|  | //===- AddressSanitizer.cpp - memory error detector -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is a part of AddressSanitizer, an address sanity checker. | 
|  | // Details of the algorithm: | 
|  | //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/BinaryFormat/MachO.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Comdat.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCSectionMachO.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/ScopedPrinter.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/ModuleUtils.h" | 
|  | #include "llvm/Transforms/Utils/PromoteMemToReg.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iomanip> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "asan" | 
|  |  | 
|  | static const uint64_t kDefaultShadowScale = 3; | 
|  | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; | 
|  | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; | 
|  | static const uint64_t kDynamicShadowSentinel = | 
|  | std::numeric_limits<uint64_t>::max(); | 
|  | static const uint64_t kIOSShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; | 
|  | static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G. | 
|  | static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; | 
|  | static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; | 
|  | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; | 
|  | static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; | 
|  | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; | 
|  | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; | 
|  | static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; | 
|  | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; | 
|  | static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; | 
|  | static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; | 
|  | static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; | 
|  | static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; | 
|  | static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; | 
|  |  | 
|  | static const uint64_t kMyriadShadowScale = 5; | 
|  | static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; | 
|  | static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; | 
|  | static const uint64_t kMyriadTagShift = 29; | 
|  | static const uint64_t kMyriadDDRTag = 4; | 
|  | static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; | 
|  |  | 
|  | // The shadow memory space is dynamically allocated. | 
|  | static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; | 
|  |  | 
|  | static const size_t kMinStackMallocSize = 1 << 6;   // 64B | 
|  | static const size_t kMaxStackMallocSize = 1 << 16;  // 64K | 
|  | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; | 
|  | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; | 
|  |  | 
|  | static const char *const kAsanModuleCtorName = "asan.module_ctor"; | 
|  | static const char *const kAsanModuleDtorName = "asan.module_dtor"; | 
|  | static const uint64_t kAsanCtorAndDtorPriority = 1; | 
|  | static const char *const kAsanReportErrorTemplate = "__asan_report_"; | 
|  | static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; | 
|  | static const char *const kAsanUnregisterGlobalsName = | 
|  | "__asan_unregister_globals"; | 
|  | static const char *const kAsanRegisterImageGlobalsName = | 
|  | "__asan_register_image_globals"; | 
|  | static const char *const kAsanUnregisterImageGlobalsName = | 
|  | "__asan_unregister_image_globals"; | 
|  | static const char *const kAsanRegisterElfGlobalsName = | 
|  | "__asan_register_elf_globals"; | 
|  | static const char *const kAsanUnregisterElfGlobalsName = | 
|  | "__asan_unregister_elf_globals"; | 
|  | static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; | 
|  | static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; | 
|  | static const char *const kAsanInitName = "__asan_init"; | 
|  | static const char *const kAsanVersionCheckNamePrefix = | 
|  | "__asan_version_mismatch_check_v"; | 
|  | static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; | 
|  | static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; | 
|  | static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; | 
|  | static const int kMaxAsanStackMallocSizeClass = 10; | 
|  | static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; | 
|  | static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; | 
|  | static const char *const kAsanGenPrefix = "___asan_gen_"; | 
|  | static const char *const kODRGenPrefix = "__odr_asan_gen_"; | 
|  | static const char *const kSanCovGenPrefix = "__sancov_gen_"; | 
|  | static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; | 
|  | static const char *const kAsanPoisonStackMemoryName = | 
|  | "__asan_poison_stack_memory"; | 
|  | static const char *const kAsanUnpoisonStackMemoryName = | 
|  | "__asan_unpoison_stack_memory"; | 
|  |  | 
|  | // ASan version script has __asan_* wildcard. Triple underscore prevents a | 
|  | // linker (gold) warning about attempting to export a local symbol. | 
|  | static const char *const kAsanGlobalsRegisteredFlagName = | 
|  | "___asan_globals_registered"; | 
|  |  | 
|  | static const char *const kAsanOptionDetectUseAfterReturn = | 
|  | "__asan_option_detect_stack_use_after_return"; | 
|  |  | 
|  | static const char *const kAsanShadowMemoryDynamicAddress = | 
|  | "__asan_shadow_memory_dynamic_address"; | 
|  |  | 
|  | static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; | 
|  | static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; | 
|  |  | 
|  | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. | 
|  | static const size_t kNumberOfAccessSizes = 5; | 
|  |  | 
|  | static const unsigned kAllocaRzSize = 32; | 
|  |  | 
|  | // Command-line flags. | 
|  |  | 
|  | static cl::opt<bool> ClEnableKasan( | 
|  | "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClRecover( | 
|  | "asan-recover", | 
|  | cl::desc("Enable recovery mode (continue-after-error)."), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This flag may need to be replaced with -f[no-]asan-reads. | 
|  | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", | 
|  | cl::desc("instrument read instructions"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClInstrumentWrites( | 
|  | "asan-instrument-writes", cl::desc("instrument write instructions"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClInstrumentAtomics( | 
|  | "asan-instrument-atomics", | 
|  | cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClAlwaysSlowPath( | 
|  | "asan-always-slow-path", | 
|  | cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClForceDynamicShadow( | 
|  | "asan-force-dynamic-shadow", | 
|  | cl::desc("Load shadow address into a local variable for each function"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClWithIfunc("asan-with-ifunc", | 
|  | cl::desc("Access dynamic shadow through an ifunc global on " | 
|  | "platforms that support this"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClWithIfuncSuppressRemat( | 
|  | "asan-with-ifunc-suppress-remat", | 
|  | cl::desc("Suppress rematerialization of dynamic shadow address by passing " | 
|  | "it through inline asm in prologue."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | // This flag limits the number of instructions to be instrumented | 
|  | // in any given BB. Normally, this should be set to unlimited (INT_MAX), | 
|  | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary | 
|  | // set it to 10000. | 
|  | static cl::opt<int> ClMaxInsnsToInstrumentPerBB( | 
|  | "asan-max-ins-per-bb", cl::init(10000), | 
|  | cl::desc("maximal number of instructions to instrument in any given BB"), | 
|  | cl::Hidden); | 
|  |  | 
|  | // This flag may need to be replaced with -f[no]asan-stack. | 
|  | static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), | 
|  | cl::Hidden, cl::init(true)); | 
|  | static cl::opt<uint32_t> ClMaxInlinePoisoningSize( | 
|  | "asan-max-inline-poisoning-size", | 
|  | cl::desc( | 
|  | "Inline shadow poisoning for blocks up to the given size in bytes."), | 
|  | cl::Hidden, cl::init(64)); | 
|  |  | 
|  | static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", | 
|  | cl::desc("Check stack-use-after-return"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", | 
|  | cl::desc("Create redzones for byval " | 
|  | "arguments (extra copy " | 
|  | "required)"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", | 
|  | cl::desc("Check stack-use-after-scope"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | // This flag may need to be replaced with -f[no]asan-globals. | 
|  | static cl::opt<bool> ClGlobals("asan-globals", | 
|  | cl::desc("Handle global objects"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClInitializers("asan-initialization-order", | 
|  | cl::desc("Handle C++ initializer order"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClInvalidPointerPairs( | 
|  | "asan-detect-invalid-pointer-pair", | 
|  | cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> ClRealignStack( | 
|  | "asan-realign-stack", | 
|  | cl::desc("Realign stack to the value of this flag (power of two)"), | 
|  | cl::Hidden, cl::init(32)); | 
|  |  | 
|  | static cl::opt<int> ClInstrumentationWithCallsThreshold( | 
|  | "asan-instrumentation-with-call-threshold", | 
|  | cl::desc( | 
|  | "If the function being instrumented contains more than " | 
|  | "this number of memory accesses, use callbacks instead of " | 
|  | "inline checks (-1 means never use callbacks)."), | 
|  | cl::Hidden, cl::init(7000)); | 
|  |  | 
|  | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( | 
|  | "asan-memory-access-callback-prefix", | 
|  | cl::desc("Prefix for memory access callbacks"), cl::Hidden, | 
|  | cl::init("__asan_")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", | 
|  | cl::desc("instrument dynamic allocas"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClSkipPromotableAllocas( | 
|  | "asan-skip-promotable-allocas", | 
|  | cl::desc("Do not instrument promotable allocas"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | // These flags allow to change the shadow mapping. | 
|  | // The shadow mapping looks like | 
|  | //    Shadow = (Mem >> scale) + offset | 
|  |  | 
|  | static cl::opt<int> ClMappingScale("asan-mapping-scale", | 
|  | cl::desc("scale of asan shadow mapping"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<unsigned long long> ClMappingOffset( | 
|  | "asan-mapping-offset", | 
|  | cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, | 
|  | cl::init(0)); | 
|  |  | 
|  | // Optimization flags. Not user visible, used mostly for testing | 
|  | // and benchmarking the tool. | 
|  |  | 
|  | static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClOptSameTemp( | 
|  | "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClOptGlobals("asan-opt-globals", | 
|  | cl::desc("Don't instrument scalar globals"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> ClOptStack( | 
|  | "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClDynamicAllocaStack( | 
|  | "asan-stack-dynamic-alloca", | 
|  | cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<uint32_t> ClForceExperiment( | 
|  | "asan-force-experiment", | 
|  | cl::desc("Force optimization experiment (for testing)"), cl::Hidden, | 
|  | cl::init(0)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClUsePrivateAlias("asan-use-private-alias", | 
|  | cl::desc("Use private aliases for global variables"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClUseOdrIndicator("asan-use-odr-indicator", | 
|  | cl::desc("Use odr indicators to improve ODR reporting"), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ClUseGlobalsGC("asan-globals-live-support", | 
|  | cl::desc("Use linker features to support dead " | 
|  | "code stripping of globals"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | // This is on by default even though there is a bug in gold: | 
|  | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 | 
|  | static cl::opt<bool> | 
|  | ClWithComdat("asan-with-comdat", | 
|  | cl::desc("Place ASan constructors in comdat sections"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | // Debug flags. | 
|  |  | 
|  | static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, | 
|  | cl::init(0)); | 
|  |  | 
|  | static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), | 
|  | cl::Hidden, cl::init(0)); | 
|  |  | 
|  | static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, | 
|  | cl::desc("Debug func")); | 
|  |  | 
|  | static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), | 
|  | cl::Hidden, cl::init(-1)); | 
|  |  | 
|  | static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), | 
|  | cl::Hidden, cl::init(-1)); | 
|  |  | 
|  | STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); | 
|  | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); | 
|  | STATISTIC(NumOptimizedAccessesToGlobalVar, | 
|  | "Number of optimized accesses to global vars"); | 
|  | STATISTIC(NumOptimizedAccessesToStackVar, | 
|  | "Number of optimized accesses to stack vars"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Frontend-provided metadata for source location. | 
|  | struct LocationMetadata { | 
|  | StringRef Filename; | 
|  | int LineNo = 0; | 
|  | int ColumnNo = 0; | 
|  |  | 
|  | LocationMetadata() = default; | 
|  |  | 
|  | bool empty() const { return Filename.empty(); } | 
|  |  | 
|  | void parse(MDNode *MDN) { | 
|  | assert(MDN->getNumOperands() == 3); | 
|  | MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); | 
|  | Filename = DIFilename->getString(); | 
|  | LineNo = | 
|  | mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); | 
|  | ColumnNo = | 
|  | mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Frontend-provided metadata for global variables. | 
|  | class GlobalsMetadata { | 
|  | public: | 
|  | struct Entry { | 
|  | LocationMetadata SourceLoc; | 
|  | StringRef Name; | 
|  | bool IsDynInit = false; | 
|  | bool IsBlacklisted = false; | 
|  |  | 
|  | Entry() = default; | 
|  | }; | 
|  |  | 
|  | GlobalsMetadata() = default; | 
|  |  | 
|  | void reset() { | 
|  | inited_ = false; | 
|  | Entries.clear(); | 
|  | } | 
|  |  | 
|  | void init(Module &M) { | 
|  | assert(!inited_); | 
|  | inited_ = true; | 
|  | NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); | 
|  | if (!Globals) return; | 
|  | for (auto MDN : Globals->operands()) { | 
|  | // Metadata node contains the global and the fields of "Entry". | 
|  | assert(MDN->getNumOperands() == 5); | 
|  | auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); | 
|  | // The optimizer may optimize away a global entirely. | 
|  | if (!V) continue; | 
|  | auto *StrippedV = V->stripPointerCasts(); | 
|  | auto *GV = dyn_cast<GlobalVariable>(StrippedV); | 
|  | if (!GV) continue; | 
|  | // We can already have an entry for GV if it was merged with another | 
|  | // global. | 
|  | Entry &E = Entries[GV]; | 
|  | if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) | 
|  | E.SourceLoc.parse(Loc); | 
|  | if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) | 
|  | E.Name = Name->getString(); | 
|  | ConstantInt *IsDynInit = | 
|  | mdconst::extract<ConstantInt>(MDN->getOperand(3)); | 
|  | E.IsDynInit |= IsDynInit->isOne(); | 
|  | ConstantInt *IsBlacklisted = | 
|  | mdconst::extract<ConstantInt>(MDN->getOperand(4)); | 
|  | E.IsBlacklisted |= IsBlacklisted->isOne(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns metadata entry for a given global. | 
|  | Entry get(GlobalVariable *G) const { | 
|  | auto Pos = Entries.find(G); | 
|  | return (Pos != Entries.end()) ? Pos->second : Entry(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool inited_ = false; | 
|  | DenseMap<GlobalVariable *, Entry> Entries; | 
|  | }; | 
|  |  | 
|  | /// This struct defines the shadow mapping using the rule: | 
|  | ///   shadow = (mem >> Scale) ADD-or-OR Offset. | 
|  | /// If InGlobal is true, then | 
|  | ///   extern char __asan_shadow[]; | 
|  | ///   shadow = (mem >> Scale) + &__asan_shadow | 
|  | struct ShadowMapping { | 
|  | int Scale; | 
|  | uint64_t Offset; | 
|  | bool OrShadowOffset; | 
|  | bool InGlobal; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, | 
|  | bool IsKasan) { | 
|  | bool IsAndroid = TargetTriple.isAndroid(); | 
|  | bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); | 
|  | bool IsFreeBSD = TargetTriple.isOSFreeBSD(); | 
|  | bool IsNetBSD = TargetTriple.isOSNetBSD(); | 
|  | bool IsPS4CPU = TargetTriple.isPS4CPU(); | 
|  | bool IsLinux = TargetTriple.isOSLinux(); | 
|  | bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || | 
|  | TargetTriple.getArch() == Triple::ppc64le; | 
|  | bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; | 
|  | bool IsX86 = TargetTriple.getArch() == Triple::x86; | 
|  | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; | 
|  | bool IsMIPS32 = TargetTriple.isMIPS32(); | 
|  | bool IsMIPS64 = TargetTriple.isMIPS64(); | 
|  | bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); | 
|  | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; | 
|  | bool IsWindows = TargetTriple.isOSWindows(); | 
|  | bool IsFuchsia = TargetTriple.isOSFuchsia(); | 
|  | bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; | 
|  |  | 
|  | ShadowMapping Mapping; | 
|  |  | 
|  | Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; | 
|  | if (ClMappingScale.getNumOccurrences() > 0) { | 
|  | Mapping.Scale = ClMappingScale; | 
|  | } | 
|  |  | 
|  | if (LongSize == 32) { | 
|  | if (IsAndroid) | 
|  | Mapping.Offset = kDynamicShadowSentinel; | 
|  | else if (IsMIPS32) | 
|  | Mapping.Offset = kMIPS32_ShadowOffset32; | 
|  | else if (IsFreeBSD) | 
|  | Mapping.Offset = kFreeBSD_ShadowOffset32; | 
|  | else if (IsNetBSD) | 
|  | Mapping.Offset = kNetBSD_ShadowOffset32; | 
|  | else if (IsIOS) | 
|  | // If we're targeting iOS and x86, the binary is built for iOS simulator. | 
|  | Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; | 
|  | else if (IsWindows) | 
|  | Mapping.Offset = kWindowsShadowOffset32; | 
|  | else if (IsMyriad) { | 
|  | uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - | 
|  | (kMyriadMemorySize32 >> Mapping.Scale)); | 
|  | Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); | 
|  | } | 
|  | else | 
|  | Mapping.Offset = kDefaultShadowOffset32; | 
|  | } else {  // LongSize == 64 | 
|  | // Fuchsia is always PIE, which means that the beginning of the address | 
|  | // space is always available. | 
|  | if (IsFuchsia) | 
|  | Mapping.Offset = 0; | 
|  | else if (IsPPC64) | 
|  | Mapping.Offset = kPPC64_ShadowOffset64; | 
|  | else if (IsSystemZ) | 
|  | Mapping.Offset = kSystemZ_ShadowOffset64; | 
|  | else if (IsFreeBSD && !IsMIPS64) | 
|  | Mapping.Offset = kFreeBSD_ShadowOffset64; | 
|  | else if (IsNetBSD) { | 
|  | if (IsKasan) | 
|  | Mapping.Offset = kNetBSDKasan_ShadowOffset64; | 
|  | else | 
|  | Mapping.Offset = kNetBSD_ShadowOffset64; | 
|  | } else if (IsPS4CPU) | 
|  | Mapping.Offset = kPS4CPU_ShadowOffset64; | 
|  | else if (IsLinux && IsX86_64) { | 
|  | if (IsKasan) | 
|  | Mapping.Offset = kLinuxKasan_ShadowOffset64; | 
|  | else | 
|  | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & | 
|  | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); | 
|  | } else if (IsWindows && IsX86_64) { | 
|  | Mapping.Offset = kWindowsShadowOffset64; | 
|  | } else if (IsMIPS64) | 
|  | Mapping.Offset = kMIPS64_ShadowOffset64; | 
|  | else if (IsIOS) | 
|  | // If we're targeting iOS and x86, the binary is built for iOS simulator. | 
|  | // We are using dynamic shadow offset on the 64-bit devices. | 
|  | Mapping.Offset = | 
|  | IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; | 
|  | else if (IsAArch64) | 
|  | Mapping.Offset = kAArch64_ShadowOffset64; | 
|  | else | 
|  | Mapping.Offset = kDefaultShadowOffset64; | 
|  | } | 
|  |  | 
|  | if (ClForceDynamicShadow) { | 
|  | Mapping.Offset = kDynamicShadowSentinel; | 
|  | } | 
|  |  | 
|  | if (ClMappingOffset.getNumOccurrences() > 0) { | 
|  | Mapping.Offset = ClMappingOffset; | 
|  | } | 
|  |  | 
|  | // OR-ing shadow offset if more efficient (at least on x86) if the offset | 
|  | // is a power of two, but on ppc64 we have to use add since the shadow | 
|  | // offset is not necessary 1/8-th of the address space.  On SystemZ, | 
|  | // we could OR the constant in a single instruction, but it's more | 
|  | // efficient to load it once and use indexed addressing. | 
|  | Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && | 
|  | !(Mapping.Offset & (Mapping.Offset - 1)) && | 
|  | Mapping.Offset != kDynamicShadowSentinel; | 
|  | bool IsAndroidWithIfuncSupport = | 
|  | IsAndroid && !TargetTriple.isAndroidVersionLT(21); | 
|  | Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; | 
|  |  | 
|  | return Mapping; | 
|  | } | 
|  |  | 
|  | static size_t RedzoneSizeForScale(int MappingScale) { | 
|  | // Redzone used for stack and globals is at least 32 bytes. | 
|  | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. | 
|  | return std::max(32U, 1U << MappingScale); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// AddressSanitizer: instrument the code in module to find memory bugs. | 
|  | struct AddressSanitizer : public FunctionPass { | 
|  | // Pass identification, replacement for typeid | 
|  | static char ID; | 
|  |  | 
|  | explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, | 
|  | bool UseAfterScope = false) | 
|  | : FunctionPass(ID), UseAfterScope(UseAfterScope || ClUseAfterScope) { | 
|  | this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; | 
|  | this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ? | 
|  | ClEnableKasan : CompileKernel; | 
|  | initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "AddressSanitizerFunctionPass"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { | 
|  | uint64_t ArraySize = 1; | 
|  | if (AI.isArrayAllocation()) { | 
|  | const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); | 
|  | assert(CI && "non-constant array size"); | 
|  | ArraySize = CI->getZExtValue(); | 
|  | } | 
|  | Type *Ty = AI.getAllocatedType(); | 
|  | uint64_t SizeInBytes = | 
|  | AI.getModule()->getDataLayout().getTypeAllocSize(Ty); | 
|  | return SizeInBytes * ArraySize; | 
|  | } | 
|  |  | 
|  | /// Check if we want (and can) handle this alloca. | 
|  | bool isInterestingAlloca(const AllocaInst &AI); | 
|  |  | 
|  | /// If it is an interesting memory access, return the PointerOperand | 
|  | /// and set IsWrite/Alignment. Otherwise return nullptr. | 
|  | /// MaybeMask is an output parameter for the mask Value, if we're looking at a | 
|  | /// masked load/store. | 
|  | Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, | 
|  | uint64_t *TypeSize, unsigned *Alignment, | 
|  | Value **MaybeMask = nullptr); | 
|  |  | 
|  | void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, | 
|  | bool UseCalls, const DataLayout &DL); | 
|  | void instrumentPointerComparisonOrSubtraction(Instruction *I); | 
|  | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, | 
|  | Value *Addr, uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls, uint32_t Exp); | 
|  | void instrumentUnusualSizeOrAlignment(Instruction *I, | 
|  | Instruction *InsertBefore, Value *Addr, | 
|  | uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls, | 
|  | uint32_t Exp); | 
|  | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | 
|  | Value *ShadowValue, uint32_t TypeSize); | 
|  | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, | 
|  | bool IsWrite, size_t AccessSizeIndex, | 
|  | Value *SizeArgument, uint32_t Exp); | 
|  | void instrumentMemIntrinsic(MemIntrinsic *MI); | 
|  | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); | 
|  | bool runOnFunction(Function &F) override; | 
|  | bool maybeInsertAsanInitAtFunctionEntry(Function &F); | 
|  | void maybeInsertDynamicShadowAtFunctionEntry(Function &F); | 
|  | void markEscapedLocalAllocas(Function &F); | 
|  | bool doInitialization(Module &M) override; | 
|  | bool doFinalization(Module &M) override; | 
|  |  | 
|  | DominatorTree &getDominatorTree() const { return *DT; } | 
|  |  | 
|  | private: | 
|  | friend struct FunctionStackPoisoner; | 
|  |  | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool LooksLikeCodeInBug11395(Instruction *I); | 
|  | bool GlobalIsLinkerInitialized(GlobalVariable *G); | 
|  | bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, | 
|  | uint64_t TypeSize) const; | 
|  |  | 
|  | /// Helper to cleanup per-function state. | 
|  | struct FunctionStateRAII { | 
|  | AddressSanitizer *Pass; | 
|  |  | 
|  | FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { | 
|  | assert(Pass->ProcessedAllocas.empty() && | 
|  | "last pass forgot to clear cache"); | 
|  | assert(!Pass->LocalDynamicShadow); | 
|  | } | 
|  |  | 
|  | ~FunctionStateRAII() { | 
|  | Pass->LocalDynamicShadow = nullptr; | 
|  | Pass->ProcessedAllocas.clear(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | LLVMContext *C; | 
|  | Triple TargetTriple; | 
|  | int LongSize; | 
|  | bool CompileKernel; | 
|  | bool Recover; | 
|  | bool UseAfterScope; | 
|  | Type *IntptrTy; | 
|  | ShadowMapping Mapping; | 
|  | DominatorTree *DT; | 
|  | Function *AsanHandleNoReturnFunc; | 
|  | Function *AsanPtrCmpFunction, *AsanPtrSubFunction; | 
|  | Constant *AsanShadowGlobal; | 
|  |  | 
|  | // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). | 
|  | Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; | 
|  | Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; | 
|  |  | 
|  | // These arrays is indexed by AccessIsWrite and Experiment. | 
|  | Function *AsanErrorCallbackSized[2][2]; | 
|  | Function *AsanMemoryAccessCallbackSized[2][2]; | 
|  |  | 
|  | Function *AsanMemmove, *AsanMemcpy, *AsanMemset; | 
|  | InlineAsm *EmptyAsm; | 
|  | Value *LocalDynamicShadow = nullptr; | 
|  | GlobalsMetadata GlobalsMD; | 
|  | DenseMap<const AllocaInst *, bool> ProcessedAllocas; | 
|  | }; | 
|  |  | 
|  | class AddressSanitizerModule : public ModulePass { | 
|  | public: | 
|  | // Pass identification, replacement for typeid | 
|  | static char ID; | 
|  |  | 
|  | explicit AddressSanitizerModule(bool CompileKernel = false, | 
|  | bool Recover = false, | 
|  | bool UseGlobalsGC = true, | 
|  | bool UseOdrIndicator = false) | 
|  | : ModulePass(ID), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), | 
|  | // Enable aliases as they should have no downside with ODR indicators. | 
|  | UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), | 
|  | UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), | 
|  | // Not a typo: ClWithComdat is almost completely pointless without | 
|  | // ClUseGlobalsGC (because then it only works on modules without | 
|  | // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; | 
|  | // and both suffer from gold PR19002 for which UseGlobalsGC constructor | 
|  | // argument is designed as workaround. Therefore, disable both | 
|  | // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to | 
|  | // do globals-gc. | 
|  | UseCtorComdat(UseGlobalsGC && ClWithComdat) { | 
|  | this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; | 
|  | this->CompileKernel = | 
|  | ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override; | 
|  | StringRef getPassName() const override { return "AddressSanitizerModule"; } | 
|  |  | 
|  | private: | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); | 
|  | void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, | 
|  | ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers); | 
|  | void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, | 
|  | ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers, | 
|  | const std::string &UniqueModuleId); | 
|  | void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, | 
|  | ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers); | 
|  | void | 
|  | InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, | 
|  | ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers); | 
|  |  | 
|  | GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, | 
|  | StringRef OriginalName); | 
|  | void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, | 
|  | StringRef InternalSuffix); | 
|  | IRBuilder<> CreateAsanModuleDtor(Module &M); | 
|  |  | 
|  | bool ShouldInstrumentGlobal(GlobalVariable *G); | 
|  | bool ShouldUseMachOGlobalsSection() const; | 
|  | StringRef getGlobalMetadataSection() const; | 
|  | void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); | 
|  | void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); | 
|  | size_t MinRedzoneSizeForGlobal() const { | 
|  | return RedzoneSizeForScale(Mapping.Scale); | 
|  | } | 
|  | int GetAsanVersion(const Module &M) const; | 
|  |  | 
|  | GlobalsMetadata GlobalsMD; | 
|  | bool CompileKernel; | 
|  | bool Recover; | 
|  | bool UseGlobalsGC; | 
|  | bool UsePrivateAlias; | 
|  | bool UseOdrIndicator; | 
|  | bool UseCtorComdat; | 
|  | Type *IntptrTy; | 
|  | LLVMContext *C; | 
|  | Triple TargetTriple; | 
|  | ShadowMapping Mapping; | 
|  | Function *AsanPoisonGlobals; | 
|  | Function *AsanUnpoisonGlobals; | 
|  | Function *AsanRegisterGlobals; | 
|  | Function *AsanUnregisterGlobals; | 
|  | Function *AsanRegisterImageGlobals; | 
|  | Function *AsanUnregisterImageGlobals; | 
|  | Function *AsanRegisterElfGlobals; | 
|  | Function *AsanUnregisterElfGlobals; | 
|  |  | 
|  | Function *AsanCtorFunction = nullptr; | 
|  | Function *AsanDtorFunction = nullptr; | 
|  | }; | 
|  |  | 
|  | // Stack poisoning does not play well with exception handling. | 
|  | // When an exception is thrown, we essentially bypass the code | 
|  | // that unpoisones the stack. This is why the run-time library has | 
|  | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire | 
|  | // stack in the interceptor. This however does not work inside the | 
|  | // actual function which catches the exception. Most likely because the | 
|  | // compiler hoists the load of the shadow value somewhere too high. | 
|  | // This causes asan to report a non-existing bug on 453.povray. | 
|  | // It sounds like an LLVM bug. | 
|  | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { | 
|  | Function &F; | 
|  | AddressSanitizer &ASan; | 
|  | DIBuilder DIB; | 
|  | LLVMContext *C; | 
|  | Type *IntptrTy; | 
|  | Type *IntptrPtrTy; | 
|  | ShadowMapping Mapping; | 
|  |  | 
|  | SmallVector<AllocaInst *, 16> AllocaVec; | 
|  | SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; | 
|  | SmallVector<Instruction *, 8> RetVec; | 
|  | unsigned StackAlignment; | 
|  |  | 
|  | Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], | 
|  | *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; | 
|  | Function *AsanSetShadowFunc[0x100] = {}; | 
|  | Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; | 
|  | Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; | 
|  |  | 
|  | // Stores a place and arguments of poisoning/unpoisoning call for alloca. | 
|  | struct AllocaPoisonCall { | 
|  | IntrinsicInst *InsBefore; | 
|  | AllocaInst *AI; | 
|  | uint64_t Size; | 
|  | bool DoPoison; | 
|  | }; | 
|  | SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; | 
|  | SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; | 
|  |  | 
|  | SmallVector<AllocaInst *, 1> DynamicAllocaVec; | 
|  | SmallVector<IntrinsicInst *, 1> StackRestoreVec; | 
|  | AllocaInst *DynamicAllocaLayout = nullptr; | 
|  | IntrinsicInst *LocalEscapeCall = nullptr; | 
|  |  | 
|  | // Maps Value to an AllocaInst from which the Value is originated. | 
|  | using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; | 
|  | AllocaForValueMapTy AllocaForValue; | 
|  |  | 
|  | bool HasNonEmptyInlineAsm = false; | 
|  | bool HasReturnsTwiceCall = false; | 
|  | std::unique_ptr<CallInst> EmptyInlineAsm; | 
|  |  | 
|  | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) | 
|  | : F(F), | 
|  | ASan(ASan), | 
|  | DIB(*F.getParent(), /*AllowUnresolved*/ false), | 
|  | C(ASan.C), | 
|  | IntptrTy(ASan.IntptrTy), | 
|  | IntptrPtrTy(PointerType::get(IntptrTy, 0)), | 
|  | Mapping(ASan.Mapping), | 
|  | StackAlignment(1 << Mapping.Scale), | 
|  | EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} | 
|  |  | 
|  | bool runOnFunction() { | 
|  | if (!ClStack) return false; | 
|  |  | 
|  | if (ClRedzoneByvalArgs) | 
|  | copyArgsPassedByValToAllocas(); | 
|  |  | 
|  | // Collect alloca, ret, lifetime instructions etc. | 
|  | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); | 
|  |  | 
|  | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; | 
|  |  | 
|  | initializeCallbacks(*F.getParent()); | 
|  |  | 
|  | processDynamicAllocas(); | 
|  | processStaticAllocas(); | 
|  |  | 
|  | if (ClDebugStack) { | 
|  | LLVM_DEBUG(dbgs() << F); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Arguments marked with the "byval" attribute are implicitly copied without | 
|  | // using an alloca instruction.  To produce redzones for those arguments, we | 
|  | // copy them a second time into memory allocated with an alloca instruction. | 
|  | void copyArgsPassedByValToAllocas(); | 
|  |  | 
|  | // Finds all Alloca instructions and puts | 
|  | // poisoned red zones around all of them. | 
|  | // Then unpoison everything back before the function returns. | 
|  | void processStaticAllocas(); | 
|  | void processDynamicAllocas(); | 
|  |  | 
|  | void createDynamicAllocasInitStorage(); | 
|  |  | 
|  | // ----------------------- Visitors. | 
|  | /// Collect all Ret instructions. | 
|  | void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } | 
|  |  | 
|  | /// Collect all Resume instructions. | 
|  | void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } | 
|  |  | 
|  | /// Collect all CatchReturnInst instructions. | 
|  | void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } | 
|  |  | 
|  | void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, | 
|  | Value *SavedStack) { | 
|  | IRBuilder<> IRB(InstBefore); | 
|  | Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); | 
|  | // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we | 
|  | // need to adjust extracted SP to compute the address of the most recent | 
|  | // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for | 
|  | // this purpose. | 
|  | if (!isa<ReturnInst>(InstBefore)) { | 
|  | Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( | 
|  | InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, | 
|  | {IntptrTy}); | 
|  |  | 
|  | Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); | 
|  |  | 
|  | DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), | 
|  | DynamicAreaOffset); | 
|  | } | 
|  |  | 
|  | IRB.CreateCall(AsanAllocasUnpoisonFunc, | 
|  | {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); | 
|  | } | 
|  |  | 
|  | // Unpoison dynamic allocas redzones. | 
|  | void unpoisonDynamicAllocas() { | 
|  | for (auto &Ret : RetVec) | 
|  | unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); | 
|  |  | 
|  | for (auto &StackRestoreInst : StackRestoreVec) | 
|  | unpoisonDynamicAllocasBeforeInst(StackRestoreInst, | 
|  | StackRestoreInst->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Deploy and poison redzones around dynamic alloca call. To do this, we | 
|  | // should replace this call with another one with changed parameters and | 
|  | // replace all its uses with new address, so | 
|  | //   addr = alloca type, old_size, align | 
|  | // is replaced by | 
|  | //   new_size = (old_size + additional_size) * sizeof(type) | 
|  | //   tmp = alloca i8, new_size, max(align, 32) | 
|  | //   addr = tmp + 32 (first 32 bytes are for the left redzone). | 
|  | // Additional_size is added to make new memory allocation contain not only | 
|  | // requested memory, but also left, partial and right redzones. | 
|  | void handleDynamicAllocaCall(AllocaInst *AI); | 
|  |  | 
|  | /// Collect Alloca instructions we want (and can) handle. | 
|  | void visitAllocaInst(AllocaInst &AI) { | 
|  | if (!ASan.isInterestingAlloca(AI)) { | 
|  | if (AI.isStaticAlloca()) { | 
|  | // Skip over allocas that are present *before* the first instrumented | 
|  | // alloca, we don't want to move those around. | 
|  | if (AllocaVec.empty()) | 
|  | return; | 
|  |  | 
|  | StaticAllocasToMoveUp.push_back(&AI); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | StackAlignment = std::max(StackAlignment, AI.getAlignment()); | 
|  | if (!AI.isStaticAlloca()) | 
|  | DynamicAllocaVec.push_back(&AI); | 
|  | else | 
|  | AllocaVec.push_back(&AI); | 
|  | } | 
|  |  | 
|  | /// Collect lifetime intrinsic calls to check for use-after-scope | 
|  | /// errors. | 
|  | void visitIntrinsicInst(IntrinsicInst &II) { | 
|  | Intrinsic::ID ID = II.getIntrinsicID(); | 
|  | if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); | 
|  | if (ID == Intrinsic::localescape) LocalEscapeCall = &II; | 
|  | if (!ASan.UseAfterScope) | 
|  | return; | 
|  | if (!II.isLifetimeStartOrEnd()) | 
|  | return; | 
|  | // Found lifetime intrinsic, add ASan instrumentation if necessary. | 
|  | ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); | 
|  | // If size argument is undefined, don't do anything. | 
|  | if (Size->isMinusOne()) return; | 
|  | // Check that size doesn't saturate uint64_t and can | 
|  | // be stored in IntptrTy. | 
|  | const uint64_t SizeValue = Size->getValue().getLimitedValue(); | 
|  | if (SizeValue == ~0ULL || | 
|  | !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) | 
|  | return; | 
|  | // Find alloca instruction that corresponds to llvm.lifetime argument. | 
|  | AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); | 
|  | if (!AI || !ASan.isInterestingAlloca(*AI)) | 
|  | return; | 
|  | bool DoPoison = (ID == Intrinsic::lifetime_end); | 
|  | AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; | 
|  | if (AI->isStaticAlloca()) | 
|  | StaticAllocaPoisonCallVec.push_back(APC); | 
|  | else if (ClInstrumentDynamicAllocas) | 
|  | DynamicAllocaPoisonCallVec.push_back(APC); | 
|  | } | 
|  |  | 
|  | void visitCallSite(CallSite CS) { | 
|  | Instruction *I = CS.getInstruction(); | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | HasNonEmptyInlineAsm |= CI->isInlineAsm() && | 
|  | !CI->isIdenticalTo(EmptyInlineAsm.get()) && | 
|  | I != ASan.LocalDynamicShadow; | 
|  | HasReturnsTwiceCall |= CI->canReturnTwice(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------- Helpers. | 
|  | void initializeCallbacks(Module &M); | 
|  |  | 
|  | bool doesDominateAllExits(const Instruction *I) const { | 
|  | for (auto Ret : RetVec) { | 
|  | if (!ASan.getDominatorTree().dominates(I, Ret)) return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Finds alloca where the value comes from. | 
|  | AllocaInst *findAllocaForValue(Value *V); | 
|  |  | 
|  | // Copies bytes from ShadowBytes into shadow memory for indexes where | 
|  | // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that | 
|  | // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. | 
|  | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | 
|  | IRBuilder<> &IRB, Value *ShadowBase); | 
|  | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | 
|  | size_t Begin, size_t End, IRBuilder<> &IRB, | 
|  | Value *ShadowBase); | 
|  | void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | 
|  | ArrayRef<uint8_t> ShadowBytes, size_t Begin, | 
|  | size_t End, IRBuilder<> &IRB, Value *ShadowBase); | 
|  |  | 
|  | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); | 
|  |  | 
|  | Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, | 
|  | bool Dynamic); | 
|  | PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, | 
|  | Instruction *ThenTerm, Value *ValueIfFalse); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char AddressSanitizer::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN( | 
|  | AddressSanitizer, "asan", | 
|  | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END( | 
|  | AddressSanitizer, "asan", | 
|  | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, | 
|  | false) | 
|  |  | 
|  | FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, | 
|  | bool Recover, | 
|  | bool UseAfterScope) { | 
|  | assert(!CompileKernel || Recover); | 
|  | return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); | 
|  | } | 
|  |  | 
|  | char AddressSanitizerModule::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS( | 
|  | AddressSanitizerModule, "asan-module", | 
|  | "AddressSanitizer: detects use-after-free and out-of-bounds bugs." | 
|  | "ModulePass", | 
|  | false, false) | 
|  |  | 
|  | ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, | 
|  | bool Recover, | 
|  | bool UseGlobalsGC, | 
|  | bool UseOdrIndicator) { | 
|  | assert(!CompileKernel || Recover); | 
|  | return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC, | 
|  | UseOdrIndicator); | 
|  | } | 
|  |  | 
|  | static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { | 
|  | size_t Res = countTrailingZeros(TypeSize / 8); | 
|  | assert(Res < kNumberOfAccessSizes); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// Create a global describing a source location. | 
|  | static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, | 
|  | LocationMetadata MD) { | 
|  | Constant *LocData[] = { | 
|  | createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), | 
|  | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), | 
|  | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), | 
|  | }; | 
|  | auto LocStruct = ConstantStruct::getAnon(LocData); | 
|  | auto GV = new GlobalVariable(M, LocStruct->getType(), true, | 
|  | GlobalValue::PrivateLinkage, LocStruct, | 
|  | kAsanGenPrefix); | 
|  | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | /// Check if \p G has been created by a trusted compiler pass. | 
|  | static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { | 
|  | // Do not instrument @llvm.global_ctors, @llvm.used, etc. | 
|  | if (G->getName().startswith("llvm.")) | 
|  | return true; | 
|  |  | 
|  | // Do not instrument asan globals. | 
|  | if (G->getName().startswith(kAsanGenPrefix) || | 
|  | G->getName().startswith(kSanCovGenPrefix) || | 
|  | G->getName().startswith(kODRGenPrefix)) | 
|  | return true; | 
|  |  | 
|  | // Do not instrument gcov counter arrays. | 
|  | if (G->getName() == "__llvm_gcov_ctr") | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { | 
|  | // Shadow >> scale | 
|  | Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); | 
|  | if (Mapping.Offset == 0) return Shadow; | 
|  | // (Shadow >> scale) | offset | 
|  | Value *ShadowBase; | 
|  | if (LocalDynamicShadow) | 
|  | ShadowBase = LocalDynamicShadow; | 
|  | else | 
|  | ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); | 
|  | if (Mapping.OrShadowOffset) | 
|  | return IRB.CreateOr(Shadow, ShadowBase); | 
|  | else | 
|  | return IRB.CreateAdd(Shadow, ShadowBase); | 
|  | } | 
|  |  | 
|  | // Instrument memset/memmove/memcpy | 
|  | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { | 
|  | IRBuilder<> IRB(MI); | 
|  | if (isa<MemTransferInst>(MI)) { | 
|  | IRB.CreateCall( | 
|  | isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, | 
|  | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | 
|  | } else if (isa<MemSetInst>(MI)) { | 
|  | IRB.CreateCall( | 
|  | AsanMemset, | 
|  | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | 
|  | IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), | 
|  | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | 
|  | } | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// Check if we want (and can) handle this alloca. | 
|  | bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { | 
|  | auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); | 
|  |  | 
|  | if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) | 
|  | return PreviouslySeenAllocaInfo->getSecond(); | 
|  |  | 
|  | bool IsInteresting = | 
|  | (AI.getAllocatedType()->isSized() && | 
|  | // alloca() may be called with 0 size, ignore it. | 
|  | ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && | 
|  | // We are only interested in allocas not promotable to registers. | 
|  | // Promotable allocas are common under -O0. | 
|  | (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && | 
|  | // inalloca allocas are not treated as static, and we don't want | 
|  | // dynamic alloca instrumentation for them as well. | 
|  | !AI.isUsedWithInAlloca() && | 
|  | // swifterror allocas are register promoted by ISel | 
|  | !AI.isSwiftError()); | 
|  |  | 
|  | ProcessedAllocas[&AI] = IsInteresting; | 
|  | return IsInteresting; | 
|  | } | 
|  |  | 
|  | Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, | 
|  | bool *IsWrite, | 
|  | uint64_t *TypeSize, | 
|  | unsigned *Alignment, | 
|  | Value **MaybeMask) { | 
|  | // Skip memory accesses inserted by another instrumentation. | 
|  | if (I->getMetadata("nosanitize")) return nullptr; | 
|  |  | 
|  | // Do not instrument the load fetching the dynamic shadow address. | 
|  | if (LocalDynamicShadow == I) | 
|  | return nullptr; | 
|  |  | 
|  | Value *PtrOperand = nullptr; | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (!ClInstrumentReads) return nullptr; | 
|  | *IsWrite = false; | 
|  | *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); | 
|  | *Alignment = LI->getAlignment(); | 
|  | PtrOperand = LI->getPointerOperand(); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | if (!ClInstrumentWrites) return nullptr; | 
|  | *IsWrite = true; | 
|  | *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); | 
|  | *Alignment = SI->getAlignment(); | 
|  | PtrOperand = SI->getPointerOperand(); | 
|  | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | 
|  | if (!ClInstrumentAtomics) return nullptr; | 
|  | *IsWrite = true; | 
|  | *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); | 
|  | *Alignment = 0; | 
|  | PtrOperand = RMW->getPointerOperand(); | 
|  | } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { | 
|  | if (!ClInstrumentAtomics) return nullptr; | 
|  | *IsWrite = true; | 
|  | *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); | 
|  | *Alignment = 0; | 
|  | PtrOperand = XCHG->getPointerOperand(); | 
|  | } else if (auto CI = dyn_cast<CallInst>(I)) { | 
|  | auto *F = dyn_cast<Function>(CI->getCalledValue()); | 
|  | if (F && (F->getName().startswith("llvm.masked.load.") || | 
|  | F->getName().startswith("llvm.masked.store."))) { | 
|  | unsigned OpOffset = 0; | 
|  | if (F->getName().startswith("llvm.masked.store.")) { | 
|  | if (!ClInstrumentWrites) | 
|  | return nullptr; | 
|  | // Masked store has an initial operand for the value. | 
|  | OpOffset = 1; | 
|  | *IsWrite = true; | 
|  | } else { | 
|  | if (!ClInstrumentReads) | 
|  | return nullptr; | 
|  | *IsWrite = false; | 
|  | } | 
|  |  | 
|  | auto BasePtr = CI->getOperand(0 + OpOffset); | 
|  | auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); | 
|  | *TypeSize = DL.getTypeStoreSizeInBits(Ty); | 
|  | if (auto AlignmentConstant = | 
|  | dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) | 
|  | *Alignment = (unsigned)AlignmentConstant->getZExtValue(); | 
|  | else | 
|  | *Alignment = 1; // No alignment guarantees. We probably got Undef | 
|  | if (MaybeMask) | 
|  | *MaybeMask = CI->getOperand(2 + OpOffset); | 
|  | PtrOperand = BasePtr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PtrOperand) { | 
|  | // Do not instrument acesses from different address spaces; we cannot deal | 
|  | // with them. | 
|  | Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); | 
|  | if (PtrTy->getPointerAddressSpace() != 0) | 
|  | return nullptr; | 
|  |  | 
|  | // Ignore swifterror addresses. | 
|  | // swifterror memory addresses are mem2reg promoted by instruction | 
|  | // selection. As such they cannot have regular uses like an instrumentation | 
|  | // function and it makes no sense to track them as memory. | 
|  | if (PtrOperand->isSwiftError()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Treat memory accesses to promotable allocas as non-interesting since they | 
|  | // will not cause memory violations. This greatly speeds up the instrumented | 
|  | // executable at -O0. | 
|  | if (ClSkipPromotableAllocas) | 
|  | if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) | 
|  | return isInterestingAlloca(*AI) ? AI : nullptr; | 
|  |  | 
|  | return PtrOperand; | 
|  | } | 
|  |  | 
|  | static bool isPointerOperand(Value *V) { | 
|  | return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); | 
|  | } | 
|  |  | 
|  | // This is a rough heuristic; it may cause both false positives and | 
|  | // false negatives. The proper implementation requires cooperation with | 
|  | // the frontend. | 
|  | static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { | 
|  | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { | 
|  | if (!Cmp->isRelational()) return false; | 
|  | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | if (BO->getOpcode() != Instruction::Sub) return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | return isPointerOperand(I->getOperand(0)) && | 
|  | isPointerOperand(I->getOperand(1)); | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { | 
|  | // If a global variable does not have dynamic initialization we don't | 
|  | // have to instrument it.  However, if a global does not have initializer | 
|  | // at all, we assume it has dynamic initializer (in other TU). | 
|  | return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::instrumentPointerComparisonOrSubtraction( | 
|  | Instruction *I) { | 
|  | IRBuilder<> IRB(I); | 
|  | Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; | 
|  | Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; | 
|  | for (Value *&i : Param) { | 
|  | if (i->getType()->isPointerTy()) | 
|  | i = IRB.CreatePointerCast(i, IntptrTy); | 
|  | } | 
|  | IRB.CreateCall(F, Param); | 
|  | } | 
|  |  | 
|  | static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, | 
|  | Instruction *InsertBefore, Value *Addr, | 
|  | unsigned Alignment, unsigned Granularity, | 
|  | uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls, | 
|  | uint32_t Exp) { | 
|  | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check | 
|  | // if the data is properly aligned. | 
|  | if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || | 
|  | TypeSize == 128) && | 
|  | (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) | 
|  | return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, | 
|  | nullptr, UseCalls, Exp); | 
|  | Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, | 
|  | IsWrite, nullptr, UseCalls, Exp); | 
|  | } | 
|  |  | 
|  | static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, | 
|  | const DataLayout &DL, Type *IntptrTy, | 
|  | Value *Mask, Instruction *I, | 
|  | Value *Addr, unsigned Alignment, | 
|  | unsigned Granularity, uint32_t TypeSize, | 
|  | bool IsWrite, Value *SizeArgument, | 
|  | bool UseCalls, uint32_t Exp) { | 
|  | auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); | 
|  | uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); | 
|  | unsigned Num = VTy->getVectorNumElements(); | 
|  | auto Zero = ConstantInt::get(IntptrTy, 0); | 
|  | for (unsigned Idx = 0; Idx < Num; ++Idx) { | 
|  | Value *InstrumentedAddress = nullptr; | 
|  | Instruction *InsertBefore = I; | 
|  | if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { | 
|  | // dyn_cast as we might get UndefValue | 
|  | if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { | 
|  | if (Masked->isZero()) | 
|  | // Mask is constant false, so no instrumentation needed. | 
|  | continue; | 
|  | // If we have a true or undef value, fall through to doInstrumentAddress | 
|  | // with InsertBefore == I | 
|  | } | 
|  | } else { | 
|  | IRBuilder<> IRB(I); | 
|  | Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); | 
|  | Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); | 
|  | InsertBefore = ThenTerm; | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | InstrumentedAddress = | 
|  | IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); | 
|  | doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, | 
|  | Granularity, ElemTypeSize, IsWrite, SizeArgument, | 
|  | UseCalls, Exp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, | 
|  | Instruction *I, bool UseCalls, | 
|  | const DataLayout &DL) { | 
|  | bool IsWrite = false; | 
|  | unsigned Alignment = 0; | 
|  | uint64_t TypeSize = 0; | 
|  | Value *MaybeMask = nullptr; | 
|  | Value *Addr = | 
|  | isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); | 
|  | assert(Addr); | 
|  |  | 
|  | // Optimization experiments. | 
|  | // The experiments can be used to evaluate potential optimizations that remove | 
|  | // instrumentation (assess false negatives). Instead of completely removing | 
|  | // some instrumentation, you set Exp to a non-zero value (mask of optimization | 
|  | // experiments that want to remove instrumentation of this instruction). | 
|  | // If Exp is non-zero, this pass will emit special calls into runtime | 
|  | // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls | 
|  | // make runtime terminate the program in a special way (with a different | 
|  | // exit status). Then you run the new compiler on a buggy corpus, collect | 
|  | // the special terminations (ideally, you don't see them at all -- no false | 
|  | // negatives) and make the decision on the optimization. | 
|  | uint32_t Exp = ClForceExperiment; | 
|  |  | 
|  | if (ClOpt && ClOptGlobals) { | 
|  | // If initialization order checking is disabled, a simple access to a | 
|  | // dynamically initialized global is always valid. | 
|  | GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); | 
|  | if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && | 
|  | isSafeAccess(ObjSizeVis, Addr, TypeSize)) { | 
|  | NumOptimizedAccessesToGlobalVar++; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ClOpt && ClOptStack) { | 
|  | // A direct inbounds access to a stack variable is always valid. | 
|  | if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && | 
|  | isSafeAccess(ObjSizeVis, Addr, TypeSize)) { | 
|  | NumOptimizedAccessesToStackVar++; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsWrite) | 
|  | NumInstrumentedWrites++; | 
|  | else | 
|  | NumInstrumentedReads++; | 
|  |  | 
|  | unsigned Granularity = 1 << Mapping.Scale; | 
|  | if (MaybeMask) { | 
|  | instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, | 
|  | Alignment, Granularity, TypeSize, IsWrite, | 
|  | nullptr, UseCalls, Exp); | 
|  | } else { | 
|  | doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, | 
|  | IsWrite, nullptr, UseCalls, Exp); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, | 
|  | Value *Addr, bool IsWrite, | 
|  | size_t AccessSizeIndex, | 
|  | Value *SizeArgument, | 
|  | uint32_t Exp) { | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); | 
|  | CallInst *Call = nullptr; | 
|  | if (SizeArgument) { | 
|  | if (Exp == 0) | 
|  | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], | 
|  | {Addr, SizeArgument}); | 
|  | else | 
|  | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], | 
|  | {Addr, SizeArgument, ExpVal}); | 
|  | } else { | 
|  | if (Exp == 0) | 
|  | Call = | 
|  | IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); | 
|  | else | 
|  | Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], | 
|  | {Addr, ExpVal}); | 
|  | } | 
|  |  | 
|  | // We don't do Call->setDoesNotReturn() because the BB already has | 
|  | // UnreachableInst at the end. | 
|  | // This EmptyAsm is required to avoid callback merge. | 
|  | IRB.CreateCall(EmptyAsm, {}); | 
|  | return Call; | 
|  | } | 
|  |  | 
|  | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | 
|  | Value *ShadowValue, | 
|  | uint32_t TypeSize) { | 
|  | size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; | 
|  | // Addr & (Granularity - 1) | 
|  | Value *LastAccessedByte = | 
|  | IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); | 
|  | // (Addr & (Granularity - 1)) + size - 1 | 
|  | if (TypeSize / 8 > 1) | 
|  | LastAccessedByte = IRB.CreateAdd( | 
|  | LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); | 
|  | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) | 
|  | LastAccessedByte = | 
|  | IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); | 
|  | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue | 
|  | return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, | 
|  | Instruction *InsertBefore, Value *Addr, | 
|  | uint32_t TypeSize, bool IsWrite, | 
|  | Value *SizeArgument, bool UseCalls, | 
|  | uint32_t Exp) { | 
|  | bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; | 
|  |  | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | 
|  | size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); | 
|  |  | 
|  | if (UseCalls) { | 
|  | if (Exp == 0) | 
|  | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], | 
|  | AddrLong); | 
|  | else | 
|  | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], | 
|  | {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IsMyriad) { | 
|  | // Strip the cache bit and do range check. | 
|  | // AddrLong &= ~kMyriadCacheBitMask32 | 
|  | AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); | 
|  | // Tag = AddrLong >> kMyriadTagShift | 
|  | Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); | 
|  | // Tag == kMyriadDDRTag | 
|  | Value *TagCheck = | 
|  | IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); | 
|  |  | 
|  | Instruction *TagCheckTerm = | 
|  | SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, | 
|  | MDBuilder(*C).createBranchWeights(1, 100000)); | 
|  | assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); | 
|  | IRB.SetInsertPoint(TagCheckTerm); | 
|  | InsertBefore = TagCheckTerm; | 
|  | } | 
|  |  | 
|  | Type *ShadowTy = | 
|  | IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); | 
|  | Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); | 
|  | Value *ShadowPtr = memToShadow(AddrLong, IRB); | 
|  | Value *CmpVal = Constant::getNullValue(ShadowTy); | 
|  | Value *ShadowValue = | 
|  | IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); | 
|  |  | 
|  | Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); | 
|  | size_t Granularity = 1ULL << Mapping.Scale; | 
|  | Instruction *CrashTerm = nullptr; | 
|  |  | 
|  | if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { | 
|  | // We use branch weights for the slow path check, to indicate that the slow | 
|  | // path is rarely taken. This seems to be the case for SPEC benchmarks. | 
|  | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | 
|  | Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); | 
|  | assert(cast<BranchInst>(CheckTerm)->isUnconditional()); | 
|  | BasicBlock *NextBB = CheckTerm->getSuccessor(0); | 
|  | IRB.SetInsertPoint(CheckTerm); | 
|  | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); | 
|  | if (Recover) { | 
|  | CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); | 
|  | } else { | 
|  | BasicBlock *CrashBlock = | 
|  | BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); | 
|  | CrashTerm = new UnreachableInst(*C, CrashBlock); | 
|  | BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); | 
|  | ReplaceInstWithInst(CheckTerm, NewTerm); | 
|  | } | 
|  | } else { | 
|  | CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); | 
|  | } | 
|  |  | 
|  | Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, | 
|  | AccessSizeIndex, SizeArgument, Exp); | 
|  | Crash->setDebugLoc(OrigIns->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Instrument unusual size or unusual alignment. | 
|  | // We can not do it with a single check, so we do 1-byte check for the first | 
|  | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able | 
|  | // to report the actual access size. | 
|  | void AddressSanitizer::instrumentUnusualSizeOrAlignment( | 
|  | Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, | 
|  | bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { | 
|  | IRBuilder<> IRB(InsertBefore); | 
|  | Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); | 
|  | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | 
|  | if (UseCalls) { | 
|  | if (Exp == 0) | 
|  | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], | 
|  | {AddrLong, Size}); | 
|  | else | 
|  | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], | 
|  | {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | 
|  | } else { | 
|  | Value *LastByte = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), | 
|  | Addr->getType()); | 
|  | instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); | 
|  | instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, | 
|  | GlobalValue *ModuleName) { | 
|  | // Set up the arguments to our poison/unpoison functions. | 
|  | IRBuilder<> IRB(&GlobalInit.front(), | 
|  | GlobalInit.front().getFirstInsertionPt()); | 
|  |  | 
|  | // Add a call to poison all external globals before the given function starts. | 
|  | Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); | 
|  | IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); | 
|  |  | 
|  | // Add calls to unpoison all globals before each return instruction. | 
|  | for (auto &BB : GlobalInit.getBasicBlockList()) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | 
|  | CallInst::Create(AsanUnpoisonGlobals, "", RI); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::createInitializerPoisonCalls( | 
|  | Module &M, GlobalValue *ModuleName) { | 
|  | GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); | 
|  | if (!GV) | 
|  | return; | 
|  |  | 
|  | ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); | 
|  | if (!CA) | 
|  | return; | 
|  |  | 
|  | for (Use &OP : CA->operands()) { | 
|  | if (isa<ConstantAggregateZero>(OP)) continue; | 
|  | ConstantStruct *CS = cast<ConstantStruct>(OP); | 
|  |  | 
|  | // Must have a function or null ptr. | 
|  | if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { | 
|  | if (F->getName() == kAsanModuleCtorName) continue; | 
|  | ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); | 
|  | // Don't instrument CTORs that will run before asan.module_ctor. | 
|  | if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; | 
|  | poisonOneInitializer(*F, ModuleName); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { | 
|  | Type *Ty = G->getValueType(); | 
|  | LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); | 
|  |  | 
|  | if (GlobalsMD.get(G).IsBlacklisted) return false; | 
|  | if (!Ty->isSized()) return false; | 
|  | if (!G->hasInitializer()) return false; | 
|  | if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. | 
|  | // Two problems with thread-locals: | 
|  | //   - The address of the main thread's copy can't be computed at link-time. | 
|  | //   - Need to poison all copies, not just the main thread's one. | 
|  | if (G->isThreadLocal()) return false; | 
|  | // For now, just ignore this Global if the alignment is large. | 
|  | if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; | 
|  |  | 
|  | // For non-COFF targets, only instrument globals known to be defined by this | 
|  | // TU. | 
|  | // FIXME: We can instrument comdat globals on ELF if we are using the | 
|  | // GC-friendly metadata scheme. | 
|  | if (!TargetTriple.isOSBinFormatCOFF()) { | 
|  | if (!G->hasExactDefinition() || G->hasComdat()) | 
|  | return false; | 
|  | } else { | 
|  | // On COFF, don't instrument non-ODR linkages. | 
|  | if (G->isInterposable()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If a comdat is present, it must have a selection kind that implies ODR | 
|  | // semantics: no duplicates, any, or exact match. | 
|  | if (Comdat *C = G->getComdat()) { | 
|  | switch (C->getSelectionKind()) { | 
|  | case Comdat::Any: | 
|  | case Comdat::ExactMatch: | 
|  | case Comdat::NoDuplicates: | 
|  | break; | 
|  | case Comdat::Largest: | 
|  | case Comdat::SameSize: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (G->hasSection()) { | 
|  | StringRef Section = G->getSection(); | 
|  |  | 
|  | // Globals from llvm.metadata aren't emitted, do not instrument them. | 
|  | if (Section == "llvm.metadata") return false; | 
|  | // Do not instrument globals from special LLVM sections. | 
|  | if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; | 
|  |  | 
|  | // Do not instrument function pointers to initialization and termination | 
|  | // routines: dynamic linker will not properly handle redzones. | 
|  | if (Section.startswith(".preinit_array") || | 
|  | Section.startswith(".init_array") || | 
|  | Section.startswith(".fini_array")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // On COFF, if the section name contains '$', it is highly likely that the | 
|  | // user is using section sorting to create an array of globals similar to | 
|  | // the way initialization callbacks are registered in .init_array and | 
|  | // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones | 
|  | // to such globals is counterproductive, because the intent is that they | 
|  | // will form an array, and out-of-bounds accesses are expected. | 
|  | // See https://github.com/google/sanitizers/issues/305 | 
|  | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx | 
|  | if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " | 
|  | << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TargetTriple.isOSBinFormatMachO()) { | 
|  | StringRef ParsedSegment, ParsedSection; | 
|  | unsigned TAA = 0, StubSize = 0; | 
|  | bool TAAParsed; | 
|  | std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( | 
|  | Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); | 
|  | assert(ErrorCode.empty() && "Invalid section specifier."); | 
|  |  | 
|  | // Ignore the globals from the __OBJC section. The ObjC runtime assumes | 
|  | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to | 
|  | // them. | 
|  | if (ParsedSegment == "__OBJC" || | 
|  | (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | // See https://github.com/google/sanitizers/issues/32 | 
|  | // Constant CFString instances are compiled in the following way: | 
|  | //  -- the string buffer is emitted into | 
|  | //     __TEXT,__cstring,cstring_literals | 
|  | //  -- the constant NSConstantString structure referencing that buffer | 
|  | //     is placed into __DATA,__cfstring | 
|  | // Therefore there's no point in placing redzones into __DATA,__cfstring. | 
|  | // Moreover, it causes the linker to crash on OS X 10.7 | 
|  | if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | // The linker merges the contents of cstring_literals and removes the | 
|  | // trailing zeroes. | 
|  | if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { | 
|  | LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // On Mach-O platforms, we emit global metadata in a separate section of the | 
|  | // binary in order to allow the linker to properly dead strip. This is only | 
|  | // supported on recent versions of ld64. | 
|  | bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { | 
|  | if (!TargetTriple.isOSBinFormatMachO()) | 
|  | return false; | 
|  |  | 
|  | if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) | 
|  | return true; | 
|  | if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) | 
|  | return true; | 
|  | if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef AddressSanitizerModule::getGlobalMetadataSection() const { | 
|  | switch (TargetTriple.getObjectFormat()) { | 
|  | case Triple::COFF:  return ".ASAN$GL"; | 
|  | case Triple::ELF:   return "asan_globals"; | 
|  | case Triple::MachO: return "__DATA,__asan_globals,regular"; | 
|  | default: break; | 
|  | } | 
|  | llvm_unreachable("unsupported object format"); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  |  | 
|  | // Declare our poisoning and unpoisoning functions. | 
|  | AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy)); | 
|  | AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); | 
|  | AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanUnpoisonGlobalsName, IRB.getVoidTy())); | 
|  | AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | // Declare functions that register/unregister globals. | 
|  | AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); | 
|  | AsanUnregisterGlobals = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy)); | 
|  | AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | // Declare the functions that find globals in a shared object and then invoke | 
|  | // the (un)register function on them. | 
|  | AsanRegisterImageGlobals = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); | 
|  | AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | AsanUnregisterImageGlobals = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); | 
|  | AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | AsanRegisterElfGlobals = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy, IntptrTy)); | 
|  | AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy, IntptrTy)); | 
|  | AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage); | 
|  | } | 
|  |  | 
|  | // Put the metadata and the instrumented global in the same group. This ensures | 
|  | // that the metadata is discarded if the instrumented global is discarded. | 
|  | void AddressSanitizerModule::SetComdatForGlobalMetadata( | 
|  | GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { | 
|  | Module &M = *G->getParent(); | 
|  | Comdat *C = G->getComdat(); | 
|  | if (!C) { | 
|  | if (!G->hasName()) { | 
|  | // If G is unnamed, it must be internal. Give it an artificial name | 
|  | // so we can put it in a comdat. | 
|  | assert(G->hasLocalLinkage()); | 
|  | G->setName(Twine(kAsanGenPrefix) + "_anon_global"); | 
|  | } | 
|  |  | 
|  | if (!InternalSuffix.empty() && G->hasLocalLinkage()) { | 
|  | std::string Name = G->getName(); | 
|  | Name += InternalSuffix; | 
|  | C = M.getOrInsertComdat(Name); | 
|  | } else { | 
|  | C = M.getOrInsertComdat(G->getName()); | 
|  | } | 
|  |  | 
|  | // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private | 
|  | // linkage to internal linkage so that a symbol table entry is emitted. This | 
|  | // is necessary in order to create the comdat group. | 
|  | if (TargetTriple.isOSBinFormatCOFF()) { | 
|  | C->setSelectionKind(Comdat::NoDuplicates); | 
|  | if (G->hasPrivateLinkage()) | 
|  | G->setLinkage(GlobalValue::InternalLinkage); | 
|  | } | 
|  | G->setComdat(C); | 
|  | } | 
|  |  | 
|  | assert(G->hasComdat()); | 
|  | Metadata->setComdat(G->getComdat()); | 
|  | } | 
|  |  | 
|  | // Create a separate metadata global and put it in the appropriate ASan | 
|  | // global registration section. | 
|  | GlobalVariable * | 
|  | AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer, | 
|  | StringRef OriginalName) { | 
|  | auto Linkage = TargetTriple.isOSBinFormatMachO() | 
|  | ? GlobalVariable::InternalLinkage | 
|  | : GlobalVariable::PrivateLinkage; | 
|  | GlobalVariable *Metadata = new GlobalVariable( | 
|  | M, Initializer->getType(), false, Linkage, Initializer, | 
|  | Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); | 
|  | Metadata->setSection(getGlobalMetadataSection()); | 
|  | return Metadata; | 
|  | } | 
|  |  | 
|  | IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) { | 
|  | AsanDtorFunction = | 
|  | Function::Create(FunctionType::get(Type::getVoidTy(*C), false), | 
|  | GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); | 
|  | BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); | 
|  |  | 
|  | return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::InstrumentGlobalsCOFF( | 
|  | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers) { | 
|  | assert(ExtendedGlobals.size() == MetadataInitializers.size()); | 
|  | auto &DL = M.getDataLayout(); | 
|  |  | 
|  | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | 
|  | Constant *Initializer = MetadataInitializers[i]; | 
|  | GlobalVariable *G = ExtendedGlobals[i]; | 
|  | GlobalVariable *Metadata = | 
|  | CreateMetadataGlobal(M, Initializer, G->getName()); | 
|  |  | 
|  | // The MSVC linker always inserts padding when linking incrementally. We | 
|  | // cope with that by aligning each struct to its size, which must be a power | 
|  | // of two. | 
|  | unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); | 
|  | assert(isPowerOf2_32(SizeOfGlobalStruct) && | 
|  | "global metadata will not be padded appropriately"); | 
|  | Metadata->setAlignment(SizeOfGlobalStruct); | 
|  |  | 
|  | SetComdatForGlobalMetadata(G, Metadata, ""); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::InstrumentGlobalsELF( | 
|  | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers, | 
|  | const std::string &UniqueModuleId) { | 
|  | assert(ExtendedGlobals.size() == MetadataInitializers.size()); | 
|  |  | 
|  | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); | 
|  | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | 
|  | GlobalVariable *G = ExtendedGlobals[i]; | 
|  | GlobalVariable *Metadata = | 
|  | CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); | 
|  | MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); | 
|  | Metadata->setMetadata(LLVMContext::MD_associated, MD); | 
|  | MetadataGlobals[i] = Metadata; | 
|  |  | 
|  | SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); | 
|  | } | 
|  |  | 
|  | // Update llvm.compiler.used, adding the new metadata globals. This is | 
|  | // needed so that during LTO these variables stay alive. | 
|  | if (!MetadataGlobals.empty()) | 
|  | appendToCompilerUsed(M, MetadataGlobals); | 
|  |  | 
|  | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | 
|  | // to look up the loaded image that contains it. Second, we can store in it | 
|  | // whether registration has already occurred, to prevent duplicate | 
|  | // registration. | 
|  | // | 
|  | // Common linkage ensures that there is only one global per shared library. | 
|  | GlobalVariable *RegisteredFlag = new GlobalVariable( | 
|  | M, IntptrTy, false, GlobalVariable::CommonLinkage, | 
|  | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | 
|  | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | 
|  |  | 
|  | // Create start and stop symbols. | 
|  | GlobalVariable *StartELFMetadata = new GlobalVariable( | 
|  | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | 
|  | "__start_" + getGlobalMetadataSection()); | 
|  | StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | 
|  | GlobalVariable *StopELFMetadata = new GlobalVariable( | 
|  | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | 
|  | "__stop_" + getGlobalMetadataSection()); | 
|  | StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | 
|  |  | 
|  | // Create a call to register the globals with the runtime. | 
|  | IRB.CreateCall(AsanRegisterElfGlobals, | 
|  | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | 
|  | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | 
|  | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | 
|  |  | 
|  | // We also need to unregister globals at the end, e.g., when a shared library | 
|  | // gets closed. | 
|  | IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); | 
|  | IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, | 
|  | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | 
|  | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | 
|  | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::InstrumentGlobalsMachO( | 
|  | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers) { | 
|  | assert(ExtendedGlobals.size() == MetadataInitializers.size()); | 
|  |  | 
|  | // On recent Mach-O platforms, use a structure which binds the liveness of | 
|  | // the global variable to the metadata struct. Keep the list of "Liveness" GV | 
|  | // created to be added to llvm.compiler.used | 
|  | StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); | 
|  | SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); | 
|  |  | 
|  | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | 
|  | Constant *Initializer = MetadataInitializers[i]; | 
|  | GlobalVariable *G = ExtendedGlobals[i]; | 
|  | GlobalVariable *Metadata = | 
|  | CreateMetadataGlobal(M, Initializer, G->getName()); | 
|  |  | 
|  | // On recent Mach-O platforms, we emit the global metadata in a way that | 
|  | // allows the linker to properly strip dead globals. | 
|  | auto LivenessBinder = | 
|  | ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), | 
|  | ConstantExpr::getPointerCast(Metadata, IntptrTy)); | 
|  | GlobalVariable *Liveness = new GlobalVariable( | 
|  | M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, | 
|  | Twine("__asan_binder_") + G->getName()); | 
|  | Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); | 
|  | LivenessGlobals[i] = Liveness; | 
|  | } | 
|  |  | 
|  | // Update llvm.compiler.used, adding the new liveness globals. This is | 
|  | // needed so that during LTO these variables stay alive. The alternative | 
|  | // would be to have the linker handling the LTO symbols, but libLTO | 
|  | // current API does not expose access to the section for each symbol. | 
|  | if (!LivenessGlobals.empty()) | 
|  | appendToCompilerUsed(M, LivenessGlobals); | 
|  |  | 
|  | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | 
|  | // to look up the loaded image that contains it. Second, we can store in it | 
|  | // whether registration has already occurred, to prevent duplicate | 
|  | // registration. | 
|  | // | 
|  | // common linkage ensures that there is only one global per shared library. | 
|  | GlobalVariable *RegisteredFlag = new GlobalVariable( | 
|  | M, IntptrTy, false, GlobalVariable::CommonLinkage, | 
|  | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | 
|  | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | 
|  |  | 
|  | IRB.CreateCall(AsanRegisterImageGlobals, | 
|  | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | 
|  |  | 
|  | // We also need to unregister globals at the end, e.g., when a shared library | 
|  | // gets closed. | 
|  | IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); | 
|  | IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, | 
|  | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | 
|  | } | 
|  |  | 
|  | void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray( | 
|  | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | 
|  | ArrayRef<Constant *> MetadataInitializers) { | 
|  | assert(ExtendedGlobals.size() == MetadataInitializers.size()); | 
|  | unsigned N = ExtendedGlobals.size(); | 
|  | assert(N > 0); | 
|  |  | 
|  | // On platforms that don't have a custom metadata section, we emit an array | 
|  | // of global metadata structures. | 
|  | ArrayType *ArrayOfGlobalStructTy = | 
|  | ArrayType::get(MetadataInitializers[0]->getType(), N); | 
|  | auto AllGlobals = new GlobalVariable( | 
|  | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, | 
|  | ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); | 
|  | if (Mapping.Scale > 3) | 
|  | AllGlobals->setAlignment(1ULL << Mapping.Scale); | 
|  |  | 
|  | IRB.CreateCall(AsanRegisterGlobals, | 
|  | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, N)}); | 
|  |  | 
|  | // We also need to unregister globals at the end, e.g., when a shared library | 
|  | // gets closed. | 
|  | IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); | 
|  | IRB_Dtor.CreateCall(AsanUnregisterGlobals, | 
|  | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, N)}); | 
|  | } | 
|  |  | 
|  | // This function replaces all global variables with new variables that have | 
|  | // trailing redzones. It also creates a function that poisons | 
|  | // redzones and inserts this function into llvm.global_ctors. | 
|  | // Sets *CtorComdat to true if the global registration code emitted into the | 
|  | // asan constructor is comdat-compatible. | 
|  | bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) { | 
|  | *CtorComdat = false; | 
|  | GlobalsMD.init(M); | 
|  |  | 
|  | SmallVector<GlobalVariable *, 16> GlobalsToChange; | 
|  |  | 
|  | for (auto &G : M.globals()) { | 
|  | if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); | 
|  | } | 
|  |  | 
|  | size_t n = GlobalsToChange.size(); | 
|  | if (n == 0) { | 
|  | *CtorComdat = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto &DL = M.getDataLayout(); | 
|  |  | 
|  | // A global is described by a structure | 
|  | //   size_t beg; | 
|  | //   size_t size; | 
|  | //   size_t size_with_redzone; | 
|  | //   const char *name; | 
|  | //   const char *module_name; | 
|  | //   size_t has_dynamic_init; | 
|  | //   void *source_location; | 
|  | //   size_t odr_indicator; | 
|  | // We initialize an array of such structures and pass it to a run-time call. | 
|  | StructType *GlobalStructTy = | 
|  | StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, | 
|  | IntptrTy, IntptrTy, IntptrTy); | 
|  | SmallVector<GlobalVariable *, 16> NewGlobals(n); | 
|  | SmallVector<Constant *, 16> Initializers(n); | 
|  |  | 
|  | bool HasDynamicallyInitializedGlobals = false; | 
|  |  | 
|  | // We shouldn't merge same module names, as this string serves as unique | 
|  | // module ID in runtime. | 
|  | GlobalVariable *ModuleName = createPrivateGlobalForString( | 
|  | M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); | 
|  |  | 
|  | for (size_t i = 0; i < n; i++) { | 
|  | static const uint64_t kMaxGlobalRedzone = 1 << 18; | 
|  | GlobalVariable *G = GlobalsToChange[i]; | 
|  |  | 
|  | auto MD = GlobalsMD.get(G); | 
|  | StringRef NameForGlobal = G->getName(); | 
|  | // Create string holding the global name (use global name from metadata | 
|  | // if it's available, otherwise just write the name of global variable). | 
|  | GlobalVariable *Name = createPrivateGlobalForString( | 
|  | M, MD.Name.empty() ? NameForGlobal : MD.Name, | 
|  | /*AllowMerging*/ true, kAsanGenPrefix); | 
|  |  | 
|  | Type *Ty = G->getValueType(); | 
|  | uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); | 
|  | uint64_t MinRZ = MinRedzoneSizeForGlobal(); | 
|  | // MinRZ <= RZ <= kMaxGlobalRedzone | 
|  | // and trying to make RZ to be ~ 1/4 of SizeInBytes. | 
|  | uint64_t RZ = std::max( | 
|  | MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); | 
|  | uint64_t RightRedzoneSize = RZ; | 
|  | // Round up to MinRZ | 
|  | if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); | 
|  | assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); | 
|  | Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); | 
|  |  | 
|  | StructType *NewTy = StructType::get(Ty, RightRedZoneTy); | 
|  | Constant *NewInitializer = ConstantStruct::get( | 
|  | NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); | 
|  |  | 
|  | // Create a new global variable with enough space for a redzone. | 
|  | GlobalValue::LinkageTypes Linkage = G->getLinkage(); | 
|  | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) | 
|  | Linkage = GlobalValue::InternalLinkage; | 
|  | GlobalVariable *NewGlobal = | 
|  | new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, | 
|  | "", G, G->getThreadLocalMode()); | 
|  | NewGlobal->copyAttributesFrom(G); | 
|  | NewGlobal->setComdat(G->getComdat()); | 
|  | NewGlobal->setAlignment(MinRZ); | 
|  | // Don't fold globals with redzones. ODR violation detector and redzone | 
|  | // poisoning implicitly creates a dependence on the global's address, so it | 
|  | // is no longer valid for it to be marked unnamed_addr. | 
|  | NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); | 
|  |  | 
|  | // Move null-terminated C strings to "__asan_cstring" section on Darwin. | 
|  | if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && | 
|  | G->isConstant()) { | 
|  | auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); | 
|  | if (Seq && Seq->isCString()) | 
|  | NewGlobal->setSection("__TEXT,__asan_cstring,regular"); | 
|  | } | 
|  |  | 
|  | // Transfer the debug info.  The payload starts at offset zero so we can | 
|  | // copy the debug info over as is. | 
|  | SmallVector<DIGlobalVariableExpression *, 1> GVs; | 
|  | G->getDebugInfo(GVs); | 
|  | for (auto *GV : GVs) | 
|  | NewGlobal->addDebugInfo(GV); | 
|  |  | 
|  | Value *Indices2[2]; | 
|  | Indices2[0] = IRB.getInt32(0); | 
|  | Indices2[1] = IRB.getInt32(0); | 
|  |  | 
|  | G->replaceAllUsesWith( | 
|  | ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); | 
|  | NewGlobal->takeName(G); | 
|  | G->eraseFromParent(); | 
|  | NewGlobals[i] = NewGlobal; | 
|  |  | 
|  | Constant *SourceLoc; | 
|  | if (!MD.SourceLoc.empty()) { | 
|  | auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); | 
|  | SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); | 
|  | } else { | 
|  | SourceLoc = ConstantInt::get(IntptrTy, 0); | 
|  | } | 
|  |  | 
|  | Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); | 
|  | GlobalValue *InstrumentedGlobal = NewGlobal; | 
|  |  | 
|  | bool CanUsePrivateAliases = | 
|  | TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || | 
|  | TargetTriple.isOSBinFormatWasm(); | 
|  | if (CanUsePrivateAliases && UsePrivateAlias) { | 
|  | // Create local alias for NewGlobal to avoid crash on ODR between | 
|  | // instrumented and non-instrumented libraries. | 
|  | InstrumentedGlobal = | 
|  | GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); | 
|  | } | 
|  |  | 
|  | // ODR should not happen for local linkage. | 
|  | if (NewGlobal->hasLocalLinkage()) { | 
|  | ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), | 
|  | IRB.getInt8PtrTy()); | 
|  | } else if (UseOdrIndicator) { | 
|  | // With local aliases, we need to provide another externally visible | 
|  | // symbol __odr_asan_XXX to detect ODR violation. | 
|  | auto *ODRIndicatorSym = | 
|  | new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, | 
|  | Constant::getNullValue(IRB.getInt8Ty()), | 
|  | kODRGenPrefix + NameForGlobal, nullptr, | 
|  | NewGlobal->getThreadLocalMode()); | 
|  |  | 
|  | // Set meaningful attributes for indicator symbol. | 
|  | ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); | 
|  | ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); | 
|  | ODRIndicatorSym->setAlignment(1); | 
|  | ODRIndicator = ODRIndicatorSym; | 
|  | } | 
|  |  | 
|  | Constant *Initializer = ConstantStruct::get( | 
|  | GlobalStructTy, | 
|  | ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, SizeInBytes), | 
|  | ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), | 
|  | ConstantExpr::getPointerCast(Name, IntptrTy), | 
|  | ConstantExpr::getPointerCast(ModuleName, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, | 
|  | ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); | 
|  |  | 
|  | if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); | 
|  |  | 
|  | Initializers[i] = Initializer; | 
|  | } | 
|  |  | 
|  | // Add instrumented globals to llvm.compiler.used list to avoid LTO from | 
|  | // ConstantMerge'ing them. | 
|  | SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; | 
|  | for (size_t i = 0; i < n; i++) { | 
|  | GlobalVariable *G = NewGlobals[i]; | 
|  | if (G->getName().empty()) continue; | 
|  | GlobalsToAddToUsedList.push_back(G); | 
|  | } | 
|  | appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); | 
|  |  | 
|  | std::string ELFUniqueModuleId = | 
|  | (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) | 
|  | : ""; | 
|  |  | 
|  | if (!ELFUniqueModuleId.empty()) { | 
|  | InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); | 
|  | *CtorComdat = true; | 
|  | } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { | 
|  | InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); | 
|  | } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { | 
|  | InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); | 
|  | } else { | 
|  | InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); | 
|  | } | 
|  |  | 
|  | // Create calls for poisoning before initializers run and unpoisoning after. | 
|  | if (HasDynamicallyInitializedGlobals) | 
|  | createInitializerPoisonCalls(M, ModuleName); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << M); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int AddressSanitizerModule::GetAsanVersion(const Module &M) const { | 
|  | int LongSize = M.getDataLayout().getPointerSizeInBits(); | 
|  | bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); | 
|  | int Version = 8; | 
|  | // 32-bit Android is one version ahead because of the switch to dynamic | 
|  | // shadow. | 
|  | Version += (LongSize == 32 && isAndroid); | 
|  | return Version; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizerModule::runOnModule(Module &M) { | 
|  | C = &(M.getContext()); | 
|  | int LongSize = M.getDataLayout().getPointerSizeInBits(); | 
|  | IntptrTy = Type::getIntNTy(*C, LongSize); | 
|  | TargetTriple = Triple(M.getTargetTriple()); | 
|  | Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); | 
|  | initializeCallbacks(M); | 
|  |  | 
|  | if (CompileKernel) | 
|  | return false; | 
|  |  | 
|  | // Create a module constructor. A destructor is created lazily because not all | 
|  | // platforms, and not all modules need it. | 
|  | std::string VersionCheckName = | 
|  | kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); | 
|  | std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( | 
|  | M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, | 
|  | /*InitArgs=*/{}, VersionCheckName); | 
|  |  | 
|  | bool CtorComdat = true; | 
|  | bool Changed = false; | 
|  | // TODO(glider): temporarily disabled globals instrumentation for KASan. | 
|  | if (ClGlobals) { | 
|  | IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); | 
|  | Changed |= InstrumentGlobals(IRB, M, &CtorComdat); | 
|  | } | 
|  |  | 
|  | // Put the constructor and destructor in comdat if both | 
|  | // (1) global instrumentation is not TU-specific | 
|  | // (2) target is ELF. | 
|  | if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { | 
|  | AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); | 
|  | appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, | 
|  | AsanCtorFunction); | 
|  | if (AsanDtorFunction) { | 
|  | AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); | 
|  | appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, | 
|  | AsanDtorFunction); | 
|  | } | 
|  | } else { | 
|  | appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); | 
|  | if (AsanDtorFunction) | 
|  | appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | // Create __asan_report* callbacks. | 
|  | // IsWrite, TypeSize and Exp are encoded in the function name. | 
|  | for (int Exp = 0; Exp < 2; Exp++) { | 
|  | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { | 
|  | const std::string TypeStr = AccessIsWrite ? "store" : "load"; | 
|  | const std::string ExpStr = Exp ? "exp_" : ""; | 
|  | const std::string EndingStr = Recover ? "_noabort" : ""; | 
|  |  | 
|  | SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; | 
|  | SmallVector<Type *, 2> Args1{1, IntptrTy}; | 
|  | if (Exp) { | 
|  | Type *ExpType = Type::getInt32Ty(*C); | 
|  | Args2.push_back(ExpType); | 
|  | Args1.push_back(ExpType); | 
|  | } | 
|  | AsanErrorCallbackSized[AccessIsWrite][Exp] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, | 
|  | FunctionType::get(IRB.getVoidTy(), Args2, false))); | 
|  |  | 
|  | AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, | 
|  | FunctionType::get(IRB.getVoidTy(), Args2, false))); | 
|  |  | 
|  | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | 
|  | AccessSizeIndex++) { | 
|  | const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); | 
|  | AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, | 
|  | FunctionType::get(IRB.getVoidTy(), Args1, false))); | 
|  |  | 
|  | AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, | 
|  | FunctionType::get(IRB.getVoidTy(), Args1, false))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const std::string MemIntrinCallbackPrefix = | 
|  | CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; | 
|  | AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); | 
|  | AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); | 
|  | AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), | 
|  | IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy)); | 
|  |  | 
|  | AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy())); | 
|  |  | 
|  | AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | // We insert an empty inline asm after __asan_report* to avoid callback merge. | 
|  | EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), | 
|  | StringRef(""), StringRef(""), | 
|  | /*hasSideEffects=*/true); | 
|  | if (Mapping.InGlobal) | 
|  | AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", | 
|  | ArrayType::get(IRB.getInt8Ty(), 0)); | 
|  | } | 
|  |  | 
|  | // virtual | 
|  | bool AddressSanitizer::doInitialization(Module &M) { | 
|  | // Initialize the private fields. No one has accessed them before. | 
|  | GlobalsMD.init(M); | 
|  |  | 
|  | C = &(M.getContext()); | 
|  | LongSize = M.getDataLayout().getPointerSizeInBits(); | 
|  | IntptrTy = Type::getIntNTy(*C, LongSize); | 
|  | TargetTriple = Triple(M.getTargetTriple()); | 
|  |  | 
|  | Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::doFinalization(Module &M) { | 
|  | GlobalsMD.reset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { | 
|  | // For each NSObject descendant having a +load method, this method is invoked | 
|  | // by the ObjC runtime before any of the static constructors is called. | 
|  | // Therefore we need to instrument such methods with a call to __asan_init | 
|  | // at the beginning in order to initialize our runtime before any access to | 
|  | // the shadow memory. | 
|  | // We cannot just ignore these methods, because they may call other | 
|  | // instrumented functions. | 
|  | if (F.getName().find(" load]") != std::string::npos) { | 
|  | Function *AsanInitFunction = | 
|  | declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); | 
|  | IRBuilder<> IRB(&F.front(), F.front().begin()); | 
|  | IRB.CreateCall(AsanInitFunction, {}); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { | 
|  | // Generate code only when dynamic addressing is needed. | 
|  | if (Mapping.Offset != kDynamicShadowSentinel) | 
|  | return; | 
|  |  | 
|  | IRBuilder<> IRB(&F.front().front()); | 
|  | if (Mapping.InGlobal) { | 
|  | if (ClWithIfuncSuppressRemat) { | 
|  | // An empty inline asm with input reg == output reg. | 
|  | // An opaque pointer-to-int cast, basically. | 
|  | InlineAsm *Asm = InlineAsm::get( | 
|  | FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), | 
|  | StringRef(""), StringRef("=r,0"), | 
|  | /*hasSideEffects=*/false); | 
|  | LocalDynamicShadow = | 
|  | IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); | 
|  | } else { | 
|  | LocalDynamicShadow = | 
|  | IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); | 
|  | } | 
|  | } else { | 
|  | Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( | 
|  | kAsanShadowMemoryDynamicAddress, IntptrTy); | 
|  | LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AddressSanitizer::markEscapedLocalAllocas(Function &F) { | 
|  | // Find the one possible call to llvm.localescape and pre-mark allocas passed | 
|  | // to it as uninteresting. This assumes we haven't started processing allocas | 
|  | // yet. This check is done up front because iterating the use list in | 
|  | // isInterestingAlloca would be algorithmically slower. | 
|  | assert(ProcessedAllocas.empty() && "must process localescape before allocas"); | 
|  |  | 
|  | // Try to get the declaration of llvm.localescape. If it's not in the module, | 
|  | // we can exit early. | 
|  | if (!F.getParent()->getFunction("llvm.localescape")) return; | 
|  |  | 
|  | // Look for a call to llvm.localescape call in the entry block. It can't be in | 
|  | // any other block. | 
|  | for (Instruction &I : F.getEntryBlock()) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); | 
|  | if (II && II->getIntrinsicID() == Intrinsic::localescape) { | 
|  | // We found a call. Mark all the allocas passed in as uninteresting. | 
|  | for (Value *Arg : II->arg_operands()) { | 
|  | AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); | 
|  | assert(AI && AI->isStaticAlloca() && | 
|  | "non-static alloca arg to localescape"); | 
|  | ProcessedAllocas[AI] = false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AddressSanitizer::runOnFunction(Function &F) { | 
|  | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; | 
|  | if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; | 
|  | if (F.getName().startswith("__asan_")) return false; | 
|  |  | 
|  | bool FunctionModified = false; | 
|  |  | 
|  | // If needed, insert __asan_init before checking for SanitizeAddress attr. | 
|  | // This function needs to be called even if the function body is not | 
|  | // instrumented. | 
|  | if (maybeInsertAsanInitAtFunctionEntry(F)) | 
|  | FunctionModified = true; | 
|  |  | 
|  | // Leave if the function doesn't need instrumentation. | 
|  | if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); | 
|  |  | 
|  | initializeCallbacks(*F.getParent()); | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  |  | 
|  | FunctionStateRAII CleanupObj(this); | 
|  |  | 
|  | maybeInsertDynamicShadowAtFunctionEntry(F); | 
|  |  | 
|  | // We can't instrument allocas used with llvm.localescape. Only static allocas | 
|  | // can be passed to that intrinsic. | 
|  | markEscapedLocalAllocas(F); | 
|  |  | 
|  | // We want to instrument every address only once per basic block (unless there | 
|  | // are calls between uses). | 
|  | SmallPtrSet<Value *, 16> TempsToInstrument; | 
|  | SmallVector<Instruction *, 16> ToInstrument; | 
|  | SmallVector<Instruction *, 8> NoReturnCalls; | 
|  | SmallVector<BasicBlock *, 16> AllBlocks; | 
|  | SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; | 
|  | int NumAllocas = 0; | 
|  | bool IsWrite; | 
|  | unsigned Alignment; | 
|  | uint64_t TypeSize; | 
|  | const TargetLibraryInfo *TLI = | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | // Fill the set of memory operations to instrument. | 
|  | for (auto &BB : F) { | 
|  | AllBlocks.push_back(&BB); | 
|  | TempsToInstrument.clear(); | 
|  | int NumInsnsPerBB = 0; | 
|  | for (auto &Inst : BB) { | 
|  | if (LooksLikeCodeInBug11395(&Inst)) return false; | 
|  | Value *MaybeMask = nullptr; | 
|  | if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, | 
|  | &Alignment, &MaybeMask)) { | 
|  | if (ClOpt && ClOptSameTemp) { | 
|  | // If we have a mask, skip instrumentation if we've already | 
|  | // instrumented the full object. But don't add to TempsToInstrument | 
|  | // because we might get another load/store with a different mask. | 
|  | if (MaybeMask) { | 
|  | if (TempsToInstrument.count(Addr)) | 
|  | continue; // We've seen this (whole) temp in the current BB. | 
|  | } else { | 
|  | if (!TempsToInstrument.insert(Addr).second) | 
|  | continue; // We've seen this temp in the current BB. | 
|  | } | 
|  | } | 
|  | } else if (ClInvalidPointerPairs && | 
|  | isInterestingPointerComparisonOrSubtraction(&Inst)) { | 
|  | PointerComparisonsOrSubtracts.push_back(&Inst); | 
|  | continue; | 
|  | } else if (isa<MemIntrinsic>(Inst)) { | 
|  | // ok, take it. | 
|  | } else { | 
|  | if (isa<AllocaInst>(Inst)) NumAllocas++; | 
|  | CallSite CS(&Inst); | 
|  | if (CS) { | 
|  | // A call inside BB. | 
|  | TempsToInstrument.clear(); | 
|  | if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); | 
|  | } | 
|  | if (CallInst *CI = dyn_cast<CallInst>(&Inst)) | 
|  | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); | 
|  | continue; | 
|  | } | 
|  | ToInstrument.push_back(&Inst); | 
|  | NumInsnsPerBB++; | 
|  | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool UseCalls = | 
|  | (ClInstrumentationWithCallsThreshold >= 0 && | 
|  | ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | ObjectSizeOpts ObjSizeOpts; | 
|  | ObjSizeOpts.RoundToAlign = true; | 
|  | ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); | 
|  |  | 
|  | // Instrument. | 
|  | int NumInstrumented = 0; | 
|  | for (auto Inst : ToInstrument) { | 
|  | if (ClDebugMin < 0 || ClDebugMax < 0 || | 
|  | (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { | 
|  | if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) | 
|  | instrumentMop(ObjSizeVis, Inst, UseCalls, | 
|  | F.getParent()->getDataLayout()); | 
|  | else | 
|  | instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); | 
|  | } | 
|  | NumInstrumented++; | 
|  | } | 
|  |  | 
|  | FunctionStackPoisoner FSP(F, *this); | 
|  | bool ChangedStack = FSP.runOnFunction(); | 
|  |  | 
|  | // We must unpoison the stack before every NoReturn call (throw, _exit, etc). | 
|  | // See e.g. https://github.com/google/sanitizers/issues/37 | 
|  | for (auto CI : NoReturnCalls) { | 
|  | IRBuilder<> IRB(CI); | 
|  | IRB.CreateCall(AsanHandleNoReturnFunc, {}); | 
|  | } | 
|  |  | 
|  | for (auto Inst : PointerComparisonsOrSubtracts) { | 
|  | instrumentPointerComparisonOrSubtraction(Inst); | 
|  | NumInstrumented++; | 
|  | } | 
|  |  | 
|  | if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) | 
|  | FunctionModified = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " | 
|  | << F << "\n"); | 
|  |  | 
|  | return FunctionModified; | 
|  | } | 
|  |  | 
|  | // Workaround for bug 11395: we don't want to instrument stack in functions | 
|  | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. | 
|  | // FIXME: remove once the bug 11395 is fixed. | 
|  | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { | 
|  | if (LongSize != 32) return false; | 
|  | CallInst *CI = dyn_cast<CallInst>(I); | 
|  | if (!CI || !CI->isInlineAsm()) return false; | 
|  | if (CI->getNumArgOperands() <= 5) return false; | 
|  | // We have inline assembly with quite a few arguments. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::initializeCallbacks(Module &M) { | 
|  | IRBuilder<> IRB(*C); | 
|  | for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { | 
|  | std::string Suffix = itostr(i); | 
|  | AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, | 
|  | IntptrTy)); | 
|  | AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, | 
|  | IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | } | 
|  | if (ASan.UseAfterScope) { | 
|  | AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy)); | 
|  | AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( | 
|  | M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), | 
|  | IntptrTy, IntptrTy)); | 
|  | } | 
|  |  | 
|  | for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { | 
|  | std::ostringstream Name; | 
|  | Name << kAsanSetShadowPrefix; | 
|  | Name << std::setw(2) << std::setfill('0') << std::hex << Val; | 
|  | AsanSetShadowFunc[Val] = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | } | 
|  |  | 
|  | AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | AsanAllocasUnpoisonFunc = | 
|  | checkSanitizerInterfaceFunction(M.getOrInsertFunction( | 
|  | kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | 
|  | ArrayRef<uint8_t> ShadowBytes, | 
|  | size_t Begin, size_t End, | 
|  | IRBuilder<> &IRB, | 
|  | Value *ShadowBase) { | 
|  | if (Begin >= End) | 
|  | return; | 
|  |  | 
|  | const size_t LargestStoreSizeInBytes = | 
|  | std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); | 
|  |  | 
|  | const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); | 
|  |  | 
|  | // Poison given range in shadow using larges store size with out leading and | 
|  | // trailing zeros in ShadowMask. Zeros never change, so they need neither | 
|  | // poisoning nor up-poisoning. Still we don't mind if some of them get into a | 
|  | // middle of a store. | 
|  | for (size_t i = Begin; i < End;) { | 
|  | if (!ShadowMask[i]) { | 
|  | assert(!ShadowBytes[i]); | 
|  | ++i; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | size_t StoreSizeInBytes = LargestStoreSizeInBytes; | 
|  | // Fit store size into the range. | 
|  | while (StoreSizeInBytes > End - i) | 
|  | StoreSizeInBytes /= 2; | 
|  |  | 
|  | // Minimize store size by trimming trailing zeros. | 
|  | for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { | 
|  | while (j <= StoreSizeInBytes / 2) | 
|  | StoreSizeInBytes /= 2; | 
|  | } | 
|  |  | 
|  | uint64_t Val = 0; | 
|  | for (size_t j = 0; j < StoreSizeInBytes; j++) { | 
|  | if (IsLittleEndian) | 
|  | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); | 
|  | else | 
|  | Val = (Val << 8) | ShadowBytes[i + j]; | 
|  | } | 
|  |  | 
|  | Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); | 
|  | Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); | 
|  | IRB.CreateAlignedStore( | 
|  | Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); | 
|  |  | 
|  | i += StoreSizeInBytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | 
|  | ArrayRef<uint8_t> ShadowBytes, | 
|  | IRBuilder<> &IRB, Value *ShadowBase) { | 
|  | copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | 
|  | ArrayRef<uint8_t> ShadowBytes, | 
|  | size_t Begin, size_t End, | 
|  | IRBuilder<> &IRB, Value *ShadowBase) { | 
|  | assert(ShadowMask.size() == ShadowBytes.size()); | 
|  | size_t Done = Begin; | 
|  | for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { | 
|  | if (!ShadowMask[i]) { | 
|  | assert(!ShadowBytes[i]); | 
|  | continue; | 
|  | } | 
|  | uint8_t Val = ShadowBytes[i]; | 
|  | if (!AsanSetShadowFunc[Val]) | 
|  | continue; | 
|  |  | 
|  | // Skip same values. | 
|  | for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { | 
|  | } | 
|  |  | 
|  | if (j - i >= ClMaxInlinePoisoningSize) { | 
|  | copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); | 
|  | IRB.CreateCall(AsanSetShadowFunc[Val], | 
|  | {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), | 
|  | ConstantInt::get(IntptrTy, j - i)}); | 
|  | Done = j; | 
|  | } | 
|  | } | 
|  |  | 
|  | copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); | 
|  | } | 
|  |  | 
|  | // Fake stack allocator (asan_fake_stack.h) has 11 size classes | 
|  | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass | 
|  | static int StackMallocSizeClass(uint64_t LocalStackSize) { | 
|  | assert(LocalStackSize <= kMaxStackMallocSize); | 
|  | uint64_t MaxSize = kMinStackMallocSize; | 
|  | for (int i = 0;; i++, MaxSize *= 2) | 
|  | if (LocalStackSize <= MaxSize) return i; | 
|  | llvm_unreachable("impossible LocalStackSize"); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { | 
|  | Instruction *CopyInsertPoint = &F.front().front(); | 
|  | if (CopyInsertPoint == ASan.LocalDynamicShadow) { | 
|  | // Insert after the dynamic shadow location is determined | 
|  | CopyInsertPoint = CopyInsertPoint->getNextNode(); | 
|  | assert(CopyInsertPoint); | 
|  | } | 
|  | IRBuilder<> IRB(CopyInsertPoint); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | for (Argument &Arg : F.args()) { | 
|  | if (Arg.hasByValAttr()) { | 
|  | Type *Ty = Arg.getType()->getPointerElementType(); | 
|  | unsigned Align = Arg.getParamAlignment(); | 
|  | if (Align == 0) Align = DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | AllocaInst *AI = IRB.CreateAlloca( | 
|  | Ty, nullptr, | 
|  | (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + | 
|  | ".byval"); | 
|  | AI->setAlignment(Align); | 
|  | Arg.replaceAllUsesWith(AI); | 
|  |  | 
|  | uint64_t AllocSize = DL.getTypeAllocSize(Ty); | 
|  | IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, | 
|  | Value *ValueIfTrue, | 
|  | Instruction *ThenTerm, | 
|  | Value *ValueIfFalse) { | 
|  | PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); | 
|  | BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); | 
|  | PHI->addIncoming(ValueIfFalse, CondBlock); | 
|  | BasicBlock *ThenBlock = ThenTerm->getParent(); | 
|  | PHI->addIncoming(ValueIfTrue, ThenBlock); | 
|  | return PHI; | 
|  | } | 
|  |  | 
|  | Value *FunctionStackPoisoner::createAllocaForLayout( | 
|  | IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { | 
|  | AllocaInst *Alloca; | 
|  | if (Dynamic) { | 
|  | Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), | 
|  | ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), | 
|  | "MyAlloca"); | 
|  | } else { | 
|  | Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), | 
|  | nullptr, "MyAlloca"); | 
|  | assert(Alloca->isStaticAlloca()); | 
|  | } | 
|  | assert((ClRealignStack & (ClRealignStack - 1)) == 0); | 
|  | size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); | 
|  | Alloca->setAlignment(FrameAlignment); | 
|  | return IRB.CreatePointerCast(Alloca, IntptrTy); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::createDynamicAllocasInitStorage() { | 
|  | BasicBlock &FirstBB = *F.begin(); | 
|  | IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); | 
|  | DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); | 
|  | IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); | 
|  | DynamicAllocaLayout->setAlignment(32); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::processDynamicAllocas() { | 
|  | if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { | 
|  | assert(DynamicAllocaPoisonCallVec.empty()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Insert poison calls for lifetime intrinsics for dynamic allocas. | 
|  | for (const auto &APC : DynamicAllocaPoisonCallVec) { | 
|  | assert(APC.InsBefore); | 
|  | assert(APC.AI); | 
|  | assert(ASan.isInterestingAlloca(*APC.AI)); | 
|  | assert(!APC.AI->isStaticAlloca()); | 
|  |  | 
|  | IRBuilder<> IRB(APC.InsBefore); | 
|  | poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); | 
|  | // Dynamic allocas will be unpoisoned unconditionally below in | 
|  | // unpoisonDynamicAllocas. | 
|  | // Flag that we need unpoison static allocas. | 
|  | } | 
|  |  | 
|  | // Handle dynamic allocas. | 
|  | createDynamicAllocasInitStorage(); | 
|  | for (auto &AI : DynamicAllocaVec) | 
|  | handleDynamicAllocaCall(AI); | 
|  | unpoisonDynamicAllocas(); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::processStaticAllocas() { | 
|  | if (AllocaVec.empty()) { | 
|  | assert(StaticAllocaPoisonCallVec.empty()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int StackMallocIdx = -1; | 
|  | DebugLoc EntryDebugLocation; | 
|  | if (auto SP = F.getSubprogram()) | 
|  | EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); | 
|  |  | 
|  | Instruction *InsBefore = AllocaVec[0]; | 
|  | IRBuilder<> IRB(InsBefore); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  |  | 
|  | // Make sure non-instrumented allocas stay in the entry block. Otherwise, | 
|  | // debug info is broken, because only entry-block allocas are treated as | 
|  | // regular stack slots. | 
|  | auto InsBeforeB = InsBefore->getParent(); | 
|  | assert(InsBeforeB == &F.getEntryBlock()); | 
|  | for (auto *AI : StaticAllocasToMoveUp) | 
|  | if (AI->getParent() == InsBeforeB) | 
|  | AI->moveBefore(InsBefore); | 
|  |  | 
|  | // If we have a call to llvm.localescape, keep it in the entry block. | 
|  | if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); | 
|  |  | 
|  | SmallVector<ASanStackVariableDescription, 16> SVD; | 
|  | SVD.reserve(AllocaVec.size()); | 
|  | for (AllocaInst *AI : AllocaVec) { | 
|  | ASanStackVariableDescription D = {AI->getName().data(), | 
|  | ASan.getAllocaSizeInBytes(*AI), | 
|  | 0, | 
|  | AI->getAlignment(), | 
|  | AI, | 
|  | 0, | 
|  | 0}; | 
|  | SVD.push_back(D); | 
|  | } | 
|  |  | 
|  | // Minimal header size (left redzone) is 4 pointers, | 
|  | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. | 
|  | size_t Granularity = 1ULL << Mapping.Scale; | 
|  | size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); | 
|  | const ASanStackFrameLayout &L = | 
|  | ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); | 
|  |  | 
|  | // Build AllocaToSVDMap for ASanStackVariableDescription lookup. | 
|  | DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; | 
|  | for (auto &Desc : SVD) | 
|  | AllocaToSVDMap[Desc.AI] = &Desc; | 
|  |  | 
|  | // Update SVD with information from lifetime intrinsics. | 
|  | for (const auto &APC : StaticAllocaPoisonCallVec) { | 
|  | assert(APC.InsBefore); | 
|  | assert(APC.AI); | 
|  | assert(ASan.isInterestingAlloca(*APC.AI)); | 
|  | assert(APC.AI->isStaticAlloca()); | 
|  |  | 
|  | ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | 
|  | Desc.LifetimeSize = Desc.Size; | 
|  | if (const DILocation *FnLoc = EntryDebugLocation.get()) { | 
|  | if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { | 
|  | if (LifetimeLoc->getFile() == FnLoc->getFile()) | 
|  | if (unsigned Line = LifetimeLoc->getLine()) | 
|  | Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | auto DescriptionString = ComputeASanStackFrameDescription(SVD); | 
|  | LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); | 
|  | uint64_t LocalStackSize = L.FrameSize; | 
|  | bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && | 
|  | LocalStackSize <= kMaxStackMallocSize; | 
|  | bool DoDynamicAlloca = ClDynamicAllocaStack; | 
|  | // Don't do dynamic alloca or stack malloc if: | 
|  | // 1) There is inline asm: too often it makes assumptions on which registers | 
|  | //    are available. | 
|  | // 2) There is a returns_twice call (typically setjmp), which is | 
|  | //    optimization-hostile, and doesn't play well with introduced indirect | 
|  | //    register-relative calculation of local variable addresses. | 
|  | DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; | 
|  | DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; | 
|  |  | 
|  | Value *StaticAlloca = | 
|  | DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); | 
|  |  | 
|  | Value *FakeStack; | 
|  | Value *LocalStackBase; | 
|  | Value *LocalStackBaseAlloca; | 
|  | bool Deref; | 
|  |  | 
|  | if (DoStackMalloc) { | 
|  | LocalStackBaseAlloca = | 
|  | IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); | 
|  | // void *FakeStack = __asan_option_detect_stack_use_after_return | 
|  | //     ? __asan_stack_malloc_N(LocalStackSize) | 
|  | //     : nullptr; | 
|  | // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); | 
|  | Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( | 
|  | kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); | 
|  | Value *UseAfterReturnIsEnabled = | 
|  | IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), | 
|  | Constant::getNullValue(IRB.getInt32Ty())); | 
|  | Instruction *Term = | 
|  | SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); | 
|  | IRBuilder<> IRBIf(Term); | 
|  | IRBIf.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | 
|  | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); | 
|  | Value *FakeStackValue = | 
|  | IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], | 
|  | ConstantInt::get(IntptrTy, LocalStackSize)); | 
|  | IRB.SetInsertPoint(InsBefore); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, | 
|  | ConstantInt::get(IntptrTy, 0)); | 
|  |  | 
|  | Value *NoFakeStack = | 
|  | IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); | 
|  | Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); | 
|  | IRBIf.SetInsertPoint(Term); | 
|  | IRBIf.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | Value *AllocaValue = | 
|  | DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; | 
|  |  | 
|  | IRB.SetInsertPoint(InsBefore); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); | 
|  | IRB.SetCurrentDebugLocation(EntryDebugLocation); | 
|  | IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); | 
|  | Deref = true; | 
|  | } else { | 
|  | // void *FakeStack = nullptr; | 
|  | // void *LocalStackBase = alloca(LocalStackSize); | 
|  | FakeStack = ConstantInt::get(IntptrTy, 0); | 
|  | LocalStackBase = | 
|  | DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; | 
|  | LocalStackBaseAlloca = LocalStackBase; | 
|  | Deref = false; | 
|  | } | 
|  |  | 
|  | // Replace Alloca instructions with base+offset. | 
|  | for (const auto &Desc : SVD) { | 
|  | AllocaInst *AI = Desc.AI; | 
|  | replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, | 
|  | Desc.Offset, DIExpression::NoDeref); | 
|  | Value *NewAllocaPtr = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), | 
|  | AI->getType()); | 
|  | AI->replaceAllUsesWith(NewAllocaPtr); | 
|  | } | 
|  |  | 
|  | // The left-most redzone has enough space for at least 4 pointers. | 
|  | // Write the Magic value to redzone[0]. | 
|  | Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); | 
|  | IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), | 
|  | BasePlus0); | 
|  | // Write the frame description constant to redzone[1]. | 
|  | Value *BasePlus1 = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, | 
|  | ConstantInt::get(IntptrTy, ASan.LongSize / 8)), | 
|  | IntptrPtrTy); | 
|  | GlobalVariable *StackDescriptionGlobal = | 
|  | createPrivateGlobalForString(*F.getParent(), DescriptionString, | 
|  | /*AllowMerging*/ true, kAsanGenPrefix); | 
|  | Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); | 
|  | IRB.CreateStore(Description, BasePlus1); | 
|  | // Write the PC to redzone[2]. | 
|  | Value *BasePlus2 = IRB.CreateIntToPtr( | 
|  | IRB.CreateAdd(LocalStackBase, | 
|  | ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), | 
|  | IntptrPtrTy); | 
|  | IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); | 
|  |  | 
|  | const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); | 
|  |  | 
|  | // Poison the stack red zones at the entry. | 
|  | Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); | 
|  | // As mask we must use most poisoned case: red zones and after scope. | 
|  | // As bytes we can use either the same or just red zones only. | 
|  | copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); | 
|  |  | 
|  | if (!StaticAllocaPoisonCallVec.empty()) { | 
|  | const auto &ShadowInScope = GetShadowBytes(SVD, L); | 
|  |  | 
|  | // Poison static allocas near lifetime intrinsics. | 
|  | for (const auto &APC : StaticAllocaPoisonCallVec) { | 
|  | const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | 
|  | assert(Desc.Offset % L.Granularity == 0); | 
|  | size_t Begin = Desc.Offset / L.Granularity; | 
|  | size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; | 
|  |  | 
|  | IRBuilder<> IRB(APC.InsBefore); | 
|  | copyToShadow(ShadowAfterScope, | 
|  | APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, | 
|  | IRB, ShadowBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); | 
|  | SmallVector<uint8_t, 64> ShadowAfterReturn; | 
|  |  | 
|  | // (Un)poison the stack before all ret instructions. | 
|  | for (auto Ret : RetVec) { | 
|  | IRBuilder<> IRBRet(Ret); | 
|  | // Mark the current frame as retired. | 
|  | IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), | 
|  | BasePlus0); | 
|  | if (DoStackMalloc) { | 
|  | assert(StackMallocIdx >= 0); | 
|  | // if FakeStack != 0  // LocalStackBase == FakeStack | 
|  | //     // In use-after-return mode, poison the whole stack frame. | 
|  | //     if StackMallocIdx <= 4 | 
|  | //         // For small sizes inline the whole thing: | 
|  | //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); | 
|  | //         **SavedFlagPtr(FakeStack) = 0 | 
|  | //     else | 
|  | //         __asan_stack_free_N(FakeStack, LocalStackSize) | 
|  | // else | 
|  | //     <This is not a fake stack; unpoison the redzones> | 
|  | Value *Cmp = | 
|  | IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); | 
|  | Instruction *ThenTerm, *ElseTerm; | 
|  | SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); | 
|  |  | 
|  | IRBuilder<> IRBPoison(ThenTerm); | 
|  | if (StackMallocIdx <= 4) { | 
|  | int ClassSize = kMinStackMallocSize << StackMallocIdx; | 
|  | ShadowAfterReturn.resize(ClassSize / L.Granularity, | 
|  | kAsanStackUseAfterReturnMagic); | 
|  | copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, | 
|  | ShadowBase); | 
|  | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( | 
|  | FakeStack, | 
|  | ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); | 
|  | Value *SavedFlagPtr = IRBPoison.CreateLoad( | 
|  | IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); | 
|  | IRBPoison.CreateStore( | 
|  | Constant::getNullValue(IRBPoison.getInt8Ty()), | 
|  | IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); | 
|  | } else { | 
|  | // For larger frames call __asan_stack_free_*. | 
|  | IRBPoison.CreateCall( | 
|  | AsanStackFreeFunc[StackMallocIdx], | 
|  | {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRBElse(ElseTerm); | 
|  | copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); | 
|  | } else { | 
|  | copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are done. Remove the old unused alloca instructions. | 
|  | for (auto AI : AllocaVec) AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, | 
|  | IRBuilder<> &IRB, bool DoPoison) { | 
|  | // For now just insert the call to ASan runtime. | 
|  | Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); | 
|  | Value *SizeArg = ConstantInt::get(IntptrTy, Size); | 
|  | IRB.CreateCall( | 
|  | DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, | 
|  | {AddrArg, SizeArg}); | 
|  | } | 
|  |  | 
|  | // Handling llvm.lifetime intrinsics for a given %alloca: | 
|  | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. | 
|  | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect | 
|  | //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory | 
|  | //     could be poisoned by previous llvm.lifetime.end instruction, as the | 
|  | //     variable may go in and out of scope several times, e.g. in loops). | 
|  | // (3) if we poisoned at least one %alloca in a function, | 
|  | //     unpoison the whole stack frame at function exit. | 
|  |  | 
|  | AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) | 
|  | // We're interested only in allocas we can handle. | 
|  | return ASan.isInterestingAlloca(*AI) ? AI : nullptr; | 
|  | // See if we've already calculated (or started to calculate) alloca for a | 
|  | // given value. | 
|  | AllocaForValueMapTy::iterator I = AllocaForValue.find(V); | 
|  | if (I != AllocaForValue.end()) return I->second; | 
|  | // Store 0 while we're calculating alloca for value V to avoid | 
|  | // infinite recursion if the value references itself. | 
|  | AllocaForValue[V] = nullptr; | 
|  | AllocaInst *Res = nullptr; | 
|  | if (CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | Res = findAllocaForValue(CI->getOperand(0)); | 
|  | else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | for (Value *IncValue : PN->incoming_values()) { | 
|  | // Allow self-referencing phi-nodes. | 
|  | if (IncValue == PN) continue; | 
|  | AllocaInst *IncValueAI = findAllocaForValue(IncValue); | 
|  | // AI for incoming values should exist and should all be equal. | 
|  | if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) | 
|  | return nullptr; | 
|  | Res = IncValueAI; | 
|  | } | 
|  | } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { | 
|  | Res = findAllocaForValue(EP->getPointerOperand()); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V | 
|  | << "\n"); | 
|  | } | 
|  | if (Res) AllocaForValue[V] = Res; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { | 
|  | IRBuilder<> IRB(AI); | 
|  |  | 
|  | const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); | 
|  | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; | 
|  |  | 
|  | Value *Zero = Constant::getNullValue(IntptrTy); | 
|  | Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); | 
|  | Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); | 
|  |  | 
|  | // Since we need to extend alloca with additional memory to locate | 
|  | // redzones, and OldSize is number of allocated blocks with | 
|  | // ElementSize size, get allocated memory size in bytes by | 
|  | // OldSize * ElementSize. | 
|  | const unsigned ElementSize = | 
|  | F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); | 
|  | Value *OldSize = | 
|  | IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), | 
|  | ConstantInt::get(IntptrTy, ElementSize)); | 
|  |  | 
|  | // PartialSize = OldSize % 32 | 
|  | Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); | 
|  |  | 
|  | // Misalign = kAllocaRzSize - PartialSize; | 
|  | Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); | 
|  |  | 
|  | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; | 
|  | Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); | 
|  | Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); | 
|  |  | 
|  | // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize | 
|  | // Align is added to locate left redzone, PartialPadding for possible | 
|  | // partial redzone and kAllocaRzSize for right redzone respectively. | 
|  | Value *AdditionalChunkSize = IRB.CreateAdd( | 
|  | ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); | 
|  |  | 
|  | Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); | 
|  |  | 
|  | // Insert new alloca with new NewSize and Align params. | 
|  | AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); | 
|  | NewAlloca->setAlignment(Align); | 
|  |  | 
|  | // NewAddress = Address + Align | 
|  | Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), | 
|  | ConstantInt::get(IntptrTy, Align)); | 
|  |  | 
|  | // Insert __asan_alloca_poison call for new created alloca. | 
|  | IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); | 
|  |  | 
|  | // Store the last alloca's address to DynamicAllocaLayout. We'll need this | 
|  | // for unpoisoning stuff. | 
|  | IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); | 
|  |  | 
|  | Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); | 
|  |  | 
|  | // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. | 
|  | AI->replaceAllUsesWith(NewAddressPtr); | 
|  |  | 
|  | // We are done. Erase old alloca from parent. | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // isSafeAccess returns true if Addr is always inbounds with respect to its | 
|  | // base object. For example, it is a field access or an array access with | 
|  | // constant inbounds index. | 
|  | bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, | 
|  | Value *Addr, uint64_t TypeSize) const { | 
|  | SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); | 
|  | if (!ObjSizeVis.bothKnown(SizeOffset)) return false; | 
|  | uint64_t Size = SizeOffset.first.getZExtValue(); | 
|  | int64_t Offset = SizeOffset.second.getSExtValue(); | 
|  | // Three checks are required to ensure safety: | 
|  | // . Offset >= 0  (since the offset is given from the base ptr) | 
|  | // . Size >= Offset  (unsigned) | 
|  | // . Size - Offset >= NeededSize  (unsigned) | 
|  | return Offset >= 0 && Size >= uint64_t(Offset) && | 
|  | Size - uint64_t(Offset) >= TypeSize / 8; | 
|  | } |