|  | //===- ELF.cpp - ELF object file implementation ---------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Object/ELF.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace object; | 
|  |  | 
|  | #define STRINGIFY_ENUM_CASE(ns, name)                                          \ | 
|  | case ns::name:                                                               \ | 
|  | return #name; | 
|  |  | 
|  | #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name) | 
|  |  | 
|  | StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine, | 
|  | uint32_t Type) { | 
|  | switch (Machine) { | 
|  | case ELF::EM_X86_64: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_386: | 
|  | case ELF::EM_IAMCU: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/i386.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_MIPS: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/Mips.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_AARCH64: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_ARM: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/ARM.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_ARC_COMPACT: | 
|  | case ELF::EM_ARC_COMPACT2: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/ARC.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_AVR: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/AVR.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_HEXAGON: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_LANAI: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_PPC: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_PPC64: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_RISCV: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_S390: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_SPARC: | 
|  | case ELF::EM_SPARC32PLUS: | 
|  | case ELF::EM_SPARCV9: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_AMDGPU: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_BPF: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/BPF.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ELF::EM_MSP430: | 
|  | switch (Type) { | 
|  | #include "llvm/BinaryFormat/ELFRelocs/MSP430.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return "Unknown"; | 
|  | } | 
|  |  | 
|  | #undef ELF_RELOC | 
|  |  | 
|  | uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) { | 
|  | switch (Machine) { | 
|  | case ELF::EM_X86_64: | 
|  | return ELF::R_X86_64_RELATIVE; | 
|  | case ELF::EM_386: | 
|  | case ELF::EM_IAMCU: | 
|  | return ELF::R_386_RELATIVE; | 
|  | case ELF::EM_MIPS: | 
|  | break; | 
|  | case ELF::EM_AARCH64: | 
|  | return ELF::R_AARCH64_RELATIVE; | 
|  | case ELF::EM_ARM: | 
|  | return ELF::R_ARM_RELATIVE; | 
|  | case ELF::EM_ARC_COMPACT: | 
|  | case ELF::EM_ARC_COMPACT2: | 
|  | return ELF::R_ARC_RELATIVE; | 
|  | case ELF::EM_AVR: | 
|  | break; | 
|  | case ELF::EM_HEXAGON: | 
|  | return ELF::R_HEX_RELATIVE; | 
|  | case ELF::EM_LANAI: | 
|  | break; | 
|  | case ELF::EM_PPC: | 
|  | break; | 
|  | case ELF::EM_PPC64: | 
|  | return ELF::R_PPC64_RELATIVE; | 
|  | case ELF::EM_RISCV: | 
|  | return ELF::R_RISCV_RELATIVE; | 
|  | case ELF::EM_S390: | 
|  | return ELF::R_390_RELATIVE; | 
|  | case ELF::EM_SPARC: | 
|  | case ELF::EM_SPARC32PLUS: | 
|  | case ELF::EM_SPARCV9: | 
|  | return ELF::R_SPARC_RELATIVE; | 
|  | case ELF::EM_AMDGPU: | 
|  | break; | 
|  | case ELF::EM_BPF: | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { | 
|  | switch (Machine) { | 
|  | case ELF::EM_ARM: | 
|  | switch (Type) { | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); | 
|  | } | 
|  | break; | 
|  | case ELF::EM_HEXAGON: | 
|  | switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); } | 
|  | break; | 
|  | case ELF::EM_X86_64: | 
|  | switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } | 
|  | break; | 
|  | case ELF::EM_MIPS: | 
|  | case ELF::EM_MIPS_RS3_LE: | 
|  | switch (Type) { | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (Type) { | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_NULL); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_RELA); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_HASH); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_NOTE); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_REL); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_RELR); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); | 
|  | STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); | 
|  | default: | 
|  | return "Unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Expected<std::vector<typename ELFT::Rela>> | 
|  | ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const { | 
|  | // This function decodes the contents of an SHT_RELR packed relocation | 
|  | // section. | 
|  | // | 
|  | // Proposal for adding SHT_RELR sections to generic-abi is here: | 
|  | //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg | 
|  | // | 
|  | // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks | 
|  | // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] | 
|  | // | 
|  | // i.e. start with an address, followed by any number of bitmaps. The address | 
|  | // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 | 
|  | // relocations each, at subsequent offsets following the last address entry. | 
|  | // | 
|  | // The bitmap entries must have 1 in the least significant bit. The assumption | 
|  | // here is that an address cannot have 1 in lsb. Odd addresses are not | 
|  | // supported. | 
|  | // | 
|  | // Excluding the least significant bit in the bitmap, each non-zero bit in | 
|  | // the bitmap represents a relocation to be applied to a corresponding machine | 
|  | // word that follows the base address word. The second least significant bit | 
|  | // represents the machine word immediately following the initial address, and | 
|  | // each bit that follows represents the next word, in linear order. As such, | 
|  | // a single bitmap can encode up to 31 relocations in a 32-bit object, and | 
|  | // 63 relocations in a 64-bit object. | 
|  | // | 
|  | // This encoding has a couple of interesting properties: | 
|  | // 1. Looking at any entry, it is clear whether it's an address or a bitmap: | 
|  | //    even means address, odd means bitmap. | 
|  | // 2. Just a simple list of addresses is a valid encoding. | 
|  |  | 
|  | Elf_Rela Rela; | 
|  | Rela.r_info = 0; | 
|  | Rela.r_addend = 0; | 
|  | Rela.setType(getRelativeRelocationType(), false); | 
|  | std::vector<Elf_Rela> Relocs; | 
|  |  | 
|  | // Word type: uint32_t for Elf32, and uint64_t for Elf64. | 
|  | typedef typename ELFT::uint Word; | 
|  |  | 
|  | // Word size in number of bytes. | 
|  | const size_t WordSize = sizeof(Word); | 
|  |  | 
|  | // Number of bits used for the relocation offsets bitmap. | 
|  | // These many relative relocations can be encoded in a single entry. | 
|  | const size_t NBits = 8*WordSize - 1; | 
|  |  | 
|  | Word Base = 0; | 
|  | for (const Elf_Relr &R : relrs) { | 
|  | Word Entry = R; | 
|  | if ((Entry&1) == 0) { | 
|  | // Even entry: encodes the offset for next relocation. | 
|  | Rela.r_offset = Entry; | 
|  | Relocs.push_back(Rela); | 
|  | // Set base offset for subsequent bitmap entries. | 
|  | Base = Entry + WordSize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Odd entry: encodes bitmap for relocations starting at base. | 
|  | Word Offset = Base; | 
|  | while (Entry != 0) { | 
|  | Entry >>= 1; | 
|  | if ((Entry&1) != 0) { | 
|  | Rela.r_offset = Offset; | 
|  | Relocs.push_back(Rela); | 
|  | } | 
|  | Offset += WordSize; | 
|  | } | 
|  |  | 
|  | // Advance base offset by NBits words. | 
|  | Base += NBits * WordSize; | 
|  | } | 
|  |  | 
|  | return Relocs; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Expected<std::vector<typename ELFT::Rela>> | 
|  | ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const { | 
|  | // This function reads relocations in Android's packed relocation format, | 
|  | // which is based on SLEB128 and delta encoding. | 
|  | Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); | 
|  | if (!ContentsOrErr) | 
|  | return ContentsOrErr.takeError(); | 
|  | const uint8_t *Cur = ContentsOrErr->begin(); | 
|  | const uint8_t *End = ContentsOrErr->end(); | 
|  | if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' || | 
|  | Cur[2] != 'S' || Cur[3] != '2') | 
|  | return createError("invalid packed relocation header"); | 
|  | Cur += 4; | 
|  |  | 
|  | const char *ErrStr = nullptr; | 
|  | auto ReadSLEB = [&]() -> int64_t { | 
|  | if (ErrStr) | 
|  | return 0; | 
|  | unsigned Len; | 
|  | int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr); | 
|  | Cur += Len; | 
|  | return Result; | 
|  | }; | 
|  |  | 
|  | uint64_t NumRelocs = ReadSLEB(); | 
|  | uint64_t Offset = ReadSLEB(); | 
|  | uint64_t Addend = 0; | 
|  |  | 
|  | if (ErrStr) | 
|  | return createError(ErrStr); | 
|  |  | 
|  | std::vector<Elf_Rela> Relocs; | 
|  | Relocs.reserve(NumRelocs); | 
|  | while (NumRelocs) { | 
|  | uint64_t NumRelocsInGroup = ReadSLEB(); | 
|  | if (NumRelocsInGroup > NumRelocs) | 
|  | return createError("relocation group unexpectedly large"); | 
|  | NumRelocs -= NumRelocsInGroup; | 
|  |  | 
|  | uint64_t GroupFlags = ReadSLEB(); | 
|  | bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG; | 
|  | bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG; | 
|  | bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG; | 
|  | bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG; | 
|  |  | 
|  | uint64_t GroupOffsetDelta; | 
|  | if (GroupedByOffsetDelta) | 
|  | GroupOffsetDelta = ReadSLEB(); | 
|  |  | 
|  | uint64_t GroupRInfo; | 
|  | if (GroupedByInfo) | 
|  | GroupRInfo = ReadSLEB(); | 
|  |  | 
|  | if (GroupedByAddend && GroupHasAddend) | 
|  | Addend += ReadSLEB(); | 
|  |  | 
|  | if (!GroupHasAddend) | 
|  | Addend = 0; | 
|  |  | 
|  | for (uint64_t I = 0; I != NumRelocsInGroup; ++I) { | 
|  | Elf_Rela R; | 
|  | Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB(); | 
|  | R.r_offset = Offset; | 
|  | R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB(); | 
|  | if (GroupHasAddend && !GroupedByAddend) | 
|  | Addend += ReadSLEB(); | 
|  | R.r_addend = Addend; | 
|  | Relocs.push_back(R); | 
|  |  | 
|  | if (ErrStr) | 
|  | return createError(ErrStr); | 
|  | } | 
|  |  | 
|  | if (ErrStr) | 
|  | return createError(ErrStr); | 
|  | } | 
|  |  | 
|  | return Relocs; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | const char *ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch, | 
|  | uint64_t Type) const { | 
|  | #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \ | 
|  | case value:                                                                  \ | 
|  | return #tag; | 
|  |  | 
|  | #define DYNAMIC_TAG(n, v) | 
|  | switch (Arch) { | 
|  | case ELF::EM_HEXAGON: | 
|  | switch (Type) { | 
|  | #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) | 
|  | #include "llvm/BinaryFormat/DynamicTags.def" | 
|  | #undef HEXAGON_DYNAMIC_TAG | 
|  | } | 
|  |  | 
|  | case ELF::EM_MIPS: | 
|  | switch (Type) { | 
|  | #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) | 
|  | #include "llvm/BinaryFormat/DynamicTags.def" | 
|  | #undef MIPS_DYNAMIC_TAG | 
|  | } | 
|  |  | 
|  | case ELF::EM_PPC64: | 
|  | switch (Type) { | 
|  | #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) | 
|  | #include "llvm/BinaryFormat/DynamicTags.def" | 
|  | #undef PPC64_DYNAMIC_TAG | 
|  | } | 
|  | } | 
|  | #undef DYNAMIC_TAG | 
|  | switch (Type) { | 
|  | // Now handle all dynamic tags except the architecture specific ones | 
|  | #define MIPS_DYNAMIC_TAG(name, value) | 
|  | #define HEXAGON_DYNAMIC_TAG(name, value) | 
|  | #define PPC64_DYNAMIC_TAG(name, value) | 
|  | // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. | 
|  | #define DYNAMIC_TAG_MARKER(name, value) | 
|  | #define DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) | 
|  | #include "llvm/BinaryFormat/DynamicTags.def" | 
|  | #undef DYNAMIC_TAG | 
|  | #undef MIPS_DYNAMIC_TAG | 
|  | #undef HEXAGON_DYNAMIC_TAG | 
|  | #undef PPC64_DYNAMIC_TAG | 
|  | #undef DYNAMIC_TAG_MARKER | 
|  | #undef DYNAMIC_STRINGIFY_ENUM | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | const char *ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const { | 
|  | return getDynamicTagAsString(getHeader()->e_machine, Type); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const { | 
|  | ArrayRef<Elf_Dyn> Dyn; | 
|  | size_t DynSecSize = 0; | 
|  |  | 
|  | auto ProgramHeadersOrError = program_headers(); | 
|  | if (!ProgramHeadersOrError) | 
|  | return ProgramHeadersOrError.takeError(); | 
|  |  | 
|  | for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) { | 
|  | if (Phdr.p_type == ELF::PT_DYNAMIC) { | 
|  | Dyn = makeArrayRef( | 
|  | reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset), | 
|  | Phdr.p_filesz / sizeof(Elf_Dyn)); | 
|  | DynSecSize = Phdr.p_filesz; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can't find the dynamic section in the program headers, we just fall | 
|  | // back on the sections. | 
|  | if (Dyn.empty()) { | 
|  | auto SectionsOrError = sections(); | 
|  | if (!SectionsOrError) | 
|  | return SectionsOrError.takeError(); | 
|  |  | 
|  | for (const Elf_Shdr &Sec : *SectionsOrError) { | 
|  | if (Sec.sh_type == ELF::SHT_DYNAMIC) { | 
|  | Expected<ArrayRef<Elf_Dyn>> DynOrError = | 
|  | getSectionContentsAsArray<Elf_Dyn>(&Sec); | 
|  | if (!DynOrError) | 
|  | return DynOrError.takeError(); | 
|  | Dyn = *DynOrError; | 
|  | DynSecSize = Sec.sh_size; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Dyn.data()) | 
|  | return ArrayRef<Elf_Dyn>(); | 
|  | } | 
|  |  | 
|  | if (Dyn.empty()) | 
|  | return createError("invalid empty dynamic section"); | 
|  |  | 
|  | if (DynSecSize % sizeof(Elf_Dyn) != 0) | 
|  | return createError("malformed dynamic section"); | 
|  |  | 
|  | if (Dyn.back().d_tag != ELF::DT_NULL) | 
|  | return createError("dynamic sections must be DT_NULL terminated"); | 
|  |  | 
|  | return Dyn; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const { | 
|  | auto ProgramHeadersOrError = program_headers(); | 
|  | if (!ProgramHeadersOrError) | 
|  | return ProgramHeadersOrError.takeError(); | 
|  |  | 
|  | llvm::SmallVector<Elf_Phdr *, 4> LoadSegments; | 
|  |  | 
|  | for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) | 
|  | if (Phdr.p_type == ELF::PT_LOAD) | 
|  | LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr)); | 
|  |  | 
|  | const Elf_Phdr *const *I = | 
|  | std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr, | 
|  | [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) { | 
|  | return VAddr < Phdr->p_vaddr; | 
|  | }); | 
|  |  | 
|  | if (I == LoadSegments.begin()) | 
|  | return createError("Virtual address is not in any segment"); | 
|  | --I; | 
|  | const Elf_Phdr &Phdr = **I; | 
|  | uint64_t Delta = VAddr - Phdr.p_vaddr; | 
|  | if (Delta >= Phdr.p_filesz) | 
|  | return createError("Virtual address is not in any segment"); | 
|  | return base() + Phdr.p_offset + Delta; | 
|  | } | 
|  |  | 
|  | template class llvm::object::ELFFile<ELF32LE>; | 
|  | template class llvm::object::ELFFile<ELF32BE>; | 
|  | template class llvm::object::ELFFile<ELF64LE>; | 
|  | template class llvm::object::ELFFile<ELF64BE>; |