| //===- HexagonVectorLoopCarriedReuse.cpp ----------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass removes the computation of provably redundant expressions that have | 
 | // been computed earlier in a previous iteration. It relies on the use of PHIs | 
 | // to identify loop carried dependences. This is scalar replacement for vector | 
 | // types. | 
 | // | 
 | //----------------------------------------------------------------------------- | 
 | // Motivation: Consider the case where we have the following loop structure. | 
 | // | 
 | // Loop: | 
 | //  t0 = a[i]; | 
 | //  t1 = f(t0); | 
 | //  t2 = g(t1); | 
 | //  ... | 
 | //  t3 = a[i+1]; | 
 | //  t4 = f(t3); | 
 | //  t5 = g(t4); | 
 | //  t6 = op(t2, t5) | 
 | //  cond_branch <Loop> | 
 | // | 
 | // This can be converted to | 
 | //  t00 = a[0]; | 
 | //  t10 = f(t00); | 
 | //  t20 = g(t10); | 
 | // Loop: | 
 | //  t2 = t20; | 
 | //  t3 = a[i+1]; | 
 | //  t4 = f(t3); | 
 | //  t5 = g(t4); | 
 | //  t6 = op(t2, t5) | 
 | //  t20 = t5 | 
 | //  cond_branch <Loop> | 
 | // | 
 | // SROA does a good job of reusing a[i+1] as a[i] in the next iteration. | 
 | // Such a loop comes to this pass in the following form. | 
 | // | 
 | // LoopPreheader: | 
 | //  X0 = a[0]; | 
 | // Loop: | 
 | //  X2 = PHI<(X0, LoopPreheader), (X1, Loop)> | 
 | //  t1 = f(X2)   <-- I1 | 
 | //  t2 = g(t1) | 
 | //  ... | 
 | //  X1 = a[i+1] | 
 | //  t4 = f(X1)   <-- I2 | 
 | //  t5 = g(t4) | 
 | //  t6 = op(t2, t5) | 
 | //  cond_branch <Loop> | 
 | // | 
 | // In this pass, we look for PHIs such as X2 whose incoming values come only | 
 | // from the Loop Preheader and over the backedge and additionaly, both these | 
 | // values are the results of the same operation in terms of opcode. We call such | 
 | // a PHI node a dependence chain or DepChain. In this case, the dependence of X2 | 
 | // over X1 is carried over only one iteration and so the DepChain is only one | 
 | // PHI node long. | 
 | // | 
 | // Then, we traverse the uses of the PHI (X2) and the uses of the value of the | 
 | // PHI coming  over the backedge (X1). We stop at the first pair of such users | 
 | // I1 (of X2) and I2 (of X1) that meet the following conditions. | 
 | // 1. I1 and I2 are the same operation, but with different operands. | 
 | // 2. X2 and X1 are used at the same operand number in the two instructions. | 
 | // 3. All other operands Op1 of I1 and Op2 of I2 are also such that there is a | 
 | //    a DepChain from Op1 to Op2 of the same length as that between X2 and X1. | 
 | // | 
 | // We then make the following transformation | 
 | // LoopPreheader: | 
 | //  X0 = a[0]; | 
 | //  Y0 = f(X0); | 
 | // Loop: | 
 | //  X2 = PHI<(X0, LoopPreheader), (X1, Loop)> | 
 | //  Y2 = PHI<(Y0, LoopPreheader), (t4, Loop)> | 
 | //  t1 = f(X2)   <-- Will be removed by DCE. | 
 | //  t2 = g(Y2) | 
 | //  ... | 
 | //  X1 = a[i+1] | 
 | //  t4 = f(X1) | 
 | //  t5 = g(t4) | 
 | //  t6 = op(t2, t5) | 
 | //  cond_branch <Loop> | 
 | // | 
 | // We proceed until we cannot find any more such instructions I1 and I2. | 
 | // | 
 | // --- DepChains & Loop carried dependences --- | 
 | // Consider a single basic block loop such as | 
 | // | 
 | // LoopPreheader: | 
 | //  X0 = ... | 
 | //  Y0 = ... | 
 | // Loop: | 
 | //  X2 = PHI<(X0, LoopPreheader), (X1, Loop)> | 
 | //  Y2 = PHI<(Y0, LoopPreheader), (X2, Loop)> | 
 | //  ... | 
 | //  X1 = ... | 
 | //  ... | 
 | //  cond_branch <Loop> | 
 | // | 
 | // Then there is a dependence between X2 and X1 that goes back one iteration, | 
 | // i.e. X1 is used as X2 in the very next iteration. We represent this as a | 
 | // DepChain from X2 to X1 (X2->X1). | 
 | // Similarly, there is a dependence between Y2 and X1 that goes back two | 
 | // iterations. X1 is used as Y2 two iterations after it is computed. This is | 
 | // represented by a DepChain as (Y2->X2->X1). | 
 | // | 
 | // A DepChain has the following properties. | 
 | // 1. Num of edges in DepChain = Number of Instructions in DepChain = Number of | 
 | //    iterations of carried dependence + 1. | 
 | // 2. All instructions in the DepChain except the last are PHIs. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/LoopPass.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/Use.h" | 
 | #include "llvm/IR/User.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Transforms/Utils.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <map> | 
 | #include <memory> | 
 | #include <set> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "hexagon-vlcr" | 
 |  | 
 | STATISTIC(HexagonNumVectorLoopCarriedReuse, | 
 |           "Number of values that were reused from a previous iteration."); | 
 |  | 
 | static cl::opt<int> HexagonVLCRIterationLim("hexagon-vlcr-iteration-lim", | 
 |     cl::Hidden, | 
 |     cl::desc("Maximum distance of loop carried dependences that are handled"), | 
 |     cl::init(2), cl::ZeroOrMore); | 
 |  | 
 | namespace llvm { | 
 |  | 
 | void initializeHexagonVectorLoopCarriedReusePass(PassRegistry&); | 
 | Pass *createHexagonVectorLoopCarriedReusePass(); | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | namespace { | 
 |  | 
 |   // See info about DepChain in the comments at the top of this file. | 
 |   using ChainOfDependences = SmallVector<Instruction *, 4>; | 
 |  | 
 |   class DepChain { | 
 |     ChainOfDependences Chain; | 
 |  | 
 |   public: | 
 |     bool isIdentical(DepChain &Other) const { | 
 |       if (Other.size() != size()) | 
 |         return false; | 
 |       ChainOfDependences &OtherChain = Other.getChain(); | 
 |       for (int i = 0; i < size(); ++i) { | 
 |         if (Chain[i] != OtherChain[i]) | 
 |           return false; | 
 |       } | 
 |       return true; | 
 |     } | 
 |  | 
 |     ChainOfDependences &getChain() { | 
 |       return Chain; | 
 |     } | 
 |  | 
 |     int size() const { | 
 |       return Chain.size(); | 
 |     } | 
 |  | 
 |     void clear() { | 
 |       Chain.clear(); | 
 |     } | 
 |  | 
 |     void push_back(Instruction *I) { | 
 |       Chain.push_back(I); | 
 |     } | 
 |  | 
 |     int iterations() const { | 
 |       return size() - 1; | 
 |     } | 
 |  | 
 |     Instruction *front() const { | 
 |       return Chain.front(); | 
 |     } | 
 |  | 
 |     Instruction *back() const { | 
 |       return Chain.back(); | 
 |     } | 
 |  | 
 |     Instruction *&operator[](const int index) { | 
 |       return Chain[index]; | 
 |     } | 
 |  | 
 |    friend raw_ostream &operator<< (raw_ostream &OS, const DepChain &D); | 
 |   }; | 
 |  | 
 |   LLVM_ATTRIBUTE_UNUSED | 
 |   raw_ostream &operator<<(raw_ostream &OS, const DepChain &D) { | 
 |     const ChainOfDependences &CD = D.Chain; | 
 |     int ChainSize = CD.size(); | 
 |     OS << "**DepChain Start::**\n"; | 
 |     for (int i = 0; i < ChainSize -1; ++i) { | 
 |       OS << *(CD[i]) << " -->\n"; | 
 |     } | 
 |     OS << *CD[ChainSize-1] << "\n"; | 
 |     return OS; | 
 |   } | 
 |  | 
 |   struct ReuseValue { | 
 |     Instruction *Inst2Replace = nullptr; | 
 |  | 
 |     // In the new PHI node that we'll construct this is the value that'll be | 
 |     // used over the backedge. This is teh value that gets reused from a | 
 |     // previous iteration. | 
 |     Instruction *BackedgeInst = nullptr; | 
 |  | 
 |     ReuseValue() = default; | 
 |  | 
 |     void reset() { Inst2Replace = nullptr; BackedgeInst = nullptr; } | 
 |     bool isDefined() { return Inst2Replace != nullptr; } | 
 |   }; | 
 |  | 
 |   LLVM_ATTRIBUTE_UNUSED | 
 |   raw_ostream &operator<<(raw_ostream &OS, const ReuseValue &RU) { | 
 |     OS << "** ReuseValue ***\n"; | 
 |     OS << "Instruction to Replace: " << *(RU.Inst2Replace) << "\n"; | 
 |     OS << "Backedge Instruction: " << *(RU.BackedgeInst) << "\n"; | 
 |     return OS; | 
 |   } | 
 |  | 
 |   class HexagonVectorLoopCarriedReuse : public LoopPass { | 
 |   public: | 
 |     static char ID; | 
 |  | 
 |     explicit HexagonVectorLoopCarriedReuse() : LoopPass(ID) { | 
 |       PassRegistry *PR = PassRegistry::getPassRegistry(); | 
 |       initializeHexagonVectorLoopCarriedReusePass(*PR); | 
 |     } | 
 |  | 
 |     StringRef getPassName() const override { | 
 |       return "Hexagon-specific loop carried reuse for HVX vectors"; | 
 |     } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.addRequired<LoopInfoWrapperPass>(); | 
 |       AU.addRequiredID(LoopSimplifyID); | 
 |       AU.addRequiredID(LCSSAID); | 
 |       AU.addPreservedID(LCSSAID); | 
 |       AU.setPreservesCFG(); | 
 |     } | 
 |  | 
 |     bool runOnLoop(Loop *L, LPPassManager &LPM) override; | 
 |  | 
 |   private: | 
 |     SetVector<DepChain *> Dependences; | 
 |     std::set<Instruction *> ReplacedInsts; | 
 |     Loop *CurLoop; | 
 |     ReuseValue ReuseCandidate; | 
 |  | 
 |     bool doVLCR(); | 
 |     void findLoopCarriedDeps(); | 
 |     void findValueToReuse(); | 
 |     void findDepChainFromPHI(Instruction *I, DepChain &D); | 
 |     void reuseValue(); | 
 |     Value *findValueInBlock(Value *Op, BasicBlock *BB); | 
 |     bool isDepChainBtwn(Instruction *I1, Instruction *I2, int Iters); | 
 |     DepChain *getDepChainBtwn(Instruction *I1, Instruction *I2); | 
 |     bool isEquivalentOperation(Instruction *I1, Instruction *I2); | 
 |     bool canReplace(Instruction *I); | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char HexagonVectorLoopCarriedReuse::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", | 
 |     "Hexagon-specific predictive commoning for HVX vectors", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) | 
 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) | 
 | INITIALIZE_PASS_END(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", | 
 |     "Hexagon-specific predictive commoning for HVX vectors", false, false) | 
 |  | 
 | bool HexagonVectorLoopCarriedReuse::runOnLoop(Loop *L, LPPassManager &LPM) { | 
 |   if (skipLoop(L)) | 
 |     return false; | 
 |  | 
 |   if (!L->getLoopPreheader()) | 
 |     return false; | 
 |  | 
 |   // Work only on innermost loops. | 
 |   if (!L->getSubLoops().empty()) | 
 |     return false; | 
 |  | 
 |   // Work only on single basic blocks loops. | 
 |   if (L->getNumBlocks() != 1) | 
 |     return false; | 
 |  | 
 |   CurLoop = L; | 
 |  | 
 |   return doVLCR(); | 
 | } | 
 |  | 
 | bool HexagonVectorLoopCarriedReuse::isEquivalentOperation(Instruction *I1, | 
 |                                                           Instruction *I2) { | 
 |   if (!I1->isSameOperationAs(I2)) | 
 |     return false; | 
 |   // This check is in place specifically for intrinsics. isSameOperationAs will | 
 |   // return two for any two hexagon intrinsics because they are essentially the | 
 |   // same instruciton (CallInst). We need to scratch the surface to see if they | 
 |   // are calls to the same function. | 
 |   if (CallInst *C1 = dyn_cast<CallInst>(I1)) { | 
 |     if (CallInst *C2 = dyn_cast<CallInst>(I2)) { | 
 |       if (C1->getCalledFunction() != C2->getCalledFunction()) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // If both the Instructions are of Vector Type and any of the element | 
 |   // is integer constant, check their values too for equivalence. | 
 |   if (I1->getType()->isVectorTy() && I2->getType()->isVectorTy()) { | 
 |     unsigned NumOperands = I1->getNumOperands(); | 
 |     for (unsigned i = 0; i < NumOperands; ++i) { | 
 |       ConstantInt *C1 = dyn_cast<ConstantInt>(I1->getOperand(i)); | 
 |       ConstantInt *C2 = dyn_cast<ConstantInt>(I2->getOperand(i)); | 
 |       if(!C1) continue; | 
 |       assert(C2); | 
 |       if (C1->getSExtValue() != C2->getSExtValue()) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonVectorLoopCarriedReuse::canReplace(Instruction *I) { | 
 |   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
 |   if (II && | 
 |       (II->getIntrinsicID() == Intrinsic::hexagon_V6_hi || | 
 |        II->getIntrinsicID() == Intrinsic::hexagon_V6_lo)) { | 
 |     LLVM_DEBUG(dbgs() << "Not considering for reuse: " << *II << "\n"); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 | void HexagonVectorLoopCarriedReuse::findValueToReuse() { | 
 |   for (auto *D : Dependences) { | 
 |     LLVM_DEBUG(dbgs() << "Processing dependence " << *(D->front()) << "\n"); | 
 |     if (D->iterations() > HexagonVLCRIterationLim) { | 
 |       LLVM_DEBUG( | 
 |           dbgs() | 
 |           << ".. Skipping because number of iterations > than the limit\n"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     PHINode *PN = cast<PHINode>(D->front()); | 
 |     Instruction *BEInst = D->back(); | 
 |     int Iters = D->iterations(); | 
 |     BasicBlock *BB = PN->getParent(); | 
 |     LLVM_DEBUG(dbgs() << "Checking if any uses of " << *PN | 
 |                       << " can be reused\n"); | 
 |  | 
 |     SmallVector<Instruction *, 4> PNUsers; | 
 |     for (auto UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { | 
 |       Use &U = *UI; | 
 |       Instruction *User = cast<Instruction>(U.getUser()); | 
 |  | 
 |       if (User->getParent() != BB) | 
 |         continue; | 
 |       if (ReplacedInsts.count(User)) { | 
 |         LLVM_DEBUG(dbgs() << *User | 
 |                           << " has already been replaced. Skipping...\n"); | 
 |         continue; | 
 |       } | 
 |       if (isa<PHINode>(User)) | 
 |         continue; | 
 |       if (User->mayHaveSideEffects()) | 
 |         continue; | 
 |       if (!canReplace(User)) | 
 |         continue; | 
 |  | 
 |       PNUsers.push_back(User); | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << PNUsers.size() << " use(s) of the PHI in the block\n"); | 
 |  | 
 |     // For each interesting use I of PN, find an Instruction BEUser that | 
 |     // performs the same operation as I on BEInst and whose other operands, | 
 |     // if any, can also be rematerialized in OtherBB. We stop when we find the | 
 |     // first such Instruction BEUser. This is because once BEUser is | 
 |     // rematerialized in OtherBB, we may find more such "fixup" opportunities | 
 |     // in this block. So, we'll start over again. | 
 |     for (Instruction *I : PNUsers) { | 
 |       for (auto UI = BEInst->use_begin(), E = BEInst->use_end(); UI != E; | 
 |            ++UI) { | 
 |         Use &U = *UI; | 
 |         Instruction *BEUser = cast<Instruction>(U.getUser()); | 
 |  | 
 |         if (BEUser->getParent() != BB) | 
 |           continue; | 
 |         if (!isEquivalentOperation(I, BEUser)) | 
 |           continue; | 
 |  | 
 |         int NumOperands = I->getNumOperands(); | 
 |  | 
 |         for (int OpNo = 0; OpNo < NumOperands; ++OpNo) { | 
 |           Value *Op = I->getOperand(OpNo); | 
 |           Instruction *OpInst = dyn_cast<Instruction>(Op); | 
 |           if (!OpInst) | 
 |             continue; | 
 |  | 
 |           Value *BEOp = BEUser->getOperand(OpNo); | 
 |           Instruction *BEOpInst = dyn_cast<Instruction>(BEOp); | 
 |  | 
 |           if (!isDepChainBtwn(OpInst, BEOpInst, Iters)) { | 
 |             BEUser = nullptr; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (BEUser) { | 
 |           LLVM_DEBUG(dbgs() << "Found Value for reuse.\n"); | 
 |           ReuseCandidate.Inst2Replace = I; | 
 |           ReuseCandidate.BackedgeInst = BEUser; | 
 |           return; | 
 |         } else | 
 |           ReuseCandidate.reset(); | 
 |       } | 
 |     } | 
 |   } | 
 |   ReuseCandidate.reset(); | 
 | } | 
 |  | 
 | Value *HexagonVectorLoopCarriedReuse::findValueInBlock(Value *Op, | 
 |                                                        BasicBlock *BB) { | 
 |   PHINode *PN = dyn_cast<PHINode>(Op); | 
 |   assert(PN); | 
 |   Value *ValueInBlock = PN->getIncomingValueForBlock(BB); | 
 |   return ValueInBlock; | 
 | } | 
 |  | 
 | void HexagonVectorLoopCarriedReuse::reuseValue() { | 
 |   LLVM_DEBUG(dbgs() << ReuseCandidate); | 
 |   Instruction *Inst2Replace = ReuseCandidate.Inst2Replace; | 
 |   Instruction *BEInst = ReuseCandidate.BackedgeInst; | 
 |   int NumOperands = Inst2Replace->getNumOperands(); | 
 |   std::map<Instruction *, DepChain *> DepChains; | 
 |   int Iterations = -1; | 
 |   BasicBlock *LoopPH = CurLoop->getLoopPreheader(); | 
 |  | 
 |   for (int i = 0; i < NumOperands; ++i) { | 
 |     Instruction *I = dyn_cast<Instruction>(Inst2Replace->getOperand(i)); | 
 |     if(!I) | 
 |       continue; | 
 |     else { | 
 |       Instruction *J = cast<Instruction>(BEInst->getOperand(i)); | 
 |       DepChain *D = getDepChainBtwn(I, J); | 
 |  | 
 |       assert(D && | 
 |              "No DepChain between corresponding operands in ReuseCandidate\n"); | 
 |       if (Iterations == -1) | 
 |         Iterations = D->iterations(); | 
 |       assert(Iterations == D->iterations() && "Iterations mismatch"); | 
 |       DepChains[I] = D; | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "reuseValue is making the following changes\n"); | 
 |  | 
 |   SmallVector<Instruction *, 4> InstsInPreheader; | 
 |   for (int i = 0; i < Iterations; ++i) { | 
 |     Instruction *InstInPreheader = Inst2Replace->clone(); | 
 |     SmallVector<Value *, 4> Ops; | 
 |     for (int j = 0; j < NumOperands; ++j) { | 
 |       Instruction *I = dyn_cast<Instruction>(Inst2Replace->getOperand(j)); | 
 |       if (!I) | 
 |         continue; | 
 |       // Get the DepChain corresponding to this operand. | 
 |       DepChain &D = *DepChains[I]; | 
 |       // Get the PHI for the iteration number and find | 
 |       // the incoming value from the Loop Preheader for | 
 |       // that PHI. | 
 |       Value *ValInPreheader = findValueInBlock(D[i], LoopPH); | 
 |       InstInPreheader->setOperand(j, ValInPreheader); | 
 |     } | 
 |     InstsInPreheader.push_back(InstInPreheader); | 
 |     InstInPreheader->setName(Inst2Replace->getName() + ".hexagon.vlcr"); | 
 |     InstInPreheader->insertBefore(LoopPH->getTerminator()); | 
 |     LLVM_DEBUG(dbgs() << "Added " << *InstInPreheader << " to " | 
 |                       << LoopPH->getName() << "\n"); | 
 |   } | 
 |   BasicBlock *BB = BEInst->getParent(); | 
 |   IRBuilder<> IRB(BB); | 
 |   IRB.SetInsertPoint(BB->getFirstNonPHI()); | 
 |   Value *BEVal = BEInst; | 
 |   PHINode *NewPhi; | 
 |   for (int i = Iterations-1; i >=0 ; --i) { | 
 |     Instruction *InstInPreheader = InstsInPreheader[i]; | 
 |     NewPhi = IRB.CreatePHI(InstInPreheader->getType(), 2); | 
 |     NewPhi->addIncoming(InstInPreheader, LoopPH); | 
 |     NewPhi->addIncoming(BEVal, BB); | 
 |     LLVM_DEBUG(dbgs() << "Adding " << *NewPhi << " to " << BB->getName() | 
 |                       << "\n"); | 
 |     BEVal = NewPhi; | 
 |   } | 
 |   // We are in LCSSA form. So, a value defined inside the Loop is used only | 
 |   // inside the loop. So, the following is safe. | 
 |   Inst2Replace->replaceAllUsesWith(NewPhi); | 
 |   ReplacedInsts.insert(Inst2Replace); | 
 |   ++HexagonNumVectorLoopCarriedReuse; | 
 | } | 
 |  | 
 | bool HexagonVectorLoopCarriedReuse::doVLCR() { | 
 |   assert(CurLoop->getSubLoops().empty() && | 
 |          "Can do VLCR on the innermost loop only"); | 
 |   assert((CurLoop->getNumBlocks() == 1) && | 
 |          "Can do VLCR only on single block loops"); | 
 |  | 
 |   bool Changed = false; | 
 |   bool Continue; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Working on Loop: " << *CurLoop->getHeader() << "\n"); | 
 |   do { | 
 |     // Reset datastructures. | 
 |     Dependences.clear(); | 
 |     Continue = false; | 
 |  | 
 |     findLoopCarriedDeps(); | 
 |     findValueToReuse(); | 
 |     if (ReuseCandidate.isDefined()) { | 
 |       reuseValue(); | 
 |       Changed = true; | 
 |       Continue = true; | 
 |     } | 
 |     llvm::for_each(Dependences, std::default_delete<DepChain>()); | 
 |   } while (Continue); | 
 |   return Changed; | 
 | } | 
 |  | 
 | void HexagonVectorLoopCarriedReuse::findDepChainFromPHI(Instruction *I, | 
 |                                                         DepChain &D) { | 
 |   PHINode *PN = dyn_cast<PHINode>(I); | 
 |   if (!PN) { | 
 |     D.push_back(I); | 
 |     return; | 
 |   } else { | 
 |     auto NumIncomingValues = PN->getNumIncomingValues(); | 
 |     if (NumIncomingValues != 2) { | 
 |       D.clear(); | 
 |       return; | 
 |     } | 
 |  | 
 |     BasicBlock *BB = PN->getParent(); | 
 |     if (BB != CurLoop->getHeader()) { | 
 |       D.clear(); | 
 |       return; | 
 |     } | 
 |  | 
 |     Value *BEVal = PN->getIncomingValueForBlock(BB); | 
 |     Instruction *BEInst = dyn_cast<Instruction>(BEVal); | 
 |     // This is a single block loop with a preheader, so at least | 
 |     // one value should come over the backedge. | 
 |     assert(BEInst && "There should be a value over the backedge"); | 
 |  | 
 |     Value *PreHdrVal = | 
 |       PN->getIncomingValueForBlock(CurLoop->getLoopPreheader()); | 
 |     if(!PreHdrVal || !isa<Instruction>(PreHdrVal)) { | 
 |       D.clear(); | 
 |       return; | 
 |     } | 
 |     D.push_back(PN); | 
 |     findDepChainFromPHI(BEInst, D); | 
 |   } | 
 | } | 
 |  | 
 | bool HexagonVectorLoopCarriedReuse::isDepChainBtwn(Instruction *I1, | 
 |                                                       Instruction *I2, | 
 |                                                       int Iters) { | 
 |   for (auto *D : Dependences) { | 
 |     if (D->front() == I1 && D->back() == I2 && D->iterations() == Iters) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | DepChain *HexagonVectorLoopCarriedReuse::getDepChainBtwn(Instruction *I1, | 
 |                                                             Instruction *I2) { | 
 |   for (auto *D : Dependences) { | 
 |     if (D->front() == I1 && D->back() == I2) | 
 |       return D; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void HexagonVectorLoopCarriedReuse::findLoopCarriedDeps() { | 
 |   BasicBlock *BB = CurLoop->getHeader(); | 
 |   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { | 
 |     auto *PN = cast<PHINode>(I); | 
 |     if (!isa<VectorType>(PN->getType())) | 
 |       continue; | 
 |  | 
 |     DepChain *D = new DepChain(); | 
 |     findDepChainFromPHI(PN, *D); | 
 |     if (D->size() != 0) | 
 |       Dependences.insert(D); | 
 |     else | 
 |       delete D; | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "Found " << Dependences.size() << " dependences\n"); | 
 |   LLVM_DEBUG(for (size_t i = 0; i < Dependences.size(); | 
 |                   ++i) { dbgs() << *Dependences[i] << "\n"; }); | 
 | } | 
 |  | 
 | Pass *llvm::createHexagonVectorLoopCarriedReusePass() { | 
 |   return new HexagonVectorLoopCarriedReuse(); | 
 | } |