|  | //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file transforms calls of the current function (self recursion) followed | 
|  | // by a return instruction with a branch to the entry of the function, creating | 
|  | // a loop.  This pass also implements the following extensions to the basic | 
|  | // algorithm: | 
|  | // | 
|  | //  1. Trivial instructions between the call and return do not prevent the | 
|  | //     transformation from taking place, though currently the analysis cannot | 
|  | //     support moving any really useful instructions (only dead ones). | 
|  | //  2. This pass transforms functions that are prevented from being tail | 
|  | //     recursive by an associative and commutative expression to use an | 
|  | //     accumulator variable, thus compiling the typical naive factorial or | 
|  | //     'fib' implementation into efficient code. | 
|  | //  3. TRE is performed if the function returns void, if the return | 
|  | //     returns the result returned by the call, or if the function returns a | 
|  | //     run-time constant on all exits from the function.  It is possible, though | 
|  | //     unlikely, that the return returns something else (like constant 0), and | 
|  | //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in | 
|  | //     the function return the exact same value. | 
|  | //  4. If it can prove that callees do not access their caller stack frame, | 
|  | //     they are marked as eligible for tail call elimination (by the code | 
|  | //     generator). | 
|  | // | 
|  | // There are several improvements that could be made: | 
|  | // | 
|  | //  1. If the function has any alloca instructions, these instructions will be | 
|  | //     moved out of the entry block of the function, causing them to be | 
|  | //     evaluated each time through the tail recursion.  Safely keeping allocas | 
|  | //     in the entry block requires analysis to proves that the tail-called | 
|  | //     function does not read or write the stack object. | 
|  | //  2. Tail recursion is only performed if the call immediately precedes the | 
|  | //     return instruction.  It's possible that there could be a jump between | 
|  | //     the call and the return. | 
|  | //  3. There can be intervening operations between the call and the return that | 
|  | //     prevent the TRE from occurring.  For example, there could be GEP's and | 
|  | //     stores to memory that will not be read or written by the call.  This | 
|  | //     requires some substantial analysis (such as with DSA) to prove safe to | 
|  | //     move ahead of the call, but doing so could allow many more TREs to be | 
|  | //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. | 
|  | //  4. The algorithm we use to detect if callees access their caller stack | 
|  | //     frames is very primitive. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/TailRecursionElimination.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/PostDominators.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/DomTreeUpdater.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "tailcallelim" | 
|  |  | 
|  | STATISTIC(NumEliminated, "Number of tail calls removed"); | 
|  | STATISTIC(NumRetDuped,   "Number of return duplicated"); | 
|  | STATISTIC(NumAccumAdded, "Number of accumulators introduced"); | 
|  |  | 
|  | /// Scan the specified function for alloca instructions. | 
|  | /// If it contains any dynamic allocas, returns false. | 
|  | static bool canTRE(Function &F) { | 
|  | // Because of PR962, we don't TRE dynamic allocas. | 
|  | return llvm::all_of(instructions(F), [](Instruction &I) { | 
|  | auto *AI = dyn_cast<AllocaInst>(&I); | 
|  | return !AI || AI->isStaticAlloca(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct AllocaDerivedValueTracker { | 
|  | // Start at a root value and walk its use-def chain to mark calls that use the | 
|  | // value or a derived value in AllocaUsers, and places where it may escape in | 
|  | // EscapePoints. | 
|  | void walk(Value *Root) { | 
|  | SmallVector<Use *, 32> Worklist; | 
|  | SmallPtrSet<Use *, 32> Visited; | 
|  |  | 
|  | auto AddUsesToWorklist = [&](Value *V) { | 
|  | for (auto &U : V->uses()) { | 
|  | if (!Visited.insert(&U).second) | 
|  | continue; | 
|  | Worklist.push_back(&U); | 
|  | } | 
|  | }; | 
|  |  | 
|  | AddUsesToWorklist(Root); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Use *U = Worklist.pop_back_val(); | 
|  | Instruction *I = cast<Instruction>(U->getUser()); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: { | 
|  | CallSite CS(I); | 
|  | // If the alloca-derived argument is passed byval it is not an escape | 
|  | // point, or a use of an alloca. Calling with byval copies the contents | 
|  | // of the alloca into argument registers or stack slots, which exist | 
|  | // beyond the lifetime of the current frame. | 
|  | if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U))) | 
|  | continue; | 
|  | bool IsNocapture = | 
|  | CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U)); | 
|  | callUsesLocalStack(CS, IsNocapture); | 
|  | if (IsNocapture) { | 
|  | // If the alloca-derived argument is passed in as nocapture, then it | 
|  | // can't propagate to the call's return. That would be capturing. | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Load: { | 
|  | // The result of a load is not alloca-derived (unless an alloca has | 
|  | // otherwise escaped, but this is a local analysis). | 
|  | continue; | 
|  | } | 
|  | case Instruction::Store: { | 
|  | if (U->getOperandNo() == 0) | 
|  | EscapePoints.insert(I); | 
|  | continue;  // Stores have no users to analyze. | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | case Instruction::GetElementPtr: | 
|  | case Instruction::PHI: | 
|  | case Instruction::Select: | 
|  | case Instruction::AddrSpaceCast: | 
|  | break; | 
|  | default: | 
|  | EscapePoints.insert(I); | 
|  | break; | 
|  | } | 
|  |  | 
|  | AddUsesToWorklist(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void callUsesLocalStack(CallSite CS, bool IsNocapture) { | 
|  | // Add it to the list of alloca users. | 
|  | AllocaUsers.insert(CS.getInstruction()); | 
|  |  | 
|  | // If it's nocapture then it can't capture this alloca. | 
|  | if (IsNocapture) | 
|  | return; | 
|  |  | 
|  | // If it can write to memory, it can leak the alloca value. | 
|  | if (!CS.onlyReadsMemory()) | 
|  | EscapePoints.insert(CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | SmallPtrSet<Instruction *, 32> AllocaUsers; | 
|  | SmallPtrSet<Instruction *, 32> EscapePoints; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static bool markTails(Function &F, bool &AllCallsAreTailCalls, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | if (F.callsFunctionThatReturnsTwice()) | 
|  | return false; | 
|  | AllCallsAreTailCalls = true; | 
|  |  | 
|  | // The local stack holds all alloca instructions and all byval arguments. | 
|  | AllocaDerivedValueTracker Tracker; | 
|  | for (Argument &Arg : F.args()) { | 
|  | if (Arg.hasByValAttr()) | 
|  | Tracker.walk(&Arg); | 
|  | } | 
|  | for (auto &BB : F) { | 
|  | for (auto &I : BB) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) | 
|  | Tracker.walk(AI); | 
|  | } | 
|  |  | 
|  | bool Modified = false; | 
|  |  | 
|  | // Track whether a block is reachable after an alloca has escaped. Blocks that | 
|  | // contain the escaping instruction will be marked as being visited without an | 
|  | // escaped alloca, since that is how the block began. | 
|  | enum VisitType { | 
|  | UNVISITED, | 
|  | UNESCAPED, | 
|  | ESCAPED | 
|  | }; | 
|  | DenseMap<BasicBlock *, VisitType> Visited; | 
|  |  | 
|  | // We propagate the fact that an alloca has escaped from block to successor. | 
|  | // Visit the blocks that are propagating the escapedness first. To do this, we | 
|  | // maintain two worklists. | 
|  | SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; | 
|  |  | 
|  | // We may enter a block and visit it thinking that no alloca has escaped yet, | 
|  | // then see an escape point and go back around a loop edge and come back to | 
|  | // the same block twice. Because of this, we defer setting tail on calls when | 
|  | // we first encounter them in a block. Every entry in this list does not | 
|  | // statically use an alloca via use-def chain analysis, but may find an alloca | 
|  | // through other means if the block turns out to be reachable after an escape | 
|  | // point. | 
|  | SmallVector<CallInst *, 32> DeferredTails; | 
|  |  | 
|  | BasicBlock *BB = &F.getEntryBlock(); | 
|  | VisitType Escaped = UNESCAPED; | 
|  | do { | 
|  | for (auto &I : *BB) { | 
|  | if (Tracker.EscapePoints.count(&I)) | 
|  | Escaped = ESCAPED; | 
|  |  | 
|  | CallInst *CI = dyn_cast<CallInst>(&I); | 
|  | if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) | 
|  | continue; | 
|  |  | 
|  | bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); | 
|  |  | 
|  | if (!IsNoTail && CI->doesNotAccessMemory()) { | 
|  | // A call to a readnone function whose arguments are all things computed | 
|  | // outside this function can be marked tail. Even if you stored the | 
|  | // alloca address into a global, a readnone function can't load the | 
|  | // global anyhow. | 
|  | // | 
|  | // Note that this runs whether we know an alloca has escaped or not. If | 
|  | // it has, then we can't trust Tracker.AllocaUsers to be accurate. | 
|  | bool SafeToTail = true; | 
|  | for (auto &Arg : CI->arg_operands()) { | 
|  | if (isa<Constant>(Arg.getUser())) | 
|  | continue; | 
|  | if (Argument *A = dyn_cast<Argument>(Arg.getUser())) | 
|  | if (!A->hasByValAttr()) | 
|  | continue; | 
|  | SafeToTail = false; | 
|  | break; | 
|  | } | 
|  | if (SafeToTail) { | 
|  | using namespace ore; | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) | 
|  | << "marked as tail call candidate (readnone)"; | 
|  | }); | 
|  | CI->setTailCall(); | 
|  | Modified = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { | 
|  | DeferredTails.push_back(CI); | 
|  | } else { | 
|  | AllCallsAreTailCalls = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { | 
|  | auto &State = Visited[SuccBB]; | 
|  | if (State < Escaped) { | 
|  | State = Escaped; | 
|  | if (State == ESCAPED) | 
|  | WorklistEscaped.push_back(SuccBB); | 
|  | else | 
|  | WorklistUnescaped.push_back(SuccBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!WorklistEscaped.empty()) { | 
|  | BB = WorklistEscaped.pop_back_val(); | 
|  | Escaped = ESCAPED; | 
|  | } else { | 
|  | BB = nullptr; | 
|  | while (!WorklistUnescaped.empty()) { | 
|  | auto *NextBB = WorklistUnescaped.pop_back_val(); | 
|  | if (Visited[NextBB] == UNESCAPED) { | 
|  | BB = NextBB; | 
|  | Escaped = UNESCAPED; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (BB); | 
|  |  | 
|  | for (CallInst *CI : DeferredTails) { | 
|  | if (Visited[CI->getParent()] != ESCAPED) { | 
|  | // If the escape point was part way through the block, calls after the | 
|  | // escape point wouldn't have been put into DeferredTails. | 
|  | LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); | 
|  | CI->setTailCall(); | 
|  | Modified = true; | 
|  | } else { | 
|  | AllCallsAreTailCalls = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Modified; | 
|  | } | 
|  |  | 
|  | /// Return true if it is safe to move the specified | 
|  | /// instruction from after the call to before the call, assuming that all | 
|  | /// instructions between the call and this instruction are movable. | 
|  | /// | 
|  | static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { | 
|  | // FIXME: We can move load/store/call/free instructions above the call if the | 
|  | // call does not mod/ref the memory location being processed. | 
|  | if (I->mayHaveSideEffects())  // This also handles volatile loads. | 
|  | return false; | 
|  |  | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | 
|  | // Loads may always be moved above calls without side effects. | 
|  | if (CI->mayHaveSideEffects()) { | 
|  | // Non-volatile loads may be moved above a call with side effects if it | 
|  | // does not write to memory and the load provably won't trap. | 
|  | // Writes to memory only matter if they may alias the pointer | 
|  | // being loaded from. | 
|  | const DataLayout &DL = L->getModule()->getDataLayout(); | 
|  | if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || | 
|  | !isSafeToLoadUnconditionally(L->getPointerOperand(), | 
|  | L->getAlignment(), DL, L)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is a side-effect free instruction, check to make sure | 
|  | // that it does not use the return value of the call.  If it doesn't use the | 
|  | // return value of the call, it must only use things that are defined before | 
|  | // the call, or movable instructions between the call and the instruction | 
|  | // itself. | 
|  | return !is_contained(I->operands(), CI); | 
|  | } | 
|  |  | 
|  | /// Return true if the specified value is the same when the return would exit | 
|  | /// as it was when the initial iteration of the recursive function was executed. | 
|  | /// | 
|  | /// We currently handle static constants and arguments that are not modified as | 
|  | /// part of the recursion. | 
|  | static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { | 
|  | if (isa<Constant>(V)) return true; // Static constants are always dyn consts | 
|  |  | 
|  | // Check to see if this is an immutable argument, if so, the value | 
|  | // will be available to initialize the accumulator. | 
|  | if (Argument *Arg = dyn_cast<Argument>(V)) { | 
|  | // Figure out which argument number this is... | 
|  | unsigned ArgNo = 0; | 
|  | Function *F = CI->getParent()->getParent(); | 
|  | for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) | 
|  | ++ArgNo; | 
|  |  | 
|  | // If we are passing this argument into call as the corresponding | 
|  | // argument operand, then the argument is dynamically constant. | 
|  | // Otherwise, we cannot transform this function safely. | 
|  | if (CI->getArgOperand(ArgNo) == Arg) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Switch cases are always constant integers. If the value is being switched | 
|  | // on and the return is only reachable from one of its cases, it's | 
|  | // effectively constant. | 
|  | if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) | 
|  | if (SI->getCondition() == V) | 
|  | return SI->getDefaultDest() != RI->getParent(); | 
|  |  | 
|  | // Not a constant or immutable argument, we can't safely transform. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check to see if the function containing the specified tail call consistently | 
|  | /// returns the same runtime-constant value at all exit points except for | 
|  | /// IgnoreRI. If so, return the returned value. | 
|  | static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { | 
|  | Function *F = CI->getParent()->getParent(); | 
|  | Value *ReturnedValue = nullptr; | 
|  |  | 
|  | for (BasicBlock &BBI : *F) { | 
|  | ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()); | 
|  | if (RI == nullptr || RI == IgnoreRI) continue; | 
|  |  | 
|  | // We can only perform this transformation if the value returned is | 
|  | // evaluatable at the start of the initial invocation of the function, | 
|  | // instead of at the end of the evaluation. | 
|  | // | 
|  | Value *RetOp = RI->getOperand(0); | 
|  | if (!isDynamicConstant(RetOp, CI, RI)) | 
|  | return nullptr; | 
|  |  | 
|  | if (ReturnedValue && RetOp != ReturnedValue) | 
|  | return nullptr;     // Cannot transform if differing values are returned. | 
|  | ReturnedValue = RetOp; | 
|  | } | 
|  | return ReturnedValue; | 
|  | } | 
|  |  | 
|  | /// If the specified instruction can be transformed using accumulator recursion | 
|  | /// elimination, return the constant which is the start of the accumulator | 
|  | /// value.  Otherwise return null. | 
|  | static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { | 
|  | if (!I->isAssociative() || !I->isCommutative()) return nullptr; | 
|  | assert(I->getNumOperands() == 2 && | 
|  | "Associative/commutative operations should have 2 args!"); | 
|  |  | 
|  | // Exactly one operand should be the result of the call instruction. | 
|  | if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || | 
|  | (I->getOperand(0) != CI && I->getOperand(1) != CI)) | 
|  | return nullptr; | 
|  |  | 
|  | // The only user of this instruction we allow is a single return instruction. | 
|  | if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) | 
|  | return nullptr; | 
|  |  | 
|  | // Ok, now we have to check all of the other return instructions in this | 
|  | // function.  If they return non-constants or differing values, then we cannot | 
|  | // transform the function safely. | 
|  | return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); | 
|  | } | 
|  |  | 
|  | static Instruction *firstNonDbg(BasicBlock::iterator I) { | 
|  | while (isa<DbgInfoIntrinsic>(I)) | 
|  | ++I; | 
|  | return &*I; | 
|  | } | 
|  |  | 
|  | static CallInst *findTRECandidate(Instruction *TI, | 
|  | bool CannotTailCallElimCallsMarkedTail, | 
|  | const TargetTransformInfo *TTI) { | 
|  | BasicBlock *BB = TI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | if (&BB->front() == TI) // Make sure there is something before the terminator. | 
|  | return nullptr; | 
|  |  | 
|  | // Scan backwards from the return, checking to see if there is a tail call in | 
|  | // this block.  If so, set CI to it. | 
|  | CallInst *CI = nullptr; | 
|  | BasicBlock::iterator BBI(TI); | 
|  | while (true) { | 
|  | CI = dyn_cast<CallInst>(BBI); | 
|  | if (CI && CI->getCalledFunction() == F) | 
|  | break; | 
|  |  | 
|  | if (BBI == BB->begin()) | 
|  | return nullptr;          // Didn't find a potential tail call. | 
|  | --BBI; | 
|  | } | 
|  |  | 
|  | // If this call is marked as a tail call, and if there are dynamic allocas in | 
|  | // the function, we cannot perform this optimization. | 
|  | if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) | 
|  | return nullptr; | 
|  |  | 
|  | // As a special case, detect code like this: | 
|  | //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call | 
|  | // and disable this xform in this case, because the code generator will | 
|  | // lower the call to fabs into inline code. | 
|  | if (BB == &F->getEntryBlock() && | 
|  | firstNonDbg(BB->front().getIterator()) == CI && | 
|  | firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && | 
|  | !TTI->isLoweredToCall(CI->getCalledFunction())) { | 
|  | // A single-block function with just a call and a return. Check that | 
|  | // the arguments match. | 
|  | CallSite::arg_iterator I = CallSite(CI).arg_begin(), | 
|  | E = CallSite(CI).arg_end(); | 
|  | Function::arg_iterator FI = F->arg_begin(), | 
|  | FE = F->arg_end(); | 
|  | for (; I != E && FI != FE; ++I, ++FI) | 
|  | if (*I != &*FI) break; | 
|  | if (I == E && FI == FE) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | static bool eliminateRecursiveTailCall( | 
|  | CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, | 
|  | AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { | 
|  | // If we are introducing accumulator recursion to eliminate operations after | 
|  | // the call instruction that are both associative and commutative, the initial | 
|  | // value for the accumulator is placed in this variable.  If this value is set | 
|  | // then we actually perform accumulator recursion elimination instead of | 
|  | // simple tail recursion elimination.  If the operation is an LLVM instruction | 
|  | // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then | 
|  | // we are handling the case when the return instruction returns a constant C | 
|  | // which is different to the constant returned by other return instructions | 
|  | // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a | 
|  | // special case of accumulator recursion, the operation being "return C". | 
|  | Value *AccumulatorRecursionEliminationInitVal = nullptr; | 
|  | Instruction *AccumulatorRecursionInstr = nullptr; | 
|  |  | 
|  | // Ok, we found a potential tail call.  We can currently only transform the | 
|  | // tail call if all of the instructions between the call and the return are | 
|  | // movable to above the call itself, leaving the call next to the return. | 
|  | // Check that this is the case now. | 
|  | BasicBlock::iterator BBI(CI); | 
|  | for (++BBI; &*BBI != Ret; ++BBI) { | 
|  | if (canMoveAboveCall(&*BBI, CI, AA)) | 
|  | continue; | 
|  |  | 
|  | // If we can't move the instruction above the call, it might be because it | 
|  | // is an associative and commutative operation that could be transformed | 
|  | // using accumulator recursion elimination.  Check to see if this is the | 
|  | // case, and if so, remember the initial accumulator value for later. | 
|  | if ((AccumulatorRecursionEliminationInitVal = | 
|  | canTransformAccumulatorRecursion(&*BBI, CI))) { | 
|  | // Yes, this is accumulator recursion.  Remember which instruction | 
|  | // accumulates. | 
|  | AccumulatorRecursionInstr = &*BBI; | 
|  | } else { | 
|  | return false;   // Otherwise, we cannot eliminate the tail recursion! | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can only transform call/return pairs that either ignore the return value | 
|  | // of the call and return void, ignore the value of the call and return a | 
|  | // constant, return the value returned by the tail call, or that are being | 
|  | // accumulator recursion variable eliminated. | 
|  | if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && | 
|  | !isa<UndefValue>(Ret->getReturnValue()) && | 
|  | AccumulatorRecursionEliminationInitVal == nullptr && | 
|  | !getCommonReturnValue(nullptr, CI)) { | 
|  | // One case remains that we are able to handle: the current return | 
|  | // instruction returns a constant, and all other return instructions | 
|  | // return a different constant. | 
|  | if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) | 
|  | return false; // Current return instruction does not return a constant. | 
|  | // Check that all other return instructions return a common constant.  If | 
|  | // so, record it in AccumulatorRecursionEliminationInitVal. | 
|  | AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); | 
|  | if (!AccumulatorRecursionEliminationInitVal) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *BB = Ret->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | using namespace ore; | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) | 
|  | << "transforming tail recursion into loop"; | 
|  | }); | 
|  |  | 
|  | // OK! We can transform this tail call.  If this is the first one found, | 
|  | // create the new entry block, allowing us to branch back to the old entry. | 
|  | if (!OldEntry) { | 
|  | OldEntry = &F->getEntryBlock(); | 
|  | BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); | 
|  | NewEntry->takeName(OldEntry); | 
|  | OldEntry->setName("tailrecurse"); | 
|  | BranchInst *BI = BranchInst::Create(OldEntry, NewEntry); | 
|  | BI->setDebugLoc(CI->getDebugLoc()); | 
|  |  | 
|  | // If this tail call is marked 'tail' and if there are any allocas in the | 
|  | // entry block, move them up to the new entry block. | 
|  | TailCallsAreMarkedTail = CI->isTailCall(); | 
|  | if (TailCallsAreMarkedTail) | 
|  | // Move all fixed sized allocas from OldEntry to NewEntry. | 
|  | for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), | 
|  | NEBI = NewEntry->begin(); OEBI != E; ) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) | 
|  | if (isa<ConstantInt>(AI->getArraySize())) | 
|  | AI->moveBefore(&*NEBI); | 
|  |  | 
|  | // Now that we have created a new block, which jumps to the entry | 
|  | // block, insert a PHI node for each argument of the function. | 
|  | // For now, we initialize each PHI to only have the real arguments | 
|  | // which are passed in. | 
|  | Instruction *InsertPos = &OldEntry->front(); | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I) { | 
|  | PHINode *PN = PHINode::Create(I->getType(), 2, | 
|  | I->getName() + ".tr", InsertPos); | 
|  | I->replaceAllUsesWith(PN); // Everyone use the PHI node now! | 
|  | PN->addIncoming(&*I, NewEntry); | 
|  | ArgumentPHIs.push_back(PN); | 
|  | } | 
|  | // The entry block was changed from OldEntry to NewEntry. | 
|  | // The forward DominatorTree needs to be recalculated when the EntryBB is | 
|  | // changed. In this corner-case we recalculate the entire tree. | 
|  | DTU.recalculate(*NewEntry->getParent()); | 
|  | } | 
|  |  | 
|  | // If this function has self recursive calls in the tail position where some | 
|  | // are marked tail and some are not, only transform one flavor or another.  We | 
|  | // have to choose whether we move allocas in the entry block to the new entry | 
|  | // block or not, so we can't make a good choice for both.  NOTE: We could do | 
|  | // slightly better here in the case that the function has no entry block | 
|  | // allocas. | 
|  | if (TailCallsAreMarkedTail && !CI->isTailCall()) | 
|  | return false; | 
|  |  | 
|  | // Ok, now that we know we have a pseudo-entry block WITH all of the | 
|  | // required PHI nodes, add entries into the PHI node for the actual | 
|  | // parameters passed into the tail-recursive call. | 
|  | for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) | 
|  | ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); | 
|  |  | 
|  | // If we are introducing an accumulator variable to eliminate the recursion, | 
|  | // do so now.  Note that we _know_ that no subsequent tail recursion | 
|  | // eliminations will happen on this function because of the way the | 
|  | // accumulator recursion predicate is set up. | 
|  | // | 
|  | if (AccumulatorRecursionEliminationInitVal) { | 
|  | Instruction *AccRecInstr = AccumulatorRecursionInstr; | 
|  | // Start by inserting a new PHI node for the accumulator. | 
|  | pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); | 
|  | PHINode *AccPN = PHINode::Create( | 
|  | AccumulatorRecursionEliminationInitVal->getType(), | 
|  | std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); | 
|  |  | 
|  | // Loop over all of the predecessors of the tail recursion block.  For the | 
|  | // real entry into the function we seed the PHI with the initial value, | 
|  | // computed earlier.  For any other existing branches to this block (due to | 
|  | // other tail recursions eliminated) the accumulator is not modified. | 
|  | // Because we haven't added the branch in the current block to OldEntry yet, | 
|  | // it will not show up as a predecessor. | 
|  | for (pred_iterator PI = PB; PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if (P == &F->getEntryBlock()) | 
|  | AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); | 
|  | else | 
|  | AccPN->addIncoming(AccPN, P); | 
|  | } | 
|  |  | 
|  | if (AccRecInstr) { | 
|  | // Add an incoming argument for the current block, which is computed by | 
|  | // our associative and commutative accumulator instruction. | 
|  | AccPN->addIncoming(AccRecInstr, BB); | 
|  |  | 
|  | // Next, rewrite the accumulator recursion instruction so that it does not | 
|  | // use the result of the call anymore, instead, use the PHI node we just | 
|  | // inserted. | 
|  | AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); | 
|  | } else { | 
|  | // Add an incoming argument for the current block, which is just the | 
|  | // constant returned by the current return instruction. | 
|  | AccPN->addIncoming(Ret->getReturnValue(), BB); | 
|  | } | 
|  |  | 
|  | // Finally, rewrite any return instructions in the program to return the PHI | 
|  | // node instead of the "initval" that they do currently.  This loop will | 
|  | // actually rewrite the return value we are destroying, but that's ok. | 
|  | for (BasicBlock &BBI : *F) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator())) | 
|  | RI->setOperand(0, AccPN); | 
|  | ++NumAccumAdded; | 
|  | } | 
|  |  | 
|  | // Now that all of the PHI nodes are in place, remove the call and | 
|  | // ret instructions, replacing them with an unconditional branch. | 
|  | BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); | 
|  | NewBI->setDebugLoc(CI->getDebugLoc()); | 
|  |  | 
|  | BB->getInstList().erase(Ret);  // Remove return. | 
|  | BB->getInstList().erase(CI);   // Remove call. | 
|  | DTU.insertEdge(BB, OldEntry); | 
|  | ++NumEliminated; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool foldReturnAndProcessPred( | 
|  | BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, | 
|  | AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { | 
|  | bool Change = false; | 
|  |  | 
|  | // Make sure this block is a trivial return block. | 
|  | assert(BB->getFirstNonPHIOrDbg() == Ret && | 
|  | "Trying to fold non-trivial return block"); | 
|  |  | 
|  | // If the return block contains nothing but the return and PHI's, | 
|  | // there might be an opportunity to duplicate the return in its | 
|  | // predecessors and perform TRE there. Look for predecessors that end | 
|  | // in unconditional branch and recursive call(s). | 
|  | SmallVector<BranchInst*, 8> UncondBranchPreds; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *Pred = *PI; | 
|  | Instruction *PTI = Pred->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) | 
|  | if (BI->isUnconditional()) | 
|  | UncondBranchPreds.push_back(BI); | 
|  | } | 
|  |  | 
|  | while (!UncondBranchPreds.empty()) { | 
|  | BranchInst *BI = UncondBranchPreds.pop_back_val(); | 
|  | BasicBlock *Pred = BI->getParent(); | 
|  | if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){ | 
|  | LLVM_DEBUG(dbgs() << "FOLDING: " << *BB | 
|  | << "INTO UNCOND BRANCH PRED: " << *Pred); | 
|  | ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU); | 
|  |  | 
|  | // Cleanup: if all predecessors of BB have been eliminated by | 
|  | // FoldReturnIntoUncondBranch, delete it.  It is important to empty it, | 
|  | // because the ret instruction in there is still using a value which | 
|  | // eliminateRecursiveTailCall will attempt to remove. | 
|  | if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) | 
|  | DTU.deleteBB(BB); | 
|  |  | 
|  | eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, | 
|  | ArgumentPHIs, AA, ORE, DTU); | 
|  | ++NumRetDuped; | 
|  | Change = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | static bool processReturningBlock( | 
|  | ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail, | 
|  | SmallVectorImpl<PHINode *> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, | 
|  | AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { | 
|  | CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI); | 
|  | if (!CI) | 
|  | return false; | 
|  |  | 
|  | return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, | 
|  | ArgumentPHIs, AA, ORE, DTU); | 
|  | } | 
|  |  | 
|  | static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI, | 
|  | AliasAnalysis *AA, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | DomTreeUpdater &DTU) { | 
|  | if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") | 
|  | return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | bool AllCallsAreTailCalls = false; | 
|  | MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); | 
|  | if (!AllCallsAreTailCalls) | 
|  | return MadeChange; | 
|  |  | 
|  | // If this function is a varargs function, we won't be able to PHI the args | 
|  | // right, so don't even try to convert it... | 
|  | if (F.getFunctionType()->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *OldEntry = nullptr; | 
|  | bool TailCallsAreMarkedTail = false; | 
|  | SmallVector<PHINode*, 8> ArgumentPHIs; | 
|  |  | 
|  | // If false, we cannot perform TRE on tail calls marked with the 'tail' | 
|  | // attribute, because doing so would cause the stack size to increase (real | 
|  | // TRE would deallocate variable sized allocas, TRE doesn't). | 
|  | bool CanTRETailMarkedCall = canTRE(F); | 
|  |  | 
|  | // Change any tail recursive calls to loops. | 
|  | // | 
|  | // FIXME: The code generator produces really bad code when an 'escaping | 
|  | // alloca' is changed from being a static alloca to being a dynamic alloca. | 
|  | // Until this is resolved, disable this transformation if that would ever | 
|  | // happen.  This bug is PR962. | 
|  | for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { | 
|  | BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. | 
|  | if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, | 
|  | ArgumentPHIs, !CanTRETailMarkedCall, | 
|  | TTI, AA, ORE, DTU); | 
|  | if (!Change && BB->getFirstNonPHIOrDbg() == Ret) | 
|  | Change = foldReturnAndProcessPred( | 
|  | BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, | 
|  | !CanTRETailMarkedCall, TTI, AA, ORE, DTU); | 
|  | MadeChange |= Change; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we eliminated any tail recursions, it's possible that we inserted some | 
|  | // silly PHI nodes which just merge an initial value (the incoming operand) | 
|  | // with themselves.  Check to see if we did and clean up our mess if so.  This | 
|  | // occurs when a function passes an argument straight through to its tail | 
|  | // call. | 
|  | for (PHINode *PN : ArgumentPHIs) { | 
|  | // If the PHI Node is a dynamic constant, replace it with the value it is. | 
|  | if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { | 
|  | PN->replaceAllUsesWith(PNV); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct TailCallElim : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | TailCallElim() : FunctionPass(ID) { | 
|  | initializeTailCallElimPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<PostDominatorTreeWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); | 
|  | auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; | 
|  | // There is no noticable performance difference here between Lazy and Eager | 
|  | // UpdateStrategy based on some test results. It is feasible to switch the | 
|  | // UpdateStrategy to Lazy if we find it profitable later. | 
|  | DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); | 
|  |  | 
|  | return eliminateTailRecursion( | 
|  | F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), | 
|  | &getAnalysis<AAResultsWrapperPass>().getAAResults(), | 
|  | &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char TailCallElim::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) | 
|  | INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", | 
|  | false, false) | 
|  |  | 
|  | // Public interface to the TailCallElimination pass | 
|  | FunctionPass *llvm::createTailCallEliminationPass() { | 
|  | return new TailCallElim(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses TailCallElimPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  |  | 
|  | TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); | 
|  | AliasAnalysis &AA = AM.getResult<AAManager>(F); | 
|  | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); | 
|  | auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); | 
|  | auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); | 
|  | // There is no noticable performance difference here between Lazy and Eager | 
|  | // UpdateStrategy based on some test results. It is feasible to switch the | 
|  | // UpdateStrategy to Lazy if we find it profitable later. | 
|  | DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); | 
|  | bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<PostDominatorTreeAnalysis>(); | 
|  | return PA; | 
|  | } |