| //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the PowerPC implementation of the TargetInstrInfo class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H | 
 | #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H | 
 |  | 
 | #include "PPCRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 |  | 
 | #define GET_INSTRINFO_HEADER | 
 | #include "PPCGenInstrInfo.inc" | 
 |  | 
 | namespace llvm { | 
 |  | 
 | /// PPCII - This namespace holds all of the PowerPC target-specific | 
 | /// per-instruction flags.  These must match the corresponding definitions in | 
 | /// PPC.td and PPCInstrFormats.td. | 
 | namespace PPCII { | 
 | enum { | 
 |   // PPC970 Instruction Flags.  These flags describe the characteristics of the | 
 |   // PowerPC 970 (aka G5) dispatch groups and how they are formed out of | 
 |   // raw machine instructions. | 
 |  | 
 |   /// PPC970_First - This instruction starts a new dispatch group, so it will | 
 |   /// always be the first one in the group. | 
 |   PPC970_First = 0x1, | 
 |  | 
 |   /// PPC970_Single - This instruction starts a new dispatch group and | 
 |   /// terminates it, so it will be the sole instruction in the group. | 
 |   PPC970_Single = 0x2, | 
 |  | 
 |   /// PPC970_Cracked - This instruction is cracked into two pieces, requiring | 
 |   /// two dispatch pipes to be available to issue. | 
 |   PPC970_Cracked = 0x4, | 
 |  | 
 |   /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that | 
 |   /// an instruction is issued to. | 
 |   PPC970_Shift = 3, | 
 |   PPC970_Mask = 0x07 << PPC970_Shift | 
 | }; | 
 | enum PPC970_Unit { | 
 |   /// These are the various PPC970 execution unit pipelines.  Each instruction | 
 |   /// is one of these. | 
 |   PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction | 
 |   PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit | 
 |   PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit | 
 |   PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit | 
 |   PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit | 
 |   PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU | 
 |   PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit | 
 |   PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit | 
 | }; | 
 |  | 
 | enum { | 
 |   /// Shift count to bypass PPC970 flags | 
 |   NewDef_Shift = 6, | 
 |  | 
 |   /// This instruction is an X-Form memory operation. | 
 |   XFormMemOp = 0x1 << NewDef_Shift, | 
 |   /// This instruction is prefixed. | 
 |   Prefixed = 0x1 << (NewDef_Shift+1) | 
 | }; | 
 | } // end namespace PPCII | 
 |  | 
 | // Instructions that have an immediate form might be convertible to that | 
 | // form if the correct input is a result of a load immediate. In order to | 
 | // know whether the transformation is special, we might need to know some | 
 | // of the details of the two forms. | 
 | struct ImmInstrInfo { | 
 |   // Is the immediate field in the immediate form signed or unsigned? | 
 |   uint64_t SignedImm : 1; | 
 |   // Does the immediate need to be a multiple of some value? | 
 |   uint64_t ImmMustBeMultipleOf : 5; | 
 |   // Is R0/X0 treated specially by the original r+r instruction? | 
 |   // If so, in which operand? | 
 |   uint64_t ZeroIsSpecialOrig : 3; | 
 |   // Is R0/X0 treated specially by the new r+i instruction? | 
 |   // If so, in which operand? | 
 |   uint64_t ZeroIsSpecialNew : 3; | 
 |   // Is the operation commutative? | 
 |   uint64_t IsCommutative : 1; | 
 |   // The operand number to check for add-immediate def. | 
 |   uint64_t OpNoForForwarding : 3; | 
 |   // The operand number for the immediate. | 
 |   uint64_t ImmOpNo : 3; | 
 |   // The opcode of the new instruction. | 
 |   uint64_t ImmOpcode : 16; | 
 |   // The size of the immediate. | 
 |   uint64_t ImmWidth : 5; | 
 |   // The immediate should be truncated to N bits. | 
 |   uint64_t TruncateImmTo : 5; | 
 |   // Is the instruction summing the operand | 
 |   uint64_t IsSummingOperands : 1; | 
 | }; | 
 |  | 
 | // Information required to convert an instruction to just a materialized | 
 | // immediate. | 
 | struct LoadImmediateInfo { | 
 |   unsigned Imm : 16; | 
 |   unsigned Is64Bit : 1; | 
 |   unsigned SetCR : 1; | 
 | }; | 
 |  | 
 | // Index into the OpcodesForSpill array. | 
 | enum SpillOpcodeKey { | 
 |   SOK_Int4Spill, | 
 |   SOK_Int8Spill, | 
 |   SOK_Float8Spill, | 
 |   SOK_Float4Spill, | 
 |   SOK_CRSpill, | 
 |   SOK_CRBitSpill, | 
 |   SOK_VRVectorSpill, | 
 |   SOK_VSXVectorSpill, | 
 |   SOK_VectorFloat8Spill, | 
 |   SOK_VectorFloat4Spill, | 
 |   SOK_VRSaveSpill, | 
 |   SOK_QuadFloat8Spill, | 
 |   SOK_QuadFloat4Spill, | 
 |   SOK_QuadBitSpill, | 
 |   SOK_SpillToVSR, | 
 |   SOK_SPESpill, | 
 |   SOK_LastOpcodeSpill // This must be last on the enum. | 
 | }; | 
 |  | 
 | // Define list of load and store spill opcodes. | 
 | #define Pwr8LoadOpcodes                                                        \ | 
 |   {                                                                            \ | 
 |     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \ | 
 |         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,    \ | 
 |         PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,          \ | 
 |         PPC::SPILLTOVSR_LD, PPC::EVLDD                                         \ | 
 |   } | 
 |  | 
 | #define Pwr9LoadOpcodes                                                        \ | 
 |   {                                                                            \ | 
 |     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \ | 
 |         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64,                \ | 
 |         PPC::DFLOADf32, PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs,        \ | 
 |         PPC::QVLFDXb, PPC::SPILLTOVSR_LD                                       \ | 
 |   } | 
 |  | 
 | #define Pwr8StoreOpcodes                                                       \ | 
 |   {                                                                            \ | 
 |     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \ | 
 |         PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, PPC::SPILL_VRSAVE, \ | 
 |         PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, PPC::SPILLTOVSR_ST,        \ | 
 |         PPC::EVSTDD                                                            \ | 
 |   } | 
 |  | 
 | #define Pwr9StoreOpcodes                                                       \ | 
 |   {                                                                            \ | 
 |     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \ | 
 |         PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,                \ | 
 |         PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,         \ | 
 |         PPC::SPILLTOVSR_ST                                                     \ | 
 |   } | 
 |  | 
 | // Initialize arrays for load and store spill opcodes on supported subtargets. | 
 | #define StoreOpcodesForSpill                                                   \ | 
 |   { Pwr8StoreOpcodes, Pwr9StoreOpcodes } | 
 | #define LoadOpcodesForSpill                                                    \ | 
 |   { Pwr8LoadOpcodes, Pwr9LoadOpcodes } | 
 |  | 
 | class PPCSubtarget; | 
 | class PPCInstrInfo : public PPCGenInstrInfo { | 
 |   PPCSubtarget &Subtarget; | 
 |   const PPCRegisterInfo RI; | 
 |   const unsigned StoreSpillOpcodesArray[2][SOK_LastOpcodeSpill] = | 
 |       StoreOpcodesForSpill; | 
 |   const unsigned LoadSpillOpcodesArray[2][SOK_LastOpcodeSpill] = | 
 |       LoadOpcodesForSpill; | 
 |  | 
 |   void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill, | 
 |                            int FrameIdx, const TargetRegisterClass *RC, | 
 |                            SmallVectorImpl<MachineInstr *> &NewMIs) const; | 
 |   void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, | 
 |                             unsigned DestReg, int FrameIdx, | 
 |                             const TargetRegisterClass *RC, | 
 |                             SmallVectorImpl<MachineInstr *> &NewMIs) const; | 
 |  | 
 |   // Replace the instruction with single LI if possible. \p DefMI must be LI or | 
 |   // LI8. | 
 |   bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, | 
 |                     unsigned OpNoForForwarding, MachineInstr **KilledDef) const; | 
 |   // If the inst is imm-form and its register operand is produced by a ADDI, put | 
 |   // the imm into the inst directly and remove the ADDI if possible. | 
 |   bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI, | 
 |                                      unsigned OpNoForForwarding) const; | 
 |   // If the inst is x-form and has imm-form and one of its operand is produced | 
 |   // by a LI, put the imm into the inst directly and remove the LI if possible. | 
 |   bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III, | 
 |                                  unsigned ConstantOpNo, | 
 |                                  MachineInstr &DefMI) const; | 
 |   // If the inst is x-form and has imm-form and one of its operand is produced | 
 |   // by an add-immediate, try to transform it when possible. | 
 |   bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III, | 
 |                                   unsigned ConstantOpNo, MachineInstr &DefMI, | 
 |                                   bool KillDefMI) const; | 
 |   // Try to find that, if the instruction 'MI' contains any operand that | 
 |   // could be forwarded from some inst that feeds it. If yes, return the | 
 |   // Def of that operand. And OpNoForForwarding is the operand index in | 
 |   // the 'MI' for that 'Def'. If we see another use of this Def between | 
 |   // the Def and the MI, SeenIntermediateUse becomes 'true'. | 
 |   MachineInstr *getForwardingDefMI(MachineInstr &MI, | 
 |                                    unsigned &OpNoForForwarding, | 
 |                                    bool &SeenIntermediateUse) const; | 
 |  | 
 |   // Can the user MI have it's source at index \p OpNoForForwarding | 
 |   // forwarded from an add-immediate that feeds it? | 
 |   bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III, | 
 |                                    unsigned OpNoForForwarding) const; | 
 |   bool isDefMIElgibleForForwarding(MachineInstr &DefMI, | 
 |                                    const ImmInstrInfo &III, | 
 |                                    MachineOperand *&ImmMO, | 
 |                                    MachineOperand *&RegMO) const; | 
 |   bool isImmElgibleForForwarding(const MachineOperand &ImmMO, | 
 |                                  const MachineInstr &DefMI, | 
 |                                  const ImmInstrInfo &III, | 
 |                                  int64_t &Imm, | 
 |                                  int64_t BaseImm = 0) const; | 
 |   bool isRegElgibleForForwarding(const MachineOperand &RegMO, | 
 |                                  const MachineInstr &DefMI, | 
 |                                  const MachineInstr &MI, bool KillDefMI, | 
 |                                  bool &IsFwdFeederRegKilled) const; | 
 |   unsigned getSpillTarget() const; | 
 |   const unsigned *getStoreOpcodesForSpillArray() const; | 
 |   const unsigned *getLoadOpcodesForSpillArray() const; | 
 |   int16_t getFMAOpIdxInfo(unsigned Opcode) const; | 
 |   void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern, | 
 |                       SmallVectorImpl<MachineInstr *> &InsInstrs, | 
 |                       SmallVectorImpl<MachineInstr *> &DelInstrs, | 
 |                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; | 
 |   virtual void anchor(); | 
 |  | 
 | protected: | 
 |   /// Commutes the operands in the given instruction. | 
 |   /// The commutable operands are specified by their indices OpIdx1 and OpIdx2. | 
 |   /// | 
 |   /// Do not call this method for a non-commutable instruction or for | 
 |   /// non-commutable pair of operand indices OpIdx1 and OpIdx2. | 
 |   /// Even though the instruction is commutable, the method may still | 
 |   /// fail to commute the operands, null pointer is returned in such cases. | 
 |   /// | 
 |   /// For example, we can commute rlwimi instructions, but only if the | 
 |   /// rotate amt is zero.  We also have to munge the immediates a bit. | 
 |   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, | 
 |                                        unsigned OpIdx1, | 
 |                                        unsigned OpIdx2) const override; | 
 |  | 
 | public: | 
 |   explicit PPCInstrInfo(PPCSubtarget &STI); | 
 |  | 
 |   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As | 
 |   /// such, whenever a client has an instance of instruction info, it should | 
 |   /// always be able to get register info as well (through this method). | 
 |   /// | 
 |   const PPCRegisterInfo &getRegisterInfo() const { return RI; } | 
 |  | 
 |   bool isXFormMemOp(unsigned Opcode) const { | 
 |     return get(Opcode).TSFlags & PPCII::XFormMemOp; | 
 |   } | 
 |   bool isPrefixed(unsigned Opcode) const { | 
 |     return get(Opcode).TSFlags & PPCII::Prefixed; | 
 |   } | 
 |  | 
 |   static bool isSameClassPhysRegCopy(unsigned Opcode) { | 
 |     unsigned CopyOpcodes[] = | 
 |       { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf, | 
 |         PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb, | 
 |         PPC::CROR, PPC::EVOR, -1U }; | 
 |     for (int i = 0; CopyOpcodes[i] != -1U; i++) | 
 |       if (Opcode == CopyOpcodes[i]) | 
 |         return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   ScheduleHazardRecognizer * | 
 |   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
 |                                const ScheduleDAG *DAG) const override; | 
 |   ScheduleHazardRecognizer * | 
 |   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
 |                                      const ScheduleDAG *DAG) const override; | 
 |  | 
 |   unsigned getInstrLatency(const InstrItineraryData *ItinData, | 
 |                            const MachineInstr &MI, | 
 |                            unsigned *PredCost = nullptr) const override; | 
 |  | 
 |   int getOperandLatency(const InstrItineraryData *ItinData, | 
 |                         const MachineInstr &DefMI, unsigned DefIdx, | 
 |                         const MachineInstr &UseMI, | 
 |                         unsigned UseIdx) const override; | 
 |   int getOperandLatency(const InstrItineraryData *ItinData, | 
 |                         SDNode *DefNode, unsigned DefIdx, | 
 |                         SDNode *UseNode, unsigned UseIdx) const override { | 
 |     return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx, | 
 |                                               UseNode, UseIdx); | 
 |   } | 
 |  | 
 |   bool hasLowDefLatency(const TargetSchedModel &SchedModel, | 
 |                         const MachineInstr &DefMI, | 
 |                         unsigned DefIdx) const override { | 
 |     // Machine LICM should hoist all instructions in low-register-pressure | 
 |     // situations; none are sufficiently free to justify leaving in a loop | 
 |     // body. | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool useMachineCombiner() const override { | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// When getMachineCombinerPatterns() finds patterns, this function generates | 
 |   /// the instructions that could replace the original code sequence | 
 |   void genAlternativeCodeSequence( | 
 |       MachineInstr &Root, MachineCombinerPattern Pattern, | 
 |       SmallVectorImpl<MachineInstr *> &InsInstrs, | 
 |       SmallVectorImpl<MachineInstr *> &DelInstrs, | 
 |       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override; | 
 |  | 
 |   /// Return true when there is potentially a faster code sequence for a fma | 
 |   /// chain ending in \p Root. All potential patterns are output in the \p | 
 |   /// P array. | 
 |   bool getFMAPatterns(MachineInstr &Root, | 
 |                       SmallVectorImpl<MachineCombinerPattern> &P) const; | 
 |  | 
 |   /// Return true when there is potentially a faster code sequence | 
 |   /// for an instruction chain ending in <Root>. All potential patterns are | 
 |   /// output in the <Pattern> array. | 
 |   bool getMachineCombinerPatterns( | 
 |       MachineInstr &Root, | 
 |       SmallVectorImpl<MachineCombinerPattern> &P) const override; | 
 |  | 
 |   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override; | 
 |  | 
 |   /// On PowerPC, we try to reassociate FMA chain which will increase | 
 |   /// instruction size. Set extension resource length limit to 1 for edge case. | 
 |   /// Resource Length is calculated by scaled resource usage in getCycles(). | 
 |   /// Because of the division in getCycles(), it returns different cycles due to | 
 |   /// legacy scaled resource usage. So new resource length may be same with | 
 |   /// legacy or 1 bigger than legacy. | 
 |   /// We need to execlude the 1 bigger case even the resource length is not | 
 |   /// perserved for more FMA chain reassociations on PowerPC. | 
 |   int getExtendResourceLenLimit() const override { return 1; } | 
 |  | 
 |   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, | 
 |                              MachineInstr &NewMI1, | 
 |                              MachineInstr &NewMI2) const override; | 
 |  | 
 |   void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override; | 
 |  | 
 |   bool isCoalescableExtInstr(const MachineInstr &MI, | 
 |                              Register &SrcReg, Register &DstReg, | 
 |                              unsigned &SubIdx) const override; | 
 |   unsigned isLoadFromStackSlot(const MachineInstr &MI, | 
 |                                int &FrameIndex) const override; | 
 |   bool isReallyTriviallyReMaterializable(const MachineInstr &MI, | 
 |                                          AAResults *AA) const override; | 
 |   unsigned isStoreToStackSlot(const MachineInstr &MI, | 
 |                               int &FrameIndex) const override; | 
 |  | 
 |   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, | 
 |                              unsigned &SrcOpIdx2) const override; | 
 |  | 
 |   void insertNoop(MachineBasicBlock &MBB, | 
 |                   MachineBasicBlock::iterator MI) const override; | 
 |  | 
 |  | 
 |   // Branch analysis. | 
 |   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, | 
 |                      MachineBasicBlock *&FBB, | 
 |                      SmallVectorImpl<MachineOperand> &Cond, | 
 |                      bool AllowModify) const override; | 
 |   unsigned removeBranch(MachineBasicBlock &MBB, | 
 |                         int *BytesRemoved = nullptr) const override; | 
 |   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
 |                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, | 
 |                         const DebugLoc &DL, | 
 |                         int *BytesAdded = nullptr) const override; | 
 |  | 
 |   // Select analysis. | 
 |   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond, | 
 |                        Register, Register, Register, int &, int &, | 
 |                        int &) const override; | 
 |   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
 |                     const DebugLoc &DL, Register DstReg, | 
 |                     ArrayRef<MachineOperand> Cond, Register TrueReg, | 
 |                     Register FalseReg) const override; | 
 |  | 
 |   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
 |                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, | 
 |                    bool KillSrc) const override; | 
 |  | 
 |   void storeRegToStackSlot(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator MBBI, | 
 |                            Register SrcReg, bool isKill, int FrameIndex, | 
 |                            const TargetRegisterClass *RC, | 
 |                            const TargetRegisterInfo *TRI) const override; | 
 |  | 
 |   // Emits a register spill without updating the register class for vector | 
 |   // registers. This ensures that when we spill a vector register the | 
 |   // element order in the register is the same as it was in memory. | 
 |   void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB, | 
 |                                 MachineBasicBlock::iterator MBBI, | 
 |                                 unsigned SrcReg, bool isKill, int FrameIndex, | 
 |                                 const TargetRegisterClass *RC, | 
 |                                 const TargetRegisterInfo *TRI) const; | 
 |  | 
 |   void loadRegFromStackSlot(MachineBasicBlock &MBB, | 
 |                             MachineBasicBlock::iterator MBBI, | 
 |                             Register DestReg, int FrameIndex, | 
 |                             const TargetRegisterClass *RC, | 
 |                             const TargetRegisterInfo *TRI) const override; | 
 |  | 
 |   // Emits a register reload without updating the register class for vector | 
 |   // registers. This ensures that when we reload a vector register the | 
 |   // element order in the register is the same as it was in memory. | 
 |   void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB, | 
 |                                  MachineBasicBlock::iterator MBBI, | 
 |                                  unsigned DestReg, int FrameIndex, | 
 |                                  const TargetRegisterClass *RC, | 
 |                                  const TargetRegisterInfo *TRI) const; | 
 |  | 
 |   unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const; | 
 |  | 
 |   unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const; | 
 |  | 
 |   bool | 
 |   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override; | 
 |  | 
 |   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, | 
 |                      MachineRegisterInfo *MRI) const override; | 
 |  | 
 |   bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, | 
 |                          Register Reg) const; | 
 |  | 
 |   // If conversion by predication (only supported by some branch instructions). | 
 |   // All of the profitability checks always return true; it is always | 
 |   // profitable to use the predicated branches. | 
 |   bool isProfitableToIfCvt(MachineBasicBlock &MBB, | 
 |                           unsigned NumCycles, unsigned ExtraPredCycles, | 
 |                           BranchProbability Probability) const override { | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
 |                            unsigned NumT, unsigned ExtraT, | 
 |                            MachineBasicBlock &FMBB, | 
 |                            unsigned NumF, unsigned ExtraF, | 
 |                            BranchProbability Probability) const override; | 
 |  | 
 |   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, | 
 |                                  BranchProbability Probability) const override { | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, | 
 |                                  MachineBasicBlock &FMBB) const override { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Predication support. | 
 |   bool isPredicated(const MachineInstr &MI) const override; | 
 |  | 
 |   bool PredicateInstruction(MachineInstr &MI, | 
 |                             ArrayRef<MachineOperand> Pred) const override; | 
 |  | 
 |   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
 |                          ArrayRef<MachineOperand> Pred2) const override; | 
 |  | 
 |   bool DefinesPredicate(MachineInstr &MI, | 
 |                         std::vector<MachineOperand> &Pred) const override; | 
 |  | 
 |   // Comparison optimization. | 
 |  | 
 |   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, | 
 |                       Register &SrcReg2, int &Mask, int &Value) const override; | 
 |  | 
 |   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, | 
 |                             Register SrcReg2, int Mask, int Value, | 
 |                             const MachineRegisterInfo *MRI) const override; | 
 |  | 
 |  | 
 |   /// Return true if get the base operand, byte offset of an instruction and | 
 |   /// the memory width. Width is the size of memory that is being | 
 |   /// loaded/stored (e.g. 1, 2, 4, 8). | 
 |   bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt, | 
 |                                     const MachineOperand *&BaseOp, | 
 |                                     int64_t &Offset, unsigned &Width, | 
 |                                     const TargetRegisterInfo *TRI) const; | 
 |  | 
 |   /// Return true if two MIs access different memory addresses and false | 
 |   /// otherwise | 
 |   bool | 
 |   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, | 
 |                                   const MachineInstr &MIb) const override; | 
 |  | 
 |   /// GetInstSize - Return the number of bytes of code the specified | 
 |   /// instruction may be.  This returns the maximum number of bytes. | 
 |   /// | 
 |   unsigned getInstSizeInBytes(const MachineInstr &MI) const override; | 
 |  | 
 |   void getNoop(MCInst &NopInst) const override; | 
 |  | 
 |   std::pair<unsigned, unsigned> | 
 |   decomposeMachineOperandsTargetFlags(unsigned TF) const override; | 
 |  | 
 |   ArrayRef<std::pair<unsigned, const char *>> | 
 |   getSerializableDirectMachineOperandTargetFlags() const override; | 
 |  | 
 |   ArrayRef<std::pair<unsigned, const char *>> | 
 |   getSerializableBitmaskMachineOperandTargetFlags() const override; | 
 |  | 
 |   // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. | 
 |   bool expandVSXMemPseudo(MachineInstr &MI) const; | 
 |  | 
 |   // Lower pseudo instructions after register allocation. | 
 |   bool expandPostRAPseudo(MachineInstr &MI) const override; | 
 |  | 
 |   static bool isVFRegister(unsigned Reg) { | 
 |     return Reg >= PPC::VF0 && Reg <= PPC::VF31; | 
 |   } | 
 |   static bool isVRRegister(unsigned Reg) { | 
 |     return Reg >= PPC::V0 && Reg <= PPC::V31; | 
 |   } | 
 |   const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const; | 
 |   static int getRecordFormOpcode(unsigned Opcode); | 
 |  | 
 |   bool isTOCSaveMI(const MachineInstr &MI) const; | 
 |  | 
 |   bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, | 
 |                             const unsigned PhiDepth) const; | 
 |  | 
 |   /// Return true if the output of the instruction is always a sign-extended, | 
 |   /// i.e. 0 to 31-th bits are same as 32-th bit. | 
 |   bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const { | 
 |     return isSignOrZeroExtended(MI, true, depth); | 
 |   } | 
 |  | 
 |   /// Return true if the output of the instruction is always zero-extended, | 
 |   /// i.e. 0 to 31-th bits are all zeros | 
 |   bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const { | 
 |    return isSignOrZeroExtended(MI, false, depth); | 
 |   } | 
 |  | 
 |   bool convertToImmediateForm(MachineInstr &MI, | 
 |                               MachineInstr **KilledDef = nullptr) const; | 
 |   bool foldFrameOffset(MachineInstr &MI) const; | 
 |   bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const; | 
 |   bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const; | 
 |   bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg, | 
 |                                     unsigned &XFormOpcode, | 
 |                                     int64_t &OffsetOfImmInstr, | 
 |                                     ImmInstrInfo &III) const; | 
 |   bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, | 
 |                              MachineInstr *&ADDIMI, int64_t &OffsetAddi, | 
 |                              int64_t OffsetImm) const; | 
 |  | 
 |   /// Fixup killed/dead flag for register \p RegNo between instructions [\p | 
 |   /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate | 
 |   /// register killed/dead flags semantics, this function can be called to fix | 
 |   /// up. Before calling this function, | 
 |   /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI. | 
 |   /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI) | 
 |   ///    and possible definition for \p RegNo is \p StartMI or \p EndMI. For | 
 |   ///    pre-RA cases, definition may be \p StartMI through COPY, \p StartMI | 
 |   ///    will be adjust to true definition. | 
 |   /// 3. We can do accurate fixup for the case when all instructions between | 
 |   ///    [\p StartMI, \p EndMI] are in same basic block. | 
 |   /// 4. For the case when \p StartMI and \p EndMI are not in same basic block, | 
 |   ///    we conservatively clear kill flag for all uses of \p RegNo for pre-RA | 
 |   ///    and for post-RA, we give an assertion as without reaching definition | 
 |   ///    analysis post-RA, \p StartMI and \p EndMI are hard to keep right. | 
 |   void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, | 
 |                          unsigned RegNo) const; | 
 |   void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const; | 
 |   void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo, | 
 |                                   int64_t Imm) const; | 
 |  | 
 |   bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III, | 
 |                        bool PostRA) const; | 
 |  | 
 |   // In PostRA phase, try to find instruction defines \p Reg before \p MI. | 
 |   // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist. | 
 |   MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI, | 
 |                                bool &SeenIntermediateUse) const; | 
 |  | 
 |   /// getRegNumForOperand - some operands use different numbering schemes | 
 |   /// for the same registers. For example, a VSX instruction may have any of | 
 |   /// vs0-vs63 allocated whereas an Altivec instruction could only have | 
 |   /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual | 
 |   /// register number needed for the opcode/operand number combination. | 
 |   /// The operand number argument will be useful when we need to extend this | 
 |   /// to instructions that use both Altivec and VSX numbering (for different | 
 |   /// operands). | 
 |   static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg, | 
 |                                       unsigned OpNo) { | 
 |     int16_t regClass = Desc.OpInfo[OpNo].RegClass; | 
 |     switch (regClass) { | 
 |       // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31, | 
 |       // VSX32-VSX63 during encoding/disassembling | 
 |       case PPC::VSSRCRegClassID: | 
 |       case PPC::VSFRCRegClassID: | 
 |         if (isVFRegister(Reg)) | 
 |           return PPC::VSX32 + (Reg - PPC::VF0); | 
 |         break; | 
 |       // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31, | 
 |       // VSX32-VSX63 during encoding/disassembling | 
 |       case PPC::VSRCRegClassID: | 
 |         if (isVRRegister(Reg)) | 
 |           return PPC::VSX32 + (Reg - PPC::V0); | 
 |         break; | 
 |       // Other RegClass doesn't need mapping | 
 |       default: | 
 |         break; | 
 |     } | 
 |     return Reg; | 
 |   } | 
 |  | 
 |   /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero). | 
 |   bool isBDNZ(unsigned Opcode) const; | 
 |  | 
 |   /// Find the hardware loop instruction used to set-up the specified loop. | 
 |   /// On PPC, we have two instructions used to set-up the hardware loop | 
 |   /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8) | 
 |   /// instructions to indicate the end of a loop. | 
 |   MachineInstr * | 
 |   findLoopInstr(MachineBasicBlock &PreHeader, | 
 |                 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; | 
 |  | 
 |   /// Analyze loop L, which must be a single-basic-block loop, and if the | 
 |   /// conditions can be understood enough produce a PipelinerLoopInfo object. | 
 |   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> | 
 |   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | #endif |