| //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Hexagon specific subclass of TargetSubtarget. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "Hexagon.h" | 
 | #include "HexagonInstrInfo.h" | 
 | #include "HexagonRegisterInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "MCTargetDesc/HexagonMCTargetDesc.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineScheduler.h" | 
 | #include "llvm/CodeGen/ScheduleDAG.h" | 
 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <map> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "hexagon-subtarget" | 
 |  | 
 | #define GET_SUBTARGETINFO_CTOR | 
 | #define GET_SUBTARGETINFO_TARGET_DESC | 
 | #include "HexagonGenSubtargetInfo.inc" | 
 |  | 
 |  | 
 | static cl::opt<bool> EnableBSBSched("enable-bsb-sched", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
 |  | 
 | static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(false)); | 
 |  | 
 | static cl::opt<bool> EnableDotCurSched("enable-cur-sched", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
 |   cl::desc("Enable the scheduler to generate .cur")); | 
 |  | 
 | static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
 |   cl::desc("Disable Hexagon MI Scheduling")); | 
 |  | 
 | static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
 |   cl::desc("Enable subregister liveness tracking for Hexagon")); | 
 |  | 
 | static cl::opt<bool> OverrideLongCalls("hexagon-long-calls", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
 |   cl::desc("If present, forces/disables the use of long calls")); | 
 |  | 
 | static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(false), | 
 |   cl::desc("Consider calls to be predicable")); | 
 |  | 
 | static cl::opt<bool> SchedPredsCloser("sched-preds-closer", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
 |  | 
 | static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true)); | 
 |  | 
 | static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict", | 
 |   cl::Hidden, cl::ZeroOrMore, cl::init(true), | 
 |   cl::desc("Enable checking for cache bank conflicts")); | 
 |  | 
 |  | 
 | HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, | 
 |                                    StringRef FS, const TargetMachine &TM) | 
 |     : HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()), | 
 |       CPUString(Hexagon_MC::selectHexagonCPU(CPU)), | 
 |       InstrInfo(initializeSubtargetDependencies(CPU, FS)), | 
 |       RegInfo(getHwMode()), TLInfo(TM, *this), | 
 |       InstrItins(getInstrItineraryForCPU(CPUString)) { | 
 |   // Beware of the default constructor of InstrItineraryData: it will | 
 |   // reset all members to 0. | 
 |   assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); | 
 | } | 
 |  | 
 | HexagonSubtarget & | 
 | HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { | 
 |   static std::map<StringRef, Hexagon::ArchEnum> CpuTable{ | 
 |       {"generic", Hexagon::ArchEnum::V60}, | 
 |       {"hexagonv5", Hexagon::ArchEnum::V5}, | 
 |       {"hexagonv55", Hexagon::ArchEnum::V55}, | 
 |       {"hexagonv60", Hexagon::ArchEnum::V60}, | 
 |       {"hexagonv62", Hexagon::ArchEnum::V62}, | 
 |       {"hexagonv65", Hexagon::ArchEnum::V65}, | 
 |       {"hexagonv66", Hexagon::ArchEnum::V66}, | 
 |   }; | 
 |  | 
 |   auto FoundIt = CpuTable.find(CPUString); | 
 |   if (FoundIt != CpuTable.end()) | 
 |     HexagonArchVersion = FoundIt->second; | 
 |   else | 
 |     llvm_unreachable("Unrecognized Hexagon processor version"); | 
 |  | 
 |   UseHVX128BOps = false; | 
 |   UseHVX64BOps = false; | 
 |   UseLongCalls = false; | 
 |  | 
 |   UseBSBScheduling = hasV60Ops() && EnableBSBSched; | 
 |  | 
 |   ParseSubtargetFeatures(CPUString, FS); | 
 |  | 
 |   if (OverrideLongCalls.getPosition()) | 
 |     UseLongCalls = OverrideLongCalls; | 
 |  | 
 |   FeatureBitset Features = getFeatureBits(); | 
 |   if (HexagonDisableDuplex) | 
 |     setFeatureBits(Features.set(Hexagon::FeatureDuplex, false)); | 
 |   setFeatureBits(Hexagon_MC::completeHVXFeatures(Features)); | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { | 
 |   for (SUnit &SU : DAG->SUnits) { | 
 |     if (!SU.isInstr()) | 
 |       continue; | 
 |     SmallVector<SDep, 4> Erase; | 
 |     for (auto &D : SU.Preds) | 
 |       if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) | 
 |         Erase.push_back(D); | 
 |     for (auto &E : Erase) | 
 |       SU.removePred(E); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { | 
 |   for (SUnit &SU : DAG->SUnits) { | 
 |     // Update the latency of chain edges between v60 vector load or store | 
 |     // instructions to be 1. These instruction cannot be scheduled in the | 
 |     // same packet. | 
 |     MachineInstr &MI1 = *SU.getInstr(); | 
 |     auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); | 
 |     bool IsStoreMI1 = MI1.mayStore(); | 
 |     bool IsLoadMI1 = MI1.mayLoad(); | 
 |     if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) | 
 |       continue; | 
 |     for (SDep &SI : SU.Succs) { | 
 |       if (SI.getKind() != SDep::Order || SI.getLatency() != 0) | 
 |         continue; | 
 |       MachineInstr &MI2 = *SI.getSUnit()->getInstr(); | 
 |       if (!QII->isHVXVec(MI2)) | 
 |         continue; | 
 |       if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { | 
 |         SI.setLatency(1); | 
 |         SU.setHeightDirty(); | 
 |         // Change the dependence in the opposite direction too. | 
 |         for (SDep &PI : SI.getSUnit()->Preds) { | 
 |           if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) | 
 |             continue; | 
 |           PI.setLatency(1); | 
 |           SI.getSUnit()->setDepthDirty(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Check if a call and subsequent A2_tfrpi instructions should maintain | 
 | // scheduling affinity. We are looking for the TFRI to be consumed in | 
 | // the next instruction. This should help reduce the instances of | 
 | // double register pairs being allocated and scheduled before a call | 
 | // when not used until after the call. This situation is exacerbated | 
 | // by the fact that we allocate the pair from the callee saves list, | 
 | // leading to excess spills and restores. | 
 | bool HexagonSubtarget::CallMutation::shouldTFRICallBind( | 
 |       const HexagonInstrInfo &HII, const SUnit &Inst1, | 
 |       const SUnit &Inst2) const { | 
 |   if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) | 
 |     return false; | 
 |  | 
 |   // TypeXTYPE are 64 bit operations. | 
 |   unsigned Type = HII.getType(*Inst2.getInstr()); | 
 |   return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || | 
 |          Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; | 
 | } | 
 |  | 
 | void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { | 
 |   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); | 
 |   SUnit* LastSequentialCall = nullptr; | 
 |   // Map from virtual register to physical register from the copy. | 
 |   DenseMap<unsigned, unsigned> VRegHoldingReg; | 
 |   // Map from the physical register to the instruction that uses virtual | 
 |   // register. This is used to create the barrier edge. | 
 |   DenseMap<unsigned, SUnit *> LastVRegUse; | 
 |   auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); | 
 |   auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); | 
 |  | 
 |   // Currently we only catch the situation when compare gets scheduled | 
 |   // before preceding call. | 
 |   for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { | 
 |     // Remember the call. | 
 |     if (DAG->SUnits[su].getInstr()->isCall()) | 
 |       LastSequentialCall = &DAG->SUnits[su]; | 
 |     // Look for a compare that defines a predicate. | 
 |     else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) | 
 |       DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); | 
 |     // Look for call and tfri* instructions. | 
 |     else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && | 
 |              shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) | 
 |       DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); | 
 |     // Prevent redundant register copies due to reads and writes of physical | 
 |     // registers. The original motivation for this was the code generated | 
 |     // between two calls, which are caused both the return value and the | 
 |     // argument for the next call being in %r0. | 
 |     // Example: | 
 |     //   1: <call1> | 
 |     //   2: %vreg = COPY %r0 | 
 |     //   3: <use of %vreg> | 
 |     //   4: %r0 = ... | 
 |     //   5: <call2> | 
 |     // The scheduler would often swap 3 and 4, so an additional register is | 
 |     // needed. This code inserts a Barrier dependence between 3 & 4 to prevent | 
 |     // this. | 
 |     // The code below checks for all the physical registers, not just R0/D0/V0. | 
 |     else if (SchedRetvalOptimization) { | 
 |       const MachineInstr *MI = DAG->SUnits[su].getInstr(); | 
 |       if (MI->isCopy() && | 
 |           TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) { | 
 |         // %vregX = COPY %r0 | 
 |         VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); | 
 |         LastVRegUse.erase(MI->getOperand(1).getReg()); | 
 |       } else { | 
 |         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |           const MachineOperand &MO = MI->getOperand(i); | 
 |           if (!MO.isReg()) | 
 |             continue; | 
 |           if (MO.isUse() && !MI->isCopy() && | 
 |               VRegHoldingReg.count(MO.getReg())) { | 
 |             // <use of %vregX> | 
 |             LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; | 
 |           } else if (MO.isDef() && | 
 |                      TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
 |             for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); | 
 |                  ++AI) { | 
 |               if (LastVRegUse.count(*AI) && | 
 |                   LastVRegUse[*AI] != &DAG->SUnits[su]) | 
 |                 // %r0 = ... | 
 |                 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); | 
 |               LastVRegUse.erase(*AI); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { | 
 |   if (!EnableCheckBankConflict) | 
 |     return; | 
 |  | 
 |   const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); | 
 |  | 
 |   // Create artificial edges between loads that could likely cause a bank | 
 |   // conflict. Since such loads would normally not have any dependency | 
 |   // between them, we cannot rely on existing edges. | 
 |   for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { | 
 |     SUnit &S0 = DAG->SUnits[i]; | 
 |     MachineInstr &L0 = *S0.getInstr(); | 
 |     if (!L0.mayLoad() || L0.mayStore() || | 
 |         HII.getAddrMode(L0) != HexagonII::BaseImmOffset) | 
 |       continue; | 
 |     int64_t Offset0; | 
 |     unsigned Size0; | 
 |     MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); | 
 |     // Is the access size is longer than the L1 cache line, skip the check. | 
 |     if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32) | 
 |       continue; | 
 |     // Scan only up to 32 instructions ahead (to avoid n^2 complexity). | 
 |     for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { | 
 |       SUnit &S1 = DAG->SUnits[j]; | 
 |       MachineInstr &L1 = *S1.getInstr(); | 
 |       if (!L1.mayLoad() || L1.mayStore() || | 
 |           HII.getAddrMode(L1) != HexagonII::BaseImmOffset) | 
 |         continue; | 
 |       int64_t Offset1; | 
 |       unsigned Size1; | 
 |       MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); | 
 |       if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 || | 
 |           BaseOp0->getReg() != BaseOp1->getReg()) | 
 |         continue; | 
 |       // Check bits 3 and 4 of the offset: if they differ, a bank conflict | 
 |       // is unlikely. | 
 |       if (((Offset0 ^ Offset1) & 0x18) != 0) | 
 |         continue; | 
 |       // Bits 3 and 4 are the same, add an artificial edge and set extra | 
 |       // latency. | 
 |       SDep A(&S0, SDep::Artificial); | 
 |       A.setLatency(1); | 
 |       S1.addPred(A, true); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Enable use of alias analysis during code generation (during MI | 
 | /// scheduling, DAGCombine, etc.). | 
 | bool HexagonSubtarget::useAA() const { | 
 |   if (OptLevel != CodeGenOpt::None) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// Perform target specific adjustments to the latency of a schedule | 
 | /// dependency. | 
 | void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst, | 
 |                                              SDep &Dep) const { | 
 |   MachineInstr *SrcInst = Src->getInstr(); | 
 |   MachineInstr *DstInst = Dst->getInstr(); | 
 |   if (!Src->isInstr() || !Dst->isInstr()) | 
 |     return; | 
 |  | 
 |   const HexagonInstrInfo *QII = getInstrInfo(); | 
 |  | 
 |   // Instructions with .new operands have zero latency. | 
 |   SmallSet<SUnit *, 4> ExclSrc; | 
 |   SmallSet<SUnit *, 4> ExclDst; | 
 |   if (QII->canExecuteInBundle(*SrcInst, *DstInst) && | 
 |       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { | 
 |     Dep.setLatency(0); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!hasV60Ops()) | 
 |     return; | 
 |  | 
 |   // Set the latency for a copy to zero since we hope that is will get removed. | 
 |   if (DstInst->isCopy()) | 
 |     Dep.setLatency(0); | 
 |  | 
 |   // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine | 
 |   // the correct latency. | 
 |   if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) { | 
 |     unsigned DReg = DstInst->getOperand(0).getReg(); | 
 |     MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr(); | 
 |     unsigned UseIdx = -1; | 
 |     for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { | 
 |       const MachineOperand &MO = DDst->getOperand(OpNum); | 
 |       if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { | 
 |         UseIdx = OpNum; | 
 |         break; | 
 |       } | 
 |     } | 
 |     int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, | 
 |                                                 0, *DDst, UseIdx)); | 
 |     DLatency = std::max(DLatency, 0); | 
 |     Dep.setLatency((unsigned)DLatency); | 
 |   } | 
 |  | 
 |   // Try to schedule uses near definitions to generate .cur. | 
 |   ExclSrc.clear(); | 
 |   ExclDst.clear(); | 
 |   if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && | 
 |       isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { | 
 |     Dep.setLatency(0); | 
 |     return; | 
 |   } | 
 |  | 
 |   updateLatency(*SrcInst, *DstInst, Dep); | 
 | } | 
 |  | 
 | void HexagonSubtarget::getPostRAMutations( | 
 |     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { | 
 |   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); | 
 |   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); | 
 |   Mutations.push_back(llvm::make_unique<BankConflictMutation>()); | 
 | } | 
 |  | 
 | void HexagonSubtarget::getSMSMutations( | 
 |     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { | 
 |   Mutations.push_back(llvm::make_unique<UsrOverflowMutation>()); | 
 |   Mutations.push_back(llvm::make_unique<HVXMemLatencyMutation>()); | 
 | } | 
 |  | 
 | // Pin the vtable to this file. | 
 | void HexagonSubtarget::anchor() {} | 
 |  | 
 | bool HexagonSubtarget::enableMachineScheduler() const { | 
 |   if (DisableHexagonMISched.getNumOccurrences()) | 
 |     return !DisableHexagonMISched; | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonSubtarget::usePredicatedCalls() const { | 
 |   return EnablePredicatedCalls; | 
 | } | 
 |  | 
 | void HexagonSubtarget::updateLatency(MachineInstr &SrcInst, | 
 |       MachineInstr &DstInst, SDep &Dep) const { | 
 |   if (Dep.isArtificial()) { | 
 |     Dep.setLatency(1); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!hasV60Ops()) | 
 |     return; | 
 |  | 
 |   auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo()); | 
 |  | 
 |   // BSB scheduling. | 
 |   if (QII.isHVXVec(SrcInst) || useBSBScheduling()) | 
 |     Dep.setLatency((Dep.getLatency() + 1) >> 1); | 
 | } | 
 |  | 
 | void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { | 
 |   MachineInstr *SrcI = Src->getInstr(); | 
 |   for (auto &I : Src->Succs) { | 
 |     if (!I.isAssignedRegDep() || I.getSUnit() != Dst) | 
 |       continue; | 
 |     unsigned DepR = I.getReg(); | 
 |     int DefIdx = -1; | 
 |     for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { | 
 |       const MachineOperand &MO = SrcI->getOperand(OpNum); | 
 |       if (MO.isReg() && MO.isDef() && MO.getReg() == DepR) | 
 |         DefIdx = OpNum; | 
 |     } | 
 |     assert(DefIdx >= 0 && "Def Reg not found in Src MI"); | 
 |     MachineInstr *DstI = Dst->getInstr(); | 
 |     SDep T = I; | 
 |     for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { | 
 |       const MachineOperand &MO = DstI->getOperand(OpNum); | 
 |       if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { | 
 |         int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, | 
 |                                                    DefIdx, *DstI, OpNum)); | 
 |  | 
 |         // For some instructions (ex: COPY), we might end up with < 0 latency | 
 |         // as they don't have any Itinerary class associated with them. | 
 |         Latency = std::max(Latency, 0); | 
 |  | 
 |         I.setLatency(Latency); | 
 |         updateLatency(*SrcI, *DstI, I); | 
 |       } | 
 |     } | 
 |  | 
 |     // Update the latency of opposite edge too. | 
 |     T.setSUnit(Src); | 
 |     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); | 
 |     assert(F != Dst->Preds.end()); | 
 |     F->setLatency(I.getLatency()); | 
 |   } | 
 | } | 
 |  | 
 | /// Change the latency between the two SUnits. | 
 | void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) | 
 |       const { | 
 |   for (auto &I : Src->Succs) { | 
 |     if (!I.isAssignedRegDep() || I.getSUnit() != Dst) | 
 |       continue; | 
 |     SDep T = I; | 
 |     I.setLatency(Lat); | 
 |  | 
 |     // Update the latency of opposite edge too. | 
 |     T.setSUnit(Src); | 
 |     auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T); | 
 |     assert(F != Dst->Preds.end()); | 
 |     F->setLatency(Lat); | 
 |   } | 
 | } | 
 |  | 
 | /// If the SUnit has a zero latency edge, return the other SUnit. | 
 | static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { | 
 |   for (auto &I : Deps) | 
 |     if (I.isAssignedRegDep() && I.getLatency() == 0 && | 
 |         !I.getSUnit()->getInstr()->isPseudo()) | 
 |       return I.getSUnit(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Return true if these are the best two instructions to schedule | 
 | // together with a zero latency. Only one dependence should have a zero | 
 | // latency. If there are multiple choices, choose the best, and change | 
 | // the others, if needed. | 
 | bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, | 
 |       const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, | 
 |       SmallSet<SUnit*, 4> &ExclDst) const { | 
 |   MachineInstr &SrcInst = *Src->getInstr(); | 
 |   MachineInstr &DstInst = *Dst->getInstr(); | 
 |  | 
 |   // Ignore Boundary SU nodes as these have null instructions. | 
 |   if (Dst->isBoundaryNode()) | 
 |     return false; | 
 |  | 
 |   if (SrcInst.isPHI() || DstInst.isPHI()) | 
 |     return false; | 
 |  | 
 |   if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && | 
 |       !TII->canExecuteInBundle(SrcInst, DstInst)) | 
 |     return false; | 
 |  | 
 |   // The architecture doesn't allow three dependent instructions in the same | 
 |   // packet. So, if the destination has a zero latency successor, then it's | 
 |   // not a candidate for a zero latency predecessor. | 
 |   if (getZeroLatency(Dst, Dst->Succs) != nullptr) | 
 |     return false; | 
 |  | 
 |   // Check if the Dst instruction is the best candidate first. | 
 |   SUnit *Best = nullptr; | 
 |   SUnit *DstBest = nullptr; | 
 |   SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); | 
 |   if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { | 
 |     // Check that Src doesn't have a better candidate. | 
 |     DstBest = getZeroLatency(Src, Src->Succs); | 
 |     if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) | 
 |       Best = Dst; | 
 |   } | 
 |   if (Best != Dst) | 
 |     return false; | 
 |  | 
 |   // The caller frequently adds the same dependence twice. If so, then | 
 |   // return true for this case too. | 
 |   if ((Src == SrcBest && Dst == DstBest ) || | 
 |       (SrcBest == nullptr && Dst == DstBest) || | 
 |       (Src == SrcBest && Dst == nullptr)) | 
 |     return true; | 
 |  | 
 |   // Reassign the latency for the previous bests, which requires setting | 
 |   // the dependence edge in both directions. | 
 |   if (SrcBest != nullptr) { | 
 |     if (!hasV60Ops()) | 
 |       changeLatency(SrcBest, Dst, 1); | 
 |     else | 
 |       restoreLatency(SrcBest, Dst); | 
 |   } | 
 |   if (DstBest != nullptr) { | 
 |     if (!hasV60Ops()) | 
 |       changeLatency(Src, DstBest, 1); | 
 |     else | 
 |       restoreLatency(Src, DstBest); | 
 |   } | 
 |  | 
 |   // Attempt to find another opprotunity for zero latency in a different | 
 |   // dependence. | 
 |   if (SrcBest && DstBest) | 
 |     // If there is an edge from SrcBest to DstBst, then try to change that | 
 |     // to 0 now. | 
 |     changeLatency(SrcBest, DstBest, 0); | 
 |   else if (DstBest) { | 
 |     // Check if the previous best destination instruction has a new zero | 
 |     // latency dependence opportunity. | 
 |     ExclSrc.insert(Src); | 
 |     for (auto &I : DstBest->Preds) | 
 |       if (ExclSrc.count(I.getSUnit()) == 0 && | 
 |           isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) | 
 |         changeLatency(I.getSUnit(), DstBest, 0); | 
 |   } else if (SrcBest) { | 
 |     // Check if previous best source instruction has a new zero latency | 
 |     // dependence opportunity. | 
 |     ExclDst.insert(Dst); | 
 |     for (auto &I : SrcBest->Succs) | 
 |       if (ExclDst.count(I.getSUnit()) == 0 && | 
 |           isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) | 
 |         changeLatency(SrcBest, I.getSUnit(), 0); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | unsigned HexagonSubtarget::getL1CacheLineSize() const { | 
 |   return 32; | 
 | } | 
 |  | 
 | unsigned HexagonSubtarget::getL1PrefetchDistance() const { | 
 |   return 32; | 
 | } | 
 |  | 
 | bool HexagonSubtarget::enableSubRegLiveness() const { | 
 |   return EnableSubregLiveness; | 
 | } |