinity_verbose || | 
|  | (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { | 
|  | KMP_WARNING(AffNoValidProcID); | 
|  | } | 
|  | __kmp_affinity_type = affinity_none; | 
|  | __kmp_create_affinity_none_places(); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // The other affinity types rely on sorting the Addresses according to some | 
|  | // permutation of the machine topology tree. Set __kmp_affinity_compact and | 
|  | // __kmp_affinity_offset appropriately, then jump to a common code fragment | 
|  | // to do the sort and create the array of affinity masks. | 
|  |  | 
|  | case affinity_logical: | 
|  | __kmp_affinity_compact = 0; | 
|  | if (__kmp_affinity_offset) { | 
|  | __kmp_affinity_offset = | 
|  | __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; | 
|  | } | 
|  | goto sortAddresses; | 
|  |  | 
|  | case affinity_physical: | 
|  | if (__kmp_nThreadsPerCore > 1) { | 
|  | __kmp_affinity_compact = 1; | 
|  | if (__kmp_affinity_compact >= depth) { | 
|  | __kmp_affinity_compact = 0; | 
|  | } | 
|  | } else { | 
|  | __kmp_affinity_compact = 0; | 
|  | } | 
|  | if (__kmp_affinity_offset) { | 
|  | __kmp_affinity_offset = | 
|  | __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; | 
|  | } | 
|  | goto sortAddresses; | 
|  |  | 
|  | case affinity_scatter: | 
|  | if (__kmp_affinity_compact >= depth) { | 
|  | __kmp_affinity_compact = 0; | 
|  | } else { | 
|  | __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; | 
|  | } | 
|  | goto sortAddresses; | 
|  |  | 
|  | case affinity_compact: | 
|  | if (__kmp_affinity_compact >= depth) { | 
|  | __kmp_affinity_compact = depth - 1; | 
|  | } | 
|  | goto sortAddresses; | 
|  |  | 
|  | case affinity_balanced: | 
|  | if (depth <= 1) { | 
|  | if (__kmp_affinity_verbose || __kmp_affinity_warnings) { | 
|  | KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); | 
|  | } | 
|  | __kmp_affinity_type = affinity_none; | 
|  | __kmp_create_affinity_none_places(); | 
|  | return; | 
|  | } else if (!__kmp_affinity_uniform_topology()) { | 
|  | // Save the depth for further usage | 
|  | __kmp_aff_depth = depth; | 
|  |  | 
|  | int core_level = __kmp_affinity_find_core_level( | 
|  | address2os, __kmp_avail_proc, depth - 1); | 
|  | int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, | 
|  | depth - 1, core_level); | 
|  | int maxprocpercore = __kmp_affinity_max_proc_per_core( | 
|  | address2os, __kmp_avail_proc, depth - 1, core_level); | 
|  |  | 
|  | int nproc = ncores * maxprocpercore; | 
|  | if ((nproc < 2) || (nproc < __kmp_avail_proc)) { | 
|  | if (__kmp_affinity_verbose || __kmp_affinity_warnings) { | 
|  | KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); | 
|  | } | 
|  | __kmp_affinity_type = affinity_none; | 
|  | return; | 
|  | } | 
|  |  | 
|  | procarr = (int *)__kmp_allocate(sizeof(int) * nproc); | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | procarr[i] = -1; | 
|  | } | 
|  |  | 
|  | int lastcore = -1; | 
|  | int inlastcore = 0; | 
|  | for (int i = 0; i < __kmp_avail_proc; i++) { | 
|  | int proc = address2os[i].second; | 
|  | int core = | 
|  | __kmp_affinity_find_core(address2os, i, depth - 1, core_level); | 
|  |  | 
|  | if (core == lastcore) { | 
|  | inlastcore++; | 
|  | } else { | 
|  | inlastcore = 0; | 
|  | } | 
|  | lastcore = core; | 
|  |  | 
|  | procarr[core * maxprocpercore + inlastcore] = proc; | 
|  | } | 
|  | } | 
|  | if (__kmp_affinity_compact >= depth) { | 
|  | __kmp_affinity_compact = depth - 1; | 
|  | } | 
|  |  | 
|  | sortAddresses: | 
|  | // Allocate the gtid->affinity mask table. | 
|  | if (__kmp_affinity_dups) { | 
|  | __kmp_affinity_num_masks = __kmp_avail_proc; | 
|  | } else { | 
|  | __kmp_affinity_num_masks = numUnique; | 
|  | } | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  | if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && | 
|  | (__kmp_affinity_num_places > 0) && | 
|  | ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { | 
|  | __kmp_affinity_num_masks = __kmp_affinity_num_places; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); | 
|  |  | 
|  | // Sort the address2os table according to the current setting of | 
|  | // __kmp_affinity_compact, then fill out __kmp_affinity_masks. | 
|  | qsort(address2os, __kmp_avail_proc, sizeof(*address2os), | 
|  | __kmp_affinity_cmp_Address_child_num); | 
|  | { | 
|  | int i; | 
|  | unsigned j; | 
|  | for (i = 0, j = 0; i < __kmp_avail_proc; i++) { | 
|  | if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { | 
|  | continue; | 
|  | } | 
|  | unsigned osId = address2os[i].second; | 
|  | kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); | 
|  | kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); | 
|  | KMP_ASSERT(KMP_CPU_ISSET(osId, src)); | 
|  | KMP_CPU_COPY(dest, src); | 
|  | if (++j >= __kmp_affinity_num_masks) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | KMP_ASSERT2(0, "Unexpected affinity setting"); | 
|  | } | 
|  |  | 
|  | KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); | 
|  | machine_hierarchy.init(address2os, __kmp_avail_proc); | 
|  | } | 
|  | #undef KMP_EXIT_AFF_NONE | 
|  |  | 
|  | void __kmp_affinity_initialize(void) { | 
|  | // Much of the code above was written assumming that if a machine was not | 
|  | // affinity capable, then __kmp_affinity_type == affinity_none.  We now | 
|  | // explicitly represent this as __kmp_affinity_type == affinity_disabled. | 
|  | // There are too many checks for __kmp_affinity_type == affinity_none | 
|  | // in this code.  Instead of trying to change them all, check if | 
|  | // __kmp_affinity_type == affinity_disabled, and if so, slam it with | 
|  | // affinity_none, call the real initialization routine, then restore | 
|  | // __kmp_affinity_type to affinity_disabled. | 
|  | int disabled = (__kmp_affinity_type == affinity_disabled); | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | KMP_ASSERT(disabled); | 
|  | } | 
|  | if (disabled) { | 
|  | __kmp_affinity_type = affinity_none; | 
|  | } | 
|  | __kmp_aux_affinity_initialize(); | 
|  | if (disabled) { | 
|  | __kmp_affinity_type = affinity_disabled; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_uninitialize(void) { | 
|  | if (__kmp_affinity_masks != NULL) { | 
|  | KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); | 
|  | __kmp_affinity_masks = NULL; | 
|  | } | 
|  | if (__kmp_affin_fullMask != NULL) { | 
|  | KMP_CPU_FREE(__kmp_affin_fullMask); | 
|  | __kmp_affin_fullMask = NULL; | 
|  | } | 
|  | __kmp_affinity_num_masks = 0; | 
|  | __kmp_affinity_type = affinity_default; | 
|  | #if OMP_40_ENABLED | 
|  | __kmp_affinity_num_places = 0; | 
|  | #endif | 
|  | if (__kmp_affinity_proclist != NULL) { | 
|  | __kmp_free(__kmp_affinity_proclist); | 
|  | __kmp_affinity_proclist = NULL; | 
|  | } | 
|  | if (address2os != NULL) { | 
|  | __kmp_free(address2os); | 
|  | address2os = NULL; | 
|  | } | 
|  | if (procarr != NULL) { | 
|  | __kmp_free(procarr); | 
|  | procarr = NULL; | 
|  | } | 
|  | #if KMP_USE_HWLOC | 
|  | if (__kmp_hwloc_topology != NULL) { | 
|  | hwloc_topology_destroy(__kmp_hwloc_topology); | 
|  | __kmp_hwloc_topology = NULL; | 
|  | } | 
|  | #endif | 
|  | KMPAffinity::destroy_api(); | 
|  | } | 
|  |  | 
|  | void __kmp_affinity_set_init_mask(int gtid, int isa_root) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); | 
|  | if (th->th.th_affin_mask == NULL) { | 
|  | KMP_CPU_ALLOC(th->th.th_affin_mask); | 
|  | } else { | 
|  | KMP_CPU_ZERO(th->th.th_affin_mask); | 
|  | } | 
|  |  | 
|  | // Copy the thread mask to the kmp_info_t strucuture. If | 
|  | // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that | 
|  | // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, | 
|  | // then the full mask is the same as the mask of the initialization thread. | 
|  | kmp_affin_mask_t *mask; | 
|  | int i; | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  | if (KMP_AFFINITY_NON_PROC_BIND) | 
|  | #endif | 
|  | { | 
|  | if ((__kmp_affinity_type == affinity_none) || | 
|  | (__kmp_affinity_type == affinity_balanced)) { | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | i = 0; | 
|  | mask = __kmp_affin_fullMask; | 
|  | } else { | 
|  | KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); | 
|  | i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; | 
|  | mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); | 
|  | } | 
|  | } | 
|  | #if OMP_40_ENABLED | 
|  | else { | 
|  | if ((!isa_root) || | 
|  | (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | KMP_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | i = KMP_PLACE_ALL; | 
|  | mask = __kmp_affin_fullMask; | 
|  | } else { | 
|  | // int i = some hash function or just a counter that doesn't | 
|  | // always start at 0.  Use gtid for now. | 
|  | KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); | 
|  | i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; | 
|  | mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  | th->th.th_current_place = i; | 
|  | if (isa_root) { | 
|  | th->th.th_new_place = i; | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = __kmp_affinity_num_masks - 1; | 
|  | } else if (KMP_AFFINITY_NON_PROC_BIND) { | 
|  | // When using a Non-OMP_PROC_BIND affinity method, | 
|  | // set all threads' place-partition-var to the entire place list | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = __kmp_affinity_num_masks - 1; | 
|  | } | 
|  |  | 
|  | if (i == KMP_PLACE_ALL) { | 
|  | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", | 
|  | gtid)); | 
|  | } else { | 
|  | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", | 
|  | gtid, i)); | 
|  | } | 
|  | #else | 
|  | if (i == -1) { | 
|  | KA_TRACE( | 
|  | 100, | 
|  | ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", | 
|  | gtid)); | 
|  | } else { | 
|  | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", | 
|  | gtid, i)); | 
|  | } | 
|  | #endif /* OMP_40_ENABLED */ | 
|  |  | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, mask); | 
|  |  | 
|  | if (__kmp_affinity_verbose | 
|  | /* to avoid duplicate printing (will be correctly printed on barrier) */ | 
|  | && (__kmp_affinity_type == affinity_none || | 
|  | (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), | 
|  | __kmp_gettid(), gtid, buf); | 
|  | } | 
|  |  | 
|  | #if KMP_OS_WINDOWS | 
|  | // On Windows* OS, the process affinity mask might have changed. If the user | 
|  | // didn't request affinity and this call fails, just continue silently. | 
|  | // See CQ171393. | 
|  | if (__kmp_affinity_type == affinity_none) { | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); | 
|  | } else | 
|  | #endif | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); | 
|  | } | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  |  | 
|  | void __kmp_affinity_set_place(int gtid) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); | 
|  |  | 
|  | KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " | 
|  | "place = %d)\n", | 
|  | gtid, th->th.th_new_place, th->th.th_current_place)); | 
|  |  | 
|  | // Check that the new place is within this thread's partition. | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  | KMP_ASSERT(th->th.th_new_place >= 0); | 
|  | KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); | 
|  | if (th->th.th_first_place <= th->th.th_last_place) { | 
|  | KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && | 
|  | (th->th.th_new_place <= th->th.th_last_place)); | 
|  | } else { | 
|  | KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || | 
|  | (th->th.th_new_place >= th->th.th_last_place)); | 
|  | } | 
|  |  | 
|  | // Copy the thread mask to the kmp_info_t strucuture, | 
|  | // and set this thread's affinity. | 
|  | kmp_affin_mask_t *mask = | 
|  | KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, mask); | 
|  | th->th.th_current_place = th->th.th_new_place; | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), | 
|  | __kmp_gettid(), gtid, buf); | 
|  | } | 
|  | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); | 
|  | } | 
|  |  | 
|  | #endif /* OMP_40_ENABLED */ | 
|  |  | 
|  | int __kmp_aux_set_affinity(void **mask) { | 
|  | int gtid; | 
|  | kmp_info_t *th; | 
|  | int retval; | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | gtid = __kmp_entry_gtid(); | 
|  | KA_TRACE(1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf( | 
|  | "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, | 
|  | buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } else { | 
|  | unsigned proc; | 
|  | int num_procs = 0; | 
|  |  | 
|  | KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { | 
|  | continue; | 
|  | } | 
|  | num_procs++; | 
|  | } | 
|  | if (num_procs == 0) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  |  | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); | 
|  | } | 
|  | #endif /* KMP_GROUP_AFFINITY */ | 
|  | } | 
|  | } | 
|  |  | 
|  | th = __kmp_threads[gtid]; | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  | retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); | 
|  | if (retval == 0) { | 
|  | KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); | 
|  | } | 
|  |  | 
|  | #if OMP_40_ENABLED | 
|  | th->th.th_current_place = KMP_PLACE_UNDEFINED; | 
|  | th->th.th_new_place = KMP_PLACE_UNDEFINED; | 
|  | th->th.th_first_place = 0; | 
|  | th->th.th_last_place = __kmp_affinity_num_masks - 1; | 
|  |  | 
|  | // Turn off 4.0 affinity for the current tread at this parallel level. | 
|  | th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; | 
|  | #endif | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity(void **mask) { | 
|  | int gtid; | 
|  | int retval; | 
|  | kmp_info_t *th; | 
|  |  | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | gtid = __kmp_entry_gtid(); | 
|  | th = __kmp_threads[gtid]; | 
|  | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); | 
|  |  | 
|  | KA_TRACE(1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | th->th.th_affin_mask); | 
|  | __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", | 
|  | gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !KMP_OS_WINDOWS | 
|  |  | 
|  | retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); | 
|  | KA_TRACE(1000, (""); { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", | 
|  | gtid, buf); | 
|  | }); | 
|  | return retval; | 
|  |  | 
|  | #else | 
|  |  | 
|  | KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); | 
|  | return 0; | 
|  |  | 
|  | #endif /* KMP_OS_WINDOWS */ | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity_max_proc() { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return 0; | 
|  | } | 
|  | #if KMP_GROUP_AFFINITY | 
|  | if (__kmp_num_proc_groups > 1) { | 
|  | return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); | 
|  | } | 
|  | #endif | 
|  | return __kmp_xproc; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE(1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE(1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { | 
|  | if (!KMP_AFFINITY_CAPABLE()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | KA_TRACE(1000, (""); { | 
|  | int gtid = __kmp_entry_gtid(); | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, | 
|  | (kmp_affin_mask_t *)(*mask)); | 
|  | __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " | 
|  | "affinity mask for thread %d = %s\n", | 
|  | proc, gtid, buf); | 
|  | }); | 
|  |  | 
|  | if (__kmp_env_consistency_check) { | 
|  | if ((mask == NULL) || (*mask == NULL)) { | 
|  | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); | 
|  | } | 
|  |  | 
|  | // Dynamic affinity settings - Affinity balanced | 
|  | void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { | 
|  | KMP_DEBUG_ASSERT(th); | 
|  | bool fine_gran = true; | 
|  | int tid = th->th.th_info.ds.ds_tid; | 
|  |  | 
|  | switch (__kmp_affinity_gran) { | 
|  | case affinity_gran_fine: | 
|  | case affinity_gran_thread: | 
|  | break; | 
|  | case affinity_gran_core: | 
|  | if (__kmp_nThreadsPerCore > 1) { | 
|  | fine_gran = false; | 
|  | } | 
|  | break; | 
|  | case affinity_gran_package: | 
|  | if (nCoresPerPkg > 1) { | 
|  | fine_gran = false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | fine_gran = false; | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_uniform_topology()) { | 
|  | int coreID; | 
|  | int threadID; | 
|  | // Number of hyper threads per core in HT machine | 
|  | int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; | 
|  | // Number of cores | 
|  | int ncores = __kmp_ncores; | 
|  | if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { | 
|  | __kmp_nth_per_core = __kmp_avail_proc / nPackages; | 
|  | ncores = nPackages; | 
|  | } | 
|  | // How many threads will be bound to each core | 
|  | int chunk = nthreads / ncores; | 
|  | // How many cores will have an additional thread bound to it - "big cores" | 
|  | int big_cores = nthreads % ncores; | 
|  | // Number of threads on the big cores | 
|  | int big_nth = (chunk + 1) * big_cores; | 
|  | if (tid < big_nth) { | 
|  | coreID = tid / (chunk + 1); | 
|  | threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; | 
|  | } else { // tid >= big_nth | 
|  | coreID = (tid - big_cores) / chunk; | 
|  | threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), | 
|  | "Illegal set affinity operation when not capable"); | 
|  |  | 
|  | kmp_affin_mask_t *mask = th->th.th_affin_mask; | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | if (fine_gran) { | 
|  | int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | for (int i = 0; i < __kmp_nth_per_core; i++) { | 
|  | int osID; | 
|  | osID = address2os[coreID * __kmp_nth_per_core + i].second; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); | 
|  | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), | 
|  | __kmp_gettid(), tid, buf); | 
|  | } | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | } else { // Non-uniform topology | 
|  |  | 
|  | kmp_affin_mask_t *mask = th->th.th_affin_mask; | 
|  | KMP_CPU_ZERO(mask); | 
|  |  | 
|  | int core_level = __kmp_affinity_find_core_level( | 
|  | address2os, __kmp_avail_proc, __kmp_aff_depth - 1); | 
|  | int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, | 
|  | __kmp_aff_depth - 1, core_level); | 
|  | int nth_per_core = __kmp_affinity_max_proc_per_core( | 
|  | address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); | 
|  |  | 
|  | // For performance gain consider the special case nthreads == | 
|  | // __kmp_avail_proc | 
|  | if (nthreads == __kmp_avail_proc) { | 
|  | if (fine_gran) { | 
|  | int osID = address2os[tid].second; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | int core = __kmp_affinity_find_core(address2os, tid, | 
|  | __kmp_aff_depth - 1, core_level); | 
|  | for (int i = 0; i < __kmp_avail_proc; i++) { | 
|  | int osID = address2os[i].second; | 
|  | if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, | 
|  | core_level) == core) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (nthreads <= ncores) { | 
|  |  | 
|  | int core = 0; | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | // Check if this core from procarr[] is in the mask | 
|  | int in_mask = 0; | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | if (procarr[i * nth_per_core + j] != -1) { | 
|  | in_mask = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (in_mask) { | 
|  | if (tid == core) { | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | int osID = procarr[i * nth_per_core + j]; | 
|  | if (osID != -1) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | // For fine granularity it is enough to set the first available | 
|  | // osID for this core | 
|  | if (fine_gran) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | core++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { // nthreads > ncores | 
|  | // Array to save the number of processors at each core | 
|  | int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); | 
|  | // Array to save the number of cores with "x" available processors; | 
|  | int *ncores_with_x_procs = | 
|  | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); | 
|  | // Array to save the number of cores with # procs from x to nth_per_core | 
|  | int *ncores_with_x_to_max_procs = | 
|  | (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); | 
|  |  | 
|  | for (int i = 0; i <= nth_per_core; i++) { | 
|  | ncores_with_x_procs[i] = 0; | 
|  | ncores_with_x_to_max_procs[i] = 0; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | int cnt = 0; | 
|  | for (int j = 0; j < nth_per_core; j++) { | 
|  | if (procarr[i * nth_per_core + j] != -1) { | 
|  | cnt++; | 
|  | } | 
|  | } | 
|  | nproc_at_core[i] = cnt; | 
|  | ncores_with_x_procs[cnt]++; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i <= nth_per_core; i++) { | 
|  | for (int j = i; j <= nth_per_core; j++) { | 
|  | ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Max number of processors | 
|  | int nproc = nth_per_core * ncores; | 
|  | // An array to keep number of threads per each context | 
|  | int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | newarr[i] = 0; | 
|  | } | 
|  |  | 
|  | int nth = nthreads; | 
|  | int flag = 0; | 
|  | while (nth > 0) { | 
|  | for (int j = 1; j <= nth_per_core; j++) { | 
|  | int cnt = ncores_with_x_to_max_procs[j]; | 
|  | for (int i = 0; i < ncores; i++) { | 
|  | // Skip the core with 0 processors | 
|  | if (nproc_at_core[i] == 0) { | 
|  | continue; | 
|  | } | 
|  | for (int k = 0; k < nth_per_core; k++) { | 
|  | if (procarr[i * nth_per_core + k] != -1) { | 
|  | if (newarr[i * nth_per_core + k] == 0) { | 
|  | newarr[i * nth_per_core + k] = 1; | 
|  | cnt--; | 
|  | nth--; | 
|  | break; | 
|  | } else { | 
|  | if (flag != 0) { | 
|  | newarr[i * nth_per_core + k]++; | 
|  | cnt--; | 
|  | nth--; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cnt == 0 || nth == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (nth == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | flag = 1; | 
|  | } | 
|  | int sum = 0; | 
|  | for (int i = 0; i < nproc; i++) { | 
|  | sum += newarr[i]; | 
|  | if (sum > tid) { | 
|  | if (fine_gran) { | 
|  | int osID = procarr[i]; | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } else { | 
|  | int coreID = i / nth_per_core; | 
|  | for (int ii = 0; ii < nth_per_core; ii++) { | 
|  | int osID = procarr[coreID * nth_per_core + ii]; | 
|  | if (osID != -1) { | 
|  | KMP_CPU_SET(osID, mask); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | __kmp_free(newarr); | 
|  | } | 
|  |  | 
|  | if (__kmp_affinity_verbose) { | 
|  | char buf[KMP_AFFIN_MASK_PRINT_LEN]; | 
|  | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); | 
|  | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), | 
|  | __kmp_gettid(), tid, buf); | 
|  | } | 
|  | __kmp_set_system_affinity(mask, TRUE); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if KMP_OS_LINUX | 
|  | // We don't need this entry for Windows because | 
|  | // there is GetProcessAffinityMask() api | 
|  | // | 
|  | // The intended usage is indicated by these steps: | 
|  | // 1) The user gets the current affinity mask | 
|  | // 2) Then sets the affinity by calling this function | 
|  | // 3) Error check the return value | 
|  | // 4) Use non-OpenMP parallelization | 
|  | // 5) Reset the affinity to what was stored in step 1) | 
|  | #ifdef __cplusplus | 
|  | extern "C" | 
|  | #endif | 
|  | int | 
|  | kmp_set_thread_affinity_mask_initial() | 
|  | // the function returns 0 on success, | 
|  | //   -1 if we cannot bind thread | 
|  | //   >0 (errno) if an error happened during binding | 
|  | { | 
|  | int gtid = __kmp_get_gtid(); | 
|  | if (gtid < 0) { | 
|  | // Do not touch non-omp threads | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "non-omp thread, returning\n")); | 
|  | return -1; | 
|  | } | 
|  | if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "affinity not initialized, returning\n")); | 
|  | return -1; | 
|  | } | 
|  | KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " | 
|  | "set full mask for thread %d\n", | 
|  | gtid)); | 
|  | KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); | 
|  | return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif // KMP_AFFINITY_SUPPORTED |