| //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "hexagon-lir" | 
 |  | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/LoopPass.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/ScalarEvolution.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/PatternMatch.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/User.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/KnownBits.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Transforms/Utils.h" | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <deque> | 
 | #include <functional> | 
 | #include <iterator> | 
 | #include <map> | 
 | #include <set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom", | 
 |   cl::Hidden, cl::init(false), | 
 |   cl::desc("Disable generation of memcpy in loop idiom recognition")); | 
 |  | 
 | static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom", | 
 |   cl::Hidden, cl::init(false), | 
 |   cl::desc("Disable generation of memmove in loop idiom recognition")); | 
 |  | 
 | static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold", | 
 |   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime " | 
 |   "check guarding the memmove.")); | 
 |  | 
 | static cl::opt<unsigned> CompileTimeMemSizeThreshold( | 
 |   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64), | 
 |   cl::desc("Threshold (in bytes) to perform the transformation, if the " | 
 |     "runtime loop count (mem transfer size) is known at compile-time.")); | 
 |  | 
 | static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom", | 
 |   cl::Hidden, cl::init(true), | 
 |   cl::desc("Only enable generating memmove in non-nested loops")); | 
 |  | 
 | cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy", | 
 |   cl::Hidden, cl::init(false), | 
 |   cl::desc("Enable Hexagon-specific memcpy for volatile destination.")); | 
 |  | 
 | static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000), | 
 |   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR")); | 
 |  | 
 | static const char *HexagonVolatileMemcpyName | 
 |   = "hexagon_memcpy_forward_vp4cp4n2"; | 
 |  | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   void initializeHexagonLoopIdiomRecognizePass(PassRegistry&); | 
 |   Pass *createHexagonLoopIdiomPass(); | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | namespace { | 
 |  | 
 |   class HexagonLoopIdiomRecognize : public LoopPass { | 
 |   public: | 
 |     static char ID; | 
 |  | 
 |     explicit HexagonLoopIdiomRecognize() : LoopPass(ID) { | 
 |       initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |  | 
 |     StringRef getPassName() const override { | 
 |       return "Recognize Hexagon-specific loop idioms"; | 
 |     } | 
 |  | 
 |    void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.addRequired<LoopInfoWrapperPass>(); | 
 |       AU.addRequiredID(LoopSimplifyID); | 
 |       AU.addRequiredID(LCSSAID); | 
 |       AU.addRequired<AAResultsWrapperPass>(); | 
 |       AU.addPreserved<AAResultsWrapperPass>(); | 
 |       AU.addRequired<ScalarEvolutionWrapperPass>(); | 
 |       AU.addRequired<DominatorTreeWrapperPass>(); | 
 |       AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
 |       AU.addPreserved<TargetLibraryInfoWrapperPass>(); | 
 |     } | 
 |  | 
 |     bool runOnLoop(Loop *L, LPPassManager &LPM) override; | 
 |  | 
 |   private: | 
 |     int getSCEVStride(const SCEVAddRecExpr *StoreEv); | 
 |     bool isLegalStore(Loop *CurLoop, StoreInst *SI); | 
 |     void collectStores(Loop *CurLoop, BasicBlock *BB, | 
 |         SmallVectorImpl<StoreInst*> &Stores); | 
 |     bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); | 
 |     bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const; | 
 |     bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, | 
 |         SmallVectorImpl<BasicBlock*> &ExitBlocks); | 
 |     bool runOnCountableLoop(Loop *L); | 
 |  | 
 |     AliasAnalysis *AA; | 
 |     const DataLayout *DL; | 
 |     DominatorTree *DT; | 
 |     LoopInfo *LF; | 
 |     const TargetLibraryInfo *TLI; | 
 |     ScalarEvolution *SE; | 
 |     bool HasMemcpy, HasMemmove; | 
 |   }; | 
 |  | 
 |   struct Simplifier { | 
 |     struct Rule { | 
 |       using FuncType = std::function<Value* (Instruction*, LLVMContext&)>; | 
 |       Rule(StringRef N, FuncType F) : Name(N), Fn(F) {} | 
 |       StringRef Name;   // For debugging. | 
 |       FuncType Fn; | 
 |     }; | 
 |  | 
 |     void addRule(StringRef N, const Rule::FuncType &F) { | 
 |       Rules.push_back(Rule(N, F)); | 
 |     } | 
 |  | 
 |   private: | 
 |     struct WorkListType { | 
 |       WorkListType() = default; | 
 |  | 
 |       void push_back(Value* V) { | 
 |         // Do not push back duplicates. | 
 |         if (!S.count(V)) { Q.push_back(V); S.insert(V); } | 
 |       } | 
 |  | 
 |       Value *pop_front_val() { | 
 |         Value *V = Q.front(); Q.pop_front(); S.erase(V); | 
 |         return V; | 
 |       } | 
 |  | 
 |       bool empty() const { return Q.empty(); } | 
 |  | 
 |     private: | 
 |       std::deque<Value*> Q; | 
 |       std::set<Value*> S; | 
 |     }; | 
 |  | 
 |     using ValueSetType = std::set<Value *>; | 
 |  | 
 |     std::vector<Rule> Rules; | 
 |  | 
 |   public: | 
 |     struct Context { | 
 |       using ValueMapType = DenseMap<Value *, Value *>; | 
 |  | 
 |       Value *Root; | 
 |       ValueSetType Used;    // The set of all cloned values used by Root. | 
 |       ValueSetType Clones;  // The set of all cloned values. | 
 |       LLVMContext &Ctx; | 
 |  | 
 |       Context(Instruction *Exp) | 
 |         : Ctx(Exp->getParent()->getParent()->getContext()) { | 
 |         initialize(Exp); | 
 |       } | 
 |  | 
 |       ~Context() { cleanup(); } | 
 |  | 
 |       void print(raw_ostream &OS, const Value *V) const; | 
 |       Value *materialize(BasicBlock *B, BasicBlock::iterator At); | 
 |  | 
 |     private: | 
 |       friend struct Simplifier; | 
 |  | 
 |       void initialize(Instruction *Exp); | 
 |       void cleanup(); | 
 |  | 
 |       template <typename FuncT> void traverse(Value *V, FuncT F); | 
 |       void record(Value *V); | 
 |       void use(Value *V); | 
 |       void unuse(Value *V); | 
 |  | 
 |       bool equal(const Instruction *I, const Instruction *J) const; | 
 |       Value *find(Value *Tree, Value *Sub) const; | 
 |       Value *subst(Value *Tree, Value *OldV, Value *NewV); | 
 |       void replace(Value *OldV, Value *NewV); | 
 |       void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At); | 
 |     }; | 
 |  | 
 |     Value *simplify(Context &C); | 
 |   }; | 
 |  | 
 |   struct PE { | 
 |     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {} | 
 |  | 
 |     const Simplifier::Context &C; | 
 |     const Value *V; | 
 |   }; | 
 |  | 
 |   LLVM_ATTRIBUTE_USED | 
 |   raw_ostream &operator<<(raw_ostream &OS, const PE &P) { | 
 |     P.C.print(OS, P.V ? P.V : P.C.Root); | 
 |     return OS; | 
 |   } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char HexagonLoopIdiomRecognize::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", | 
 |     "Recognize Hexagon-specific loop idioms", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) | 
 | INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
 | INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", | 
 |     "Recognize Hexagon-specific loop idioms", false, false) | 
 |  | 
 | template <typename FuncT> | 
 | void Simplifier::Context::traverse(Value *V, FuncT F) { | 
 |   WorkListType Q; | 
 |   Q.push_back(V); | 
 |  | 
 |   while (!Q.empty()) { | 
 |     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); | 
 |     if (!U || U->getParent()) | 
 |       continue; | 
 |     if (!F(U)) | 
 |       continue; | 
 |     for (Value *Op : U->operands()) | 
 |       Q.push_back(Op); | 
 |   } | 
 | } | 
 |  | 
 | void Simplifier::Context::print(raw_ostream &OS, const Value *V) const { | 
 |   const auto *U = dyn_cast<const Instruction>(V); | 
 |   if (!U) { | 
 |     OS << V << '(' << *V << ')'; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (U->getParent()) { | 
 |     OS << U << '('; | 
 |     U->printAsOperand(OS, true); | 
 |     OS << ')'; | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned N = U->getNumOperands(); | 
 |   if (N != 0) | 
 |     OS << U << '('; | 
 |   OS << U->getOpcodeName(); | 
 |   for (const Value *Op : U->operands()) { | 
 |     OS << ' '; | 
 |     print(OS, Op); | 
 |   } | 
 |   if (N != 0) | 
 |     OS << ')'; | 
 | } | 
 |  | 
 | void Simplifier::Context::initialize(Instruction *Exp) { | 
 |   // Perform a deep clone of the expression, set Root to the root | 
 |   // of the clone, and build a map from the cloned values to the | 
 |   // original ones. | 
 |   ValueMapType M; | 
 |   BasicBlock *Block = Exp->getParent(); | 
 |   WorkListType Q; | 
 |   Q.push_back(Exp); | 
 |  | 
 |   while (!Q.empty()) { | 
 |     Value *V = Q.pop_front_val(); | 
 |     if (M.find(V) != M.end()) | 
 |       continue; | 
 |     if (Instruction *U = dyn_cast<Instruction>(V)) { | 
 |       if (isa<PHINode>(U) || U->getParent() != Block) | 
 |         continue; | 
 |       for (Value *Op : U->operands()) | 
 |         Q.push_back(Op); | 
 |       M.insert({U, U->clone()}); | 
 |     } | 
 |   } | 
 |  | 
 |   for (std::pair<Value*,Value*> P : M) { | 
 |     Instruction *U = cast<Instruction>(P.second); | 
 |     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { | 
 |       auto F = M.find(U->getOperand(i)); | 
 |       if (F != M.end()) | 
 |         U->setOperand(i, F->second); | 
 |     } | 
 |   } | 
 |  | 
 |   auto R = M.find(Exp); | 
 |   assert(R != M.end()); | 
 |   Root = R->second; | 
 |  | 
 |   record(Root); | 
 |   use(Root); | 
 | } | 
 |  | 
 | void Simplifier::Context::record(Value *V) { | 
 |   auto Record = [this](Instruction *U) -> bool { | 
 |     Clones.insert(U); | 
 |     return true; | 
 |   }; | 
 |   traverse(V, Record); | 
 | } | 
 |  | 
 | void Simplifier::Context::use(Value *V) { | 
 |   auto Use = [this](Instruction *U) -> bool { | 
 |     Used.insert(U); | 
 |     return true; | 
 |   }; | 
 |   traverse(V, Use); | 
 | } | 
 |  | 
 | void Simplifier::Context::unuse(Value *V) { | 
 |   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr) | 
 |     return; | 
 |  | 
 |   auto Unuse = [this](Instruction *U) -> bool { | 
 |     if (!U->use_empty()) | 
 |       return false; | 
 |     Used.erase(U); | 
 |     return true; | 
 |   }; | 
 |   traverse(V, Unuse); | 
 | } | 
 |  | 
 | Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) { | 
 |   if (Tree == OldV) | 
 |     return NewV; | 
 |   if (OldV == NewV) | 
 |     return Tree; | 
 |  | 
 |   WorkListType Q; | 
 |   Q.push_back(Tree); | 
 |   while (!Q.empty()) { | 
 |     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); | 
 |     // If U is not an instruction, or it's not a clone, skip it. | 
 |     if (!U || U->getParent()) | 
 |       continue; | 
 |     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { | 
 |       Value *Op = U->getOperand(i); | 
 |       if (Op == OldV) { | 
 |         U->setOperand(i, NewV); | 
 |         unuse(OldV); | 
 |       } else { | 
 |         Q.push_back(Op); | 
 |       } | 
 |     } | 
 |   } | 
 |   return Tree; | 
 | } | 
 |  | 
 | void Simplifier::Context::replace(Value *OldV, Value *NewV) { | 
 |   if (Root == OldV) { | 
 |     Root = NewV; | 
 |     use(Root); | 
 |     return; | 
 |   } | 
 |  | 
 |   // NewV may be a complex tree that has just been created by one of the | 
 |   // transformation rules. We need to make sure that it is commoned with | 
 |   // the existing Root to the maximum extent possible. | 
 |   // Identify all subtrees of NewV (including NewV itself) that have | 
 |   // equivalent counterparts in Root, and replace those subtrees with | 
 |   // these counterparts. | 
 |   WorkListType Q; | 
 |   Q.push_back(NewV); | 
 |   while (!Q.empty()) { | 
 |     Value *V = Q.pop_front_val(); | 
 |     Instruction *U = dyn_cast<Instruction>(V); | 
 |     if (!U || U->getParent()) | 
 |       continue; | 
 |     if (Value *DupV = find(Root, V)) { | 
 |       if (DupV != V) | 
 |         NewV = subst(NewV, V, DupV); | 
 |     } else { | 
 |       for (Value *Op : U->operands()) | 
 |         Q.push_back(Op); | 
 |     } | 
 |   } | 
 |  | 
 |   // Now, simply replace OldV with NewV in Root. | 
 |   Root = subst(Root, OldV, NewV); | 
 |   use(Root); | 
 | } | 
 |  | 
 | void Simplifier::Context::cleanup() { | 
 |   for (Value *V : Clones) { | 
 |     Instruction *U = cast<Instruction>(V); | 
 |     if (!U->getParent()) | 
 |       U->dropAllReferences(); | 
 |   } | 
 |  | 
 |   for (Value *V : Clones) { | 
 |     Instruction *U = cast<Instruction>(V); | 
 |     if (!U->getParent()) | 
 |       U->deleteValue(); | 
 |   } | 
 | } | 
 |  | 
 | bool Simplifier::Context::equal(const Instruction *I, | 
 |                                 const Instruction *J) const { | 
 |   if (I == J) | 
 |     return true; | 
 |   if (!I->isSameOperationAs(J)) | 
 |     return false; | 
 |   if (isa<PHINode>(I)) | 
 |     return I->isIdenticalTo(J); | 
 |  | 
 |   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) { | 
 |     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i); | 
 |     if (OpI == OpJ) | 
 |       continue; | 
 |     auto *InI = dyn_cast<const Instruction>(OpI); | 
 |     auto *InJ = dyn_cast<const Instruction>(OpJ); | 
 |     if (InI && InJ) { | 
 |       if (!equal(InI, InJ)) | 
 |         return false; | 
 |     } else if (InI != InJ || !InI) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | Value *Simplifier::Context::find(Value *Tree, Value *Sub) const { | 
 |   Instruction *SubI = dyn_cast<Instruction>(Sub); | 
 |   WorkListType Q; | 
 |   Q.push_back(Tree); | 
 |  | 
 |   while (!Q.empty()) { | 
 |     Value *V = Q.pop_front_val(); | 
 |     if (V == Sub) | 
 |       return V; | 
 |     Instruction *U = dyn_cast<Instruction>(V); | 
 |     if (!U || U->getParent()) | 
 |       continue; | 
 |     if (SubI && equal(SubI, U)) | 
 |       return U; | 
 |     assert(!isa<PHINode>(U)); | 
 |     for (Value *Op : U->operands()) | 
 |       Q.push_back(Op); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void Simplifier::Context::link(Instruction *I, BasicBlock *B, | 
 |       BasicBlock::iterator At) { | 
 |   if (I->getParent()) | 
 |     return; | 
 |  | 
 |   for (Value *Op : I->operands()) { | 
 |     if (Instruction *OpI = dyn_cast<Instruction>(Op)) | 
 |       link(OpI, B, At); | 
 |   } | 
 |  | 
 |   B->getInstList().insert(At, I); | 
 | } | 
 |  | 
 | Value *Simplifier::Context::materialize(BasicBlock *B, | 
 |       BasicBlock::iterator At) { | 
 |   if (Instruction *RootI = dyn_cast<Instruction>(Root)) | 
 |     link(RootI, B, At); | 
 |   return Root; | 
 | } | 
 |  | 
 | Value *Simplifier::simplify(Context &C) { | 
 |   WorkListType Q; | 
 |   Q.push_back(C.Root); | 
 |   unsigned Count = 0; | 
 |   const unsigned Limit = SimplifyLimit; | 
 |  | 
 |   while (!Q.empty()) { | 
 |     if (Count++ >= Limit) | 
 |       break; | 
 |     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); | 
 |     if (!U || U->getParent() || !C.Used.count(U)) | 
 |       continue; | 
 |     bool Changed = false; | 
 |     for (Rule &R : Rules) { | 
 |       Value *W = R.Fn(U, C.Ctx); | 
 |       if (!W) | 
 |         continue; | 
 |       Changed = true; | 
 |       C.record(W); | 
 |       C.replace(U, W); | 
 |       Q.push_back(C.Root); | 
 |       break; | 
 |     } | 
 |     if (!Changed) { | 
 |       for (Value *Op : U->operands()) | 
 |         Q.push_back(Op); | 
 |     } | 
 |   } | 
 |   return Count < Limit ? C.Root : nullptr; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //          Implementation of PolynomialMultiplyRecognize | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |  | 
 |   class PolynomialMultiplyRecognize { | 
 |   public: | 
 |     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, | 
 |         const DominatorTree &dt, const TargetLibraryInfo &tli, | 
 |         ScalarEvolution &se) | 
 |       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} | 
 |  | 
 |     bool recognize(); | 
 |  | 
 |   private: | 
 |     using ValueSeq = SetVector<Value *>; | 
 |  | 
 |     IntegerType *getPmpyType() const { | 
 |       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext(); | 
 |       return IntegerType::get(Ctx, 32); | 
 |     } | 
 |  | 
 |     bool isPromotableTo(Value *V, IntegerType *Ty); | 
 |     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB); | 
 |     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB); | 
 |  | 
 |     Value *getCountIV(BasicBlock *BB); | 
 |     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); | 
 |     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, | 
 |           ValueSeq &Late); | 
 |     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); | 
 |     bool commutesWithShift(Instruction *I); | 
 |     bool highBitsAreZero(Value *V, unsigned IterCount); | 
 |     bool keepsHighBitsZero(Value *V, unsigned IterCount); | 
 |     bool isOperandShifted(Instruction *I, Value *Op); | 
 |     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, | 
 |           unsigned IterCount); | 
 |     void cleanupLoopBody(BasicBlock *LoopB); | 
 |  | 
 |     struct ParsedValues { | 
 |       ParsedValues() = default; | 
 |  | 
 |       Value *M = nullptr; | 
 |       Value *P = nullptr; | 
 |       Value *Q = nullptr; | 
 |       Value *R = nullptr; | 
 |       Value *X = nullptr; | 
 |       Instruction *Res = nullptr; | 
 |       unsigned IterCount = 0; | 
 |       bool Left = false; | 
 |       bool Inv = false; | 
 |     }; | 
 |  | 
 |     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); | 
 |     bool matchRightShift(SelectInst *SelI, ParsedValues &PV); | 
 |     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, | 
 |           Value *CIV, ParsedValues &PV, bool PreScan); | 
 |     unsigned getInverseMxN(unsigned QP); | 
 |     Value *generate(BasicBlock::iterator At, ParsedValues &PV); | 
 |  | 
 |     void setupPreSimplifier(Simplifier &S); | 
 |     void setupPostSimplifier(Simplifier &S); | 
 |  | 
 |     Loop *CurLoop; | 
 |     const DataLayout &DL; | 
 |     const DominatorTree &DT; | 
 |     const TargetLibraryInfo &TLI; | 
 |     ScalarEvolution &SE; | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { | 
 |   pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
 |   if (std::distance(PI, PE) != 2) | 
 |     return nullptr; | 
 |   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI; | 
 |  | 
 |   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { | 
 |     auto *PN = cast<PHINode>(I); | 
 |     Value *InitV = PN->getIncomingValueForBlock(PB); | 
 |     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero()) | 
 |       continue; | 
 |     Value *IterV = PN->getIncomingValueForBlock(BB); | 
 |     if (!isa<BinaryOperator>(IterV)) | 
 |       continue; | 
 |     auto *BO = dyn_cast<BinaryOperator>(IterV); | 
 |     if (BO->getOpcode() != Instruction::Add) | 
 |       continue; | 
 |     Value *IncV = nullptr; | 
 |     if (BO->getOperand(0) == PN) | 
 |       IncV = BO->getOperand(1); | 
 |     else if (BO->getOperand(1) == PN) | 
 |       IncV = BO->getOperand(0); | 
 |     if (IncV == nullptr) | 
 |       continue; | 
 |  | 
 |     if (auto *T = dyn_cast<ConstantInt>(IncV)) | 
 |       if (T->getZExtValue() == 1) | 
 |         return PN; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { | 
 |   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { | 
 |     Use &TheUse = UI.getUse(); | 
 |     ++UI; | 
 |     if (auto *II = dyn_cast<Instruction>(TheUse.getUser())) | 
 |       if (BB == II->getParent()) | 
 |         II->replaceUsesOfWith(I, J); | 
 |   } | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, | 
 |       Value *CIV, ParsedValues &PV) { | 
 |   // Match the following: | 
 |   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R | 
 |   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i) | 
 |   // The condition may also check for equality with the masked value, i.e | 
 |   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R | 
 |   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); | 
 |  | 
 |   Value *CondV = SelI->getCondition(); | 
 |   Value *TrueV = SelI->getTrueValue(); | 
 |   Value *FalseV = SelI->getFalseValue(); | 
 |  | 
 |   using namespace PatternMatch; | 
 |  | 
 |   CmpInst::Predicate P; | 
 |   Value *A = nullptr, *B = nullptr, *C = nullptr; | 
 |  | 
 |   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) && | 
 |       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B))))) | 
 |     return false; | 
 |   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) | 
 |     return false; | 
 |   // Matched: select (A & B) == C ? ... : ... | 
 |   //          select (A & B) != C ? ... : ... | 
 |  | 
 |   Value *X = nullptr, *Sh1 = nullptr; | 
 |   // Check (A & B) for (X & (1 << i)): | 
 |   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) { | 
 |     Sh1 = A; | 
 |     X = B; | 
 |   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) { | 
 |     Sh1 = B; | 
 |     X = A; | 
 |   } else { | 
 |     // TODO: Could also check for an induction variable containing single | 
 |     // bit shifted left by 1 in each iteration. | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool TrueIfZero; | 
 |  | 
 |   // Check C against the possible values for comparison: 0 and (1 << i): | 
 |   if (match(C, m_Zero())) | 
 |     TrueIfZero = (P == CmpInst::ICMP_EQ); | 
 |   else if (C == Sh1) | 
 |     TrueIfZero = (P == CmpInst::ICMP_NE); | 
 |   else | 
 |     return false; | 
 |  | 
 |   // So far, matched: | 
 |   //   select (X & (1 << i)) ? ... : ... | 
 |   // including variations of the check against zero/non-zero value. | 
 |  | 
 |   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; | 
 |   if (TrueIfZero) { | 
 |     ShouldSameV = TrueV; | 
 |     ShouldXoredV = FalseV; | 
 |   } else { | 
 |     ShouldSameV = FalseV; | 
 |     ShouldXoredV = TrueV; | 
 |   } | 
 |  | 
 |   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; | 
 |   Value *T = nullptr; | 
 |   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) { | 
 |     // Matched: select +++ ? ... : Y ^ Z | 
 |     //          select +++ ? Y ^ Z : ... | 
 |     // where +++ denotes previously checked matches. | 
 |     if (ShouldSameV == Y) | 
 |       T = Z; | 
 |     else if (ShouldSameV == Z) | 
 |       T = Y; | 
 |     else | 
 |       return false; | 
 |     R = ShouldSameV; | 
 |     // Matched: select +++ ? R : R ^ T | 
 |     //          select +++ ? R ^ T : R | 
 |     // depending on TrueIfZero. | 
 |  | 
 |   } else if (match(ShouldSameV, m_Zero())) { | 
 |     // Matched: select +++ ? 0 : ... | 
 |     //          select +++ ? ... : 0 | 
 |     if (!SelI->hasOneUse()) | 
 |       return false; | 
 |     T = ShouldXoredV; | 
 |     // Matched: select +++ ? 0 : T | 
 |     //          select +++ ? T : 0 | 
 |  | 
 |     Value *U = *SelI->user_begin(); | 
 |     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) && | 
 |         !match(U, m_Xor(m_Value(R), m_Specific(SelI)))) | 
 |       return false; | 
 |     // Matched: xor (select +++ ? 0 : T), R | 
 |     //          xor (select +++ ? T : 0), R | 
 |   } else | 
 |     return false; | 
 |  | 
 |   // The xor input value T is isolated into its own match so that it could | 
 |   // be checked against an induction variable containing a shifted bit | 
 |   // (todo). | 
 |   // For now, check against (Q << i). | 
 |   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) && | 
 |       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV))))) | 
 |     return false; | 
 |   // Matched: select +++ ? R : R ^ (Q << i) | 
 |   //          select +++ ? R ^ (Q << i) : R | 
 |  | 
 |   PV.X = X; | 
 |   PV.Q = Q; | 
 |   PV.R = R; | 
 |   PV.Left = true; | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, | 
 |       ParsedValues &PV) { | 
 |   // Match the following: | 
 |   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) | 
 |   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q | 
 |   // The condition may also check for equality with the masked value, i.e | 
 |   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) | 
 |   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q | 
 |  | 
 |   Value *CondV = SelI->getCondition(); | 
 |   Value *TrueV = SelI->getTrueValue(); | 
 |   Value *FalseV = SelI->getFalseValue(); | 
 |  | 
 |   using namespace PatternMatch; | 
 |  | 
 |   Value *C = nullptr; | 
 |   CmpInst::Predicate P; | 
 |   bool TrueIfZero; | 
 |  | 
 |   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) || | 
 |       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) { | 
 |     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) | 
 |       return false; | 
 |     // Matched: select C == 0 ? ... : ... | 
 |     //          select C != 0 ? ... : ... | 
 |     TrueIfZero = (P == CmpInst::ICMP_EQ); | 
 |   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) || | 
 |              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) { | 
 |     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) | 
 |       return false; | 
 |     // Matched: select C == 1 ? ... : ... | 
 |     //          select C != 1 ? ... : ... | 
 |     TrueIfZero = (P == CmpInst::ICMP_NE); | 
 |   } else | 
 |     return false; | 
 |  | 
 |   Value *X = nullptr; | 
 |   if (!match(C, m_And(m_Value(X), m_One())) && | 
 |       !match(C, m_And(m_One(), m_Value(X)))) | 
 |     return false; | 
 |   // Matched: select (X & 1) == +++ ? ... : ... | 
 |   //          select (X & 1) != +++ ? ... : ... | 
 |  | 
 |   Value *R = nullptr, *Q = nullptr; | 
 |   if (TrueIfZero) { | 
 |     // The select's condition is true if the tested bit is 0. | 
 |     // TrueV must be the shift, FalseV must be the xor. | 
 |     if (!match(TrueV, m_LShr(m_Value(R), m_One()))) | 
 |       return false; | 
 |     // Matched: select +++ ? (R >> 1) : ... | 
 |     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) && | 
 |         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV)))) | 
 |       return false; | 
 |     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q | 
 |     // with commuting ^. | 
 |   } else { | 
 |     // The select's condition is true if the tested bit is 1. | 
 |     // TrueV must be the xor, FalseV must be the shift. | 
 |     if (!match(FalseV, m_LShr(m_Value(R), m_One()))) | 
 |       return false; | 
 |     // Matched: select +++ ? ... : (R >> 1) | 
 |     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) && | 
 |         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV)))) | 
 |       return false; | 
 |     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) | 
 |     // with commuting ^. | 
 |   } | 
 |  | 
 |   PV.X = X; | 
 |   PV.Q = Q; | 
 |   PV.R = R; | 
 |   PV.Left = false; | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, | 
 |       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, | 
 |       bool PreScan) { | 
 |   using namespace PatternMatch; | 
 |  | 
 |   // The basic pattern for R = P.Q is: | 
 |   // for i = 0..31 | 
 |   //   R = phi (0, R') | 
 |   //   if (P & (1 << i))        ; test-bit(P, i) | 
 |   //     R' = R ^ (Q << i) | 
 |   // | 
 |   // Similarly, the basic pattern for R = (P/Q).Q - P | 
 |   // for i = 0..31 | 
 |   //   R = phi(P, R') | 
 |   //   if (R & (1 << i)) | 
 |   //     R' = R ^ (Q << i) | 
 |  | 
 |   // There exist idioms, where instead of Q being shifted left, P is shifted | 
 |   // right. This produces a result that is shifted right by 32 bits (the | 
 |   // non-shifted result is 64-bit). | 
 |   // | 
 |   // For R = P.Q, this would be: | 
 |   // for i = 0..31 | 
 |   //   R = phi (0, R') | 
 |   //   if ((P >> i) & 1) | 
 |   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must | 
 |   //   else                     ; be shifted by 1, not i. | 
 |   //     R' = R >> 1 | 
 |   // | 
 |   // And for the inverse: | 
 |   // for i = 0..31 | 
 |   //   R = phi (P, R') | 
 |   //   if (R & 1) | 
 |   //     R' = (R >> 1) ^ Q | 
 |   //   else | 
 |   //     R' = R >> 1 | 
 |  | 
 |   // The left-shifting idioms share the same pattern: | 
 |   //   select (X & (1 << i)) ? R ^ (Q << i) : R | 
 |   // Similarly for right-shifting idioms: | 
 |   //   select (X & 1) ? (R >> 1) ^ Q | 
 |  | 
 |   if (matchLeftShift(SelI, CIV, PV)) { | 
 |     // If this is a pre-scan, getting this far is sufficient. | 
 |     if (PreScan) | 
 |       return true; | 
 |  | 
 |     // Need to make sure that the SelI goes back into R. | 
 |     auto *RPhi = dyn_cast<PHINode>(PV.R); | 
 |     if (!RPhi) | 
 |       return false; | 
 |     if (SelI != RPhi->getIncomingValueForBlock(LoopB)) | 
 |       return false; | 
 |     PV.Res = SelI; | 
 |  | 
 |     // If X is loop invariant, it must be the input polynomial, and the | 
 |     // idiom is the basic polynomial multiply. | 
 |     if (CurLoop->isLoopInvariant(PV.X)) { | 
 |       PV.P = PV.X; | 
 |       PV.Inv = false; | 
 |     } else { | 
 |       // X is not loop invariant. If X == R, this is the inverse pmpy. | 
 |       // Otherwise, check for an xor with an invariant value. If the | 
 |       // variable argument to the xor is R, then this is still a valid | 
 |       // inverse pmpy. | 
 |       PV.Inv = true; | 
 |       if (PV.X != PV.R) { | 
 |         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; | 
 |         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2)))) | 
 |           return false; | 
 |         auto *I1 = dyn_cast<Instruction>(X1); | 
 |         auto *I2 = dyn_cast<Instruction>(X2); | 
 |         if (!I1 || I1->getParent() != LoopB) { | 
 |           Var = X2; | 
 |           Inv = X1; | 
 |         } else if (!I2 || I2->getParent() != LoopB) { | 
 |           Var = X1; | 
 |           Inv = X2; | 
 |         } else | 
 |           return false; | 
 |         if (Var != PV.R) | 
 |           return false; | 
 |         PV.M = Inv; | 
 |       } | 
 |       // The input polynomial P still needs to be determined. It will be | 
 |       // the entry value of R. | 
 |       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB); | 
 |       PV.P = EntryP; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (matchRightShift(SelI, PV)) { | 
 |     // If this is an inverse pattern, the Q polynomial must be known at | 
 |     // compile time. | 
 |     if (PV.Inv && !isa<ConstantInt>(PV.Q)) | 
 |       return false; | 
 |     if (PreScan) | 
 |       return true; | 
 |     // There is no exact matching of right-shift pmpy. | 
 |     return false; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val, | 
 |       IntegerType *DestTy) { | 
 |   IntegerType *T = dyn_cast<IntegerType>(Val->getType()); | 
 |   if (!T || T->getBitWidth() > DestTy->getBitWidth()) | 
 |     return false; | 
 |   if (T->getBitWidth() == DestTy->getBitWidth()) | 
 |     return true; | 
 |   // Non-instructions are promotable. The reason why an instruction may not | 
 |   // be promotable is that it may produce a different result if its operands | 
 |   // and the result are promoted, for example, it may produce more non-zero | 
 |   // bits. While it would still be possible to represent the proper result | 
 |   // in a wider type, it may require adding additional instructions (which | 
 |   // we don't want to do). | 
 |   Instruction *In = dyn_cast<Instruction>(Val); | 
 |   if (!In) | 
 |     return true; | 
 |   // The bitwidth of the source type is smaller than the destination. | 
 |   // Check if the individual operation can be promoted. | 
 |   switch (In->getOpcode()) { | 
 |     case Instruction::PHI: | 
 |     case Instruction::ZExt: | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |     case Instruction::LShr: // Shift right is ok. | 
 |     case Instruction::Select: | 
 |     case Instruction::Trunc: | 
 |       return true; | 
 |     case Instruction::ICmp: | 
 |       if (CmpInst *CI = cast<CmpInst>(In)) | 
 |         return CI->isEquality() || CI->isUnsigned(); | 
 |       llvm_unreachable("Cast failed unexpectedly"); | 
 |     case Instruction::Add: | 
 |       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap(); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void PolynomialMultiplyRecognize::promoteTo(Instruction *In, | 
 |       IntegerType *DestTy, BasicBlock *LoopB) { | 
 |   Type *OrigTy = In->getType(); | 
 |   assert(!OrigTy->isVoidTy() && "Invalid instruction to promote"); | 
 |  | 
 |   // Leave boolean values alone. | 
 |   if (!In->getType()->isIntegerTy(1)) | 
 |     In->mutateType(DestTy); | 
 |   unsigned DestBW = DestTy->getBitWidth(); | 
 |  | 
 |   // Handle PHIs. | 
 |   if (PHINode *P = dyn_cast<PHINode>(In)) { | 
 |     unsigned N = P->getNumIncomingValues(); | 
 |     for (unsigned i = 0; i != N; ++i) { | 
 |       BasicBlock *InB = P->getIncomingBlock(i); | 
 |       if (InB == LoopB) | 
 |         continue; | 
 |       Value *InV = P->getIncomingValue(i); | 
 |       IntegerType *Ty = cast<IntegerType>(InV->getType()); | 
 |       // Do not promote values in PHI nodes of type i1. | 
 |       if (Ty != P->getType()) { | 
 |         // If the value type does not match the PHI type, the PHI type | 
 |         // must have been promoted. | 
 |         assert(Ty->getBitWidth() < DestBW); | 
 |         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy); | 
 |         P->setIncomingValue(i, InV); | 
 |       } | 
 |     } | 
 |   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) { | 
 |     Value *Op = Z->getOperand(0); | 
 |     if (Op->getType() == Z->getType()) | 
 |       Z->replaceAllUsesWith(Op); | 
 |     Z->eraseFromParent(); | 
 |     return; | 
 |   } | 
 |   if (TruncInst *T = dyn_cast<TruncInst>(In)) { | 
 |     IntegerType *TruncTy = cast<IntegerType>(OrigTy); | 
 |     Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1); | 
 |     Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask); | 
 |     T->replaceAllUsesWith(And); | 
 |     T->eraseFromParent(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Promote immediates. | 
 |   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) { | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i))) | 
 |       if (CI->getType()->getBitWidth() < DestBW) | 
 |         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue())); | 
 |   } | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB, | 
 |       BasicBlock *ExitB) { | 
 |   assert(LoopB); | 
 |   // Skip loops where the exit block has more than one predecessor. The values | 
 |   // coming from the loop block will be promoted to another type, and so the | 
 |   // values coming into the exit block from other predecessors would also have | 
 |   // to be promoted. | 
 |   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB)) | 
 |     return false; | 
 |   IntegerType *DestTy = getPmpyType(); | 
 |   // Check if the exit values have types that are no wider than the type | 
 |   // that we want to promote to. | 
 |   unsigned DestBW = DestTy->getBitWidth(); | 
 |   for (PHINode &P : ExitB->phis()) { | 
 |     if (P.getNumIncomingValues() != 1) | 
 |       return false; | 
 |     assert(P.getIncomingBlock(0) == LoopB); | 
 |     IntegerType *T = dyn_cast<IntegerType>(P.getType()); | 
 |     if (!T || T->getBitWidth() > DestBW) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Check all instructions in the loop. | 
 |   for (Instruction &In : *LoopB) | 
 |     if (!In.isTerminator() && !isPromotableTo(&In, DestTy)) | 
 |       return false; | 
 |  | 
 |   // Perform the promotion. | 
 |   std::vector<Instruction*> LoopIns; | 
 |   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns), | 
 |                  [](Instruction &In) { return &In; }); | 
 |   for (Instruction *In : LoopIns) | 
 |     if (!In->isTerminator()) | 
 |       promoteTo(In, DestTy, LoopB); | 
 |  | 
 |   // Fix up the PHI nodes in the exit block. | 
 |   Instruction *EndI = ExitB->getFirstNonPHI(); | 
 |   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end(); | 
 |   for (auto I = ExitB->begin(); I != End; ++I) { | 
 |     PHINode *P = dyn_cast<PHINode>(I); | 
 |     if (!P) | 
 |       break; | 
 |     Type *Ty0 = P->getIncomingValue(0)->getType(); | 
 |     Type *PTy = P->getType(); | 
 |     if (PTy != Ty0) { | 
 |       assert(Ty0 == DestTy); | 
 |       // In order to create the trunc, P must have the promoted type. | 
 |       P->mutateType(Ty0); | 
 |       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy); | 
 |       // In order for the RAUW to work, the types of P and T must match. | 
 |       P->mutateType(PTy); | 
 |       P->replaceAllUsesWith(T); | 
 |       // Final update of the P's type. | 
 |       P->mutateType(Ty0); | 
 |       cast<Instruction>(T)->setOperand(0, P); | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, | 
 |       ValueSeq &Cycle) { | 
 |   // Out = ..., In, ... | 
 |   if (Out == In) | 
 |     return true; | 
 |  | 
 |   auto *BB = cast<Instruction>(Out)->getParent(); | 
 |   bool HadPhi = false; | 
 |  | 
 |   for (auto U : Out->users()) { | 
 |     auto *I = dyn_cast<Instruction>(&*U); | 
 |     if (I == nullptr || I->getParent() != BB) | 
 |       continue; | 
 |     // Make sure that there are no multi-iteration cycles, e.g. | 
 |     //   p1 = phi(p2) | 
 |     //   p2 = phi(p1) | 
 |     // The cycle p1->p2->p1 would span two loop iterations. | 
 |     // Check that there is only one phi in the cycle. | 
 |     bool IsPhi = isa<PHINode>(I); | 
 |     if (IsPhi && HadPhi) | 
 |       return false; | 
 |     HadPhi |= IsPhi; | 
 |     if (Cycle.count(I)) | 
 |       return false; | 
 |     Cycle.insert(I); | 
 |     if (findCycle(I, In, Cycle)) | 
 |       break; | 
 |     Cycle.remove(I); | 
 |   } | 
 |   return !Cycle.empty(); | 
 | } | 
 |  | 
 | void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, | 
 |       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { | 
 |   // All the values in the cycle that are between the phi node and the | 
 |   // divider instruction will be classified as "early", all other values | 
 |   // will be "late". | 
 |  | 
 |   bool IsE = true; | 
 |   unsigned I, N = Cycle.size(); | 
 |   for (I = 0; I < N; ++I) { | 
 |     Value *V = Cycle[I]; | 
 |     if (DivI == V) | 
 |       IsE = false; | 
 |     else if (!isa<PHINode>(V)) | 
 |       continue; | 
 |     // Stop if found either. | 
 |     break; | 
 |   } | 
 |   // "I" is the index of either DivI or the phi node, whichever was first. | 
 |   // "E" is "false" or "true" respectively. | 
 |   ValueSeq &First = !IsE ? Early : Late; | 
 |   for (unsigned J = 0; J < I; ++J) | 
 |     First.insert(Cycle[J]); | 
 |  | 
 |   ValueSeq &Second = IsE ? Early : Late; | 
 |   Second.insert(Cycle[I]); | 
 |   for (++I; I < N; ++I) { | 
 |     Value *V = Cycle[I]; | 
 |     if (DivI == V || isa<PHINode>(V)) | 
 |       break; | 
 |     Second.insert(V); | 
 |   } | 
 |  | 
 |   for (; I < N; ++I) | 
 |     First.insert(Cycle[I]); | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, | 
 |       ValueSeq &Early, ValueSeq &Late) { | 
 |   // Select is an exception, since the condition value does not have to be | 
 |   // classified in the same way as the true/false values. The true/false | 
 |   // values do have to be both early or both late. | 
 |   if (UseI->getOpcode() == Instruction::Select) { | 
 |     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2); | 
 |     if (Early.count(TV) || Early.count(FV)) { | 
 |       if (Late.count(TV) || Late.count(FV)) | 
 |         return false; | 
 |       Early.insert(UseI); | 
 |     } else if (Late.count(TV) || Late.count(FV)) { | 
 |       if (Early.count(TV) || Early.count(FV)) | 
 |         return false; | 
 |       Late.insert(UseI); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Not sure what would be the example of this, but the code below relies | 
 |   // on having at least one operand. | 
 |   if (UseI->getNumOperands() == 0) | 
 |     return true; | 
 |  | 
 |   bool AE = true, AL = true; | 
 |   for (auto &I : UseI->operands()) { | 
 |     if (Early.count(&*I)) | 
 |       AL = false; | 
 |     else if (Late.count(&*I)) | 
 |       AE = false; | 
 |   } | 
 |   // If the operands appear "all early" and "all late" at the same time, | 
 |   // then it means that none of them are actually classified as either. | 
 |   // This is harmless. | 
 |   if (AE && AL) | 
 |     return true; | 
 |   // Conversely, if they are neither "all early" nor "all late", then | 
 |   // we have a mixture of early and late operands that is not a known | 
 |   // exception. | 
 |   if (!AE && !AL) | 
 |     return false; | 
 |  | 
 |   // Check that we have covered the two special cases. | 
 |   assert(AE != AL); | 
 |  | 
 |   if (AE) | 
 |     Early.insert(UseI); | 
 |   else | 
 |     Late.insert(UseI); | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { | 
 |   switch (I->getOpcode()) { | 
 |     case Instruction::And: | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |     case Instruction::LShr: | 
 |     case Instruction::Shl: | 
 |     case Instruction::Select: | 
 |     case Instruction::ICmp: | 
 |     case Instruction::PHI: | 
 |       break; | 
 |     default: | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, | 
 |       unsigned IterCount) { | 
 |   auto *T = dyn_cast<IntegerType>(V->getType()); | 
 |   if (!T) | 
 |     return false; | 
 |  | 
 |   KnownBits Known(T->getBitWidth()); | 
 |   computeKnownBits(V, Known, DL); | 
 |   return Known.countMinLeadingZeros() >= IterCount; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, | 
 |       unsigned IterCount) { | 
 |   // Assume that all inputs to the value have the high bits zero. | 
 |   // Check if the value itself preserves the zeros in the high bits. | 
 |   if (auto *C = dyn_cast<ConstantInt>(V)) | 
 |     return C->getValue().countLeadingZeros() >= IterCount; | 
 |  | 
 |   if (auto *I = dyn_cast<Instruction>(V)) { | 
 |     switch (I->getOpcode()) { | 
 |       case Instruction::And: | 
 |       case Instruction::Or: | 
 |       case Instruction::Xor: | 
 |       case Instruction::LShr: | 
 |       case Instruction::Select: | 
 |       case Instruction::ICmp: | 
 |       case Instruction::PHI: | 
 |       case Instruction::ZExt: | 
 |         return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { | 
 |   unsigned Opc = I->getOpcode(); | 
 |   if (Opc == Instruction::Shl || Opc == Instruction::LShr) | 
 |     return Op != I->getOperand(1); | 
 |   return true; | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, | 
 |       BasicBlock *ExitB, unsigned IterCount) { | 
 |   Value *CIV = getCountIV(LoopB); | 
 |   if (CIV == nullptr) | 
 |     return false; | 
 |   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType()); | 
 |   if (CIVTy == nullptr) | 
 |     return false; | 
 |  | 
 |   ValueSeq RShifts; | 
 |   ValueSeq Early, Late, Cycled; | 
 |  | 
 |   // Find all value cycles that contain logical right shifts by 1. | 
 |   for (Instruction &I : *LoopB) { | 
 |     using namespace PatternMatch; | 
 |  | 
 |     Value *V = nullptr; | 
 |     if (!match(&I, m_LShr(m_Value(V), m_One()))) | 
 |       continue; | 
 |     ValueSeq C; | 
 |     if (!findCycle(&I, V, C)) | 
 |       continue; | 
 |  | 
 |     // Found a cycle. | 
 |     C.insert(&I); | 
 |     classifyCycle(&I, C, Early, Late); | 
 |     Cycled.insert(C.begin(), C.end()); | 
 |     RShifts.insert(&I); | 
 |   } | 
 |  | 
 |   // Find the set of all values affected by the shift cycles, i.e. all | 
 |   // cycled values, and (recursively) all their users. | 
 |   ValueSeq Users(Cycled.begin(), Cycled.end()); | 
 |   for (unsigned i = 0; i < Users.size(); ++i) { | 
 |     Value *V = Users[i]; | 
 |     if (!isa<IntegerType>(V->getType())) | 
 |       return false; | 
 |     auto *R = cast<Instruction>(V); | 
 |     // If the instruction does not commute with shifts, the loop cannot | 
 |     // be unshifted. | 
 |     if (!commutesWithShift(R)) | 
 |       return false; | 
 |     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) { | 
 |       auto *T = cast<Instruction>(*I); | 
 |       // Skip users from outside of the loop. They will be handled later. | 
 |       // Also, skip the right-shifts and phi nodes, since they mix early | 
 |       // and late values. | 
 |       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T)) | 
 |         continue; | 
 |  | 
 |       Users.insert(T); | 
 |       if (!classifyInst(T, Early, Late)) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Users.empty()) | 
 |     return false; | 
 |  | 
 |   // Verify that high bits remain zero. | 
 |   ValueSeq Internal(Users.begin(), Users.end()); | 
 |   ValueSeq Inputs; | 
 |   for (unsigned i = 0; i < Internal.size(); ++i) { | 
 |     auto *R = dyn_cast<Instruction>(Internal[i]); | 
 |     if (!R) | 
 |       continue; | 
 |     for (Value *Op : R->operands()) { | 
 |       auto *T = dyn_cast<Instruction>(Op); | 
 |       if (T && T->getParent() != LoopB) | 
 |         Inputs.insert(Op); | 
 |       else | 
 |         Internal.insert(Op); | 
 |     } | 
 |   } | 
 |   for (Value *V : Inputs) | 
 |     if (!highBitsAreZero(V, IterCount)) | 
 |       return false; | 
 |   for (Value *V : Internal) | 
 |     if (!keepsHighBitsZero(V, IterCount)) | 
 |       return false; | 
 |  | 
 |   // Finally, the work can be done. Unshift each user. | 
 |   IRBuilder<> IRB(LoopB); | 
 |   std::map<Value*,Value*> ShiftMap; | 
 |  | 
 |   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>; | 
 |  | 
 |   CastMapType CastMap; | 
 |  | 
 |   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V, | 
 |         IntegerType *Ty) -> Value* { | 
 |     auto H = CM.find(std::make_pair(V, Ty)); | 
 |     if (H != CM.end()) | 
 |       return H->second; | 
 |     Value *CV = IRB.CreateIntCast(V, Ty, false); | 
 |     CM.insert(std::make_pair(std::make_pair(V, Ty), CV)); | 
 |     return CV; | 
 |   }; | 
 |  | 
 |   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { | 
 |     using namespace PatternMatch; | 
 |  | 
 |     if (isa<PHINode>(I) || !Users.count(&*I)) | 
 |       continue; | 
 |  | 
 |     // Match lshr x, 1. | 
 |     Value *V = nullptr; | 
 |     if (match(&*I, m_LShr(m_Value(V), m_One()))) { | 
 |       replaceAllUsesOfWithIn(&*I, V, LoopB); | 
 |       continue; | 
 |     } | 
 |     // For each non-cycled operand, replace it with the corresponding | 
 |     // value shifted left. | 
 |     for (auto &J : I->operands()) { | 
 |       Value *Op = J.get(); | 
 |       if (!isOperandShifted(&*I, Op)) | 
 |         continue; | 
 |       if (Users.count(Op)) | 
 |         continue; | 
 |       // Skip shifting zeros. | 
 |       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) | 
 |         continue; | 
 |       // Check if we have already generated a shift for this value. | 
 |       auto F = ShiftMap.find(Op); | 
 |       Value *W = (F != ShiftMap.end()) ? F->second : nullptr; | 
 |       if (W == nullptr) { | 
 |         IRB.SetInsertPoint(&*I); | 
 |         // First, the shift amount will be CIV or CIV+1, depending on | 
 |         // whether the value is early or late. Instead of creating CIV+1, | 
 |         // do a single shift of the value. | 
 |         Value *ShAmt = CIV, *ShVal = Op; | 
 |         auto *VTy = cast<IntegerType>(ShVal->getType()); | 
 |         auto *ATy = cast<IntegerType>(ShAmt->getType()); | 
 |         if (Late.count(&*I)) | 
 |           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1)); | 
 |         // Second, the types of the shifted value and the shift amount | 
 |         // must match. | 
 |         if (VTy != ATy) { | 
 |           if (VTy->getBitWidth() < ATy->getBitWidth()) | 
 |             ShVal = upcast(CastMap, IRB, ShVal, ATy); | 
 |           else | 
 |             ShAmt = upcast(CastMap, IRB, ShAmt, VTy); | 
 |         } | 
 |         // Ready to generate the shift and memoize it. | 
 |         W = IRB.CreateShl(ShVal, ShAmt); | 
 |         ShiftMap.insert(std::make_pair(Op, W)); | 
 |       } | 
 |       I->replaceUsesOfWith(Op, W); | 
 |     } | 
 |   } | 
 |  | 
 |   // Update the users outside of the loop to account for having left | 
 |   // shifts. They would normally be shifted right in the loop, so shift | 
 |   // them right after the loop exit. | 
 |   // Take advantage of the loop-closed SSA form, which has all the post- | 
 |   // loop values in phi nodes. | 
 |   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt()); | 
 |   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { | 
 |     if (!isa<PHINode>(P)) | 
 |       break; | 
 |     auto *PN = cast<PHINode>(P); | 
 |     Value *U = PN->getIncomingValueForBlock(LoopB); | 
 |     if (!Users.count(U)) | 
 |       continue; | 
 |     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount)); | 
 |     PN->replaceAllUsesWith(S); | 
 |     // The above RAUW will create | 
 |     //   S = lshr S, IterCount | 
 |     // so we need to fix it back into | 
 |     //   S = lshr PN, IterCount | 
 |     cast<User>(S)->replaceUsesOfWith(S, PN); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { | 
 |   for (auto &I : *LoopB) | 
 |     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT})) | 
 |       I.replaceAllUsesWith(SV); | 
 |  | 
 |   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) { | 
 |     N = std::next(I); | 
 |     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI); | 
 |   } | 
 | } | 
 |  | 
 | unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { | 
 |   // Arrays of coefficients of Q and the inverse, C. | 
 |   // Q[i] = coefficient at x^i. | 
 |   std::array<char,32> Q, C; | 
 |  | 
 |   for (unsigned i = 0; i < 32; ++i) { | 
 |     Q[i] = QP & 1; | 
 |     QP >>= 1; | 
 |   } | 
 |   assert(Q[0] == 1); | 
 |  | 
 |   // Find C, such that | 
 |   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 | 
 |   // | 
 |   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the | 
 |   // operations * and + are & and ^ respectively. | 
 |   // | 
 |   // Find C[i] recursively, by comparing i-th coefficient in the product | 
 |   // with 0 (or 1 for i=0). | 
 |   // | 
 |   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. | 
 |   C[0] = 1; | 
 |   for (unsigned i = 1; i < 32; ++i) { | 
 |     // Solve for C[i] in: | 
 |     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 | 
 |     // This is equivalent to | 
 |     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 | 
 |     // which is | 
 |     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] | 
 |     unsigned T = 0; | 
 |     for (unsigned j = 0; j < i; ++j) | 
 |       T = T ^ (C[j] & Q[i-j]); | 
 |     C[i] = T; | 
 |   } | 
 |  | 
 |   unsigned QV = 0; | 
 |   for (unsigned i = 0; i < 32; ++i) | 
 |     if (C[i]) | 
 |       QV |= (1 << i); | 
 |  | 
 |   return QV; | 
 | } | 
 |  | 
 | Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, | 
 |       ParsedValues &PV) { | 
 |   IRBuilder<> B(&*At); | 
 |   Module *M = At->getParent()->getParent()->getParent(); | 
 |   Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw); | 
 |  | 
 |   Value *P = PV.P, *Q = PV.Q, *P0 = P; | 
 |   unsigned IC = PV.IterCount; | 
 |  | 
 |   if (PV.M != nullptr) | 
 |     P0 = P = B.CreateXor(P, PV.M); | 
 |  | 
 |   // Create a bit mask to clear the high bits beyond IterCount. | 
 |   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC)); | 
 |  | 
 |   if (PV.IterCount != 32) | 
 |     P = B.CreateAnd(P, BMI); | 
 |  | 
 |   if (PV.Inv) { | 
 |     auto *QI = dyn_cast<ConstantInt>(PV.Q); | 
 |     assert(QI && QI->getBitWidth() <= 32); | 
 |  | 
 |     // Again, clearing bits beyond IterCount. | 
 |     unsigned M = (1 << PV.IterCount) - 1; | 
 |     unsigned Tmp = (QI->getZExtValue() | 1) & M; | 
 |     unsigned QV = getInverseMxN(Tmp) & M; | 
 |     auto *QVI = ConstantInt::get(QI->getType(), QV); | 
 |     P = B.CreateCall(PMF, {P, QVI}); | 
 |     P = B.CreateTrunc(P, QI->getType()); | 
 |     if (IC != 32) | 
 |       P = B.CreateAnd(P, BMI); | 
 |   } | 
 |  | 
 |   Value *R = B.CreateCall(PMF, {P, Q}); | 
 |  | 
 |   if (PV.M != nullptr) | 
 |     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false)); | 
 |  | 
 |   return R; | 
 | } | 
 |  | 
 | static bool hasZeroSignBit(const Value *V) { | 
 |   if (const auto *CI = dyn_cast<const ConstantInt>(V)) | 
 |     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0; | 
 |   const Instruction *I = dyn_cast<const Instruction>(V); | 
 |   if (!I) | 
 |     return false; | 
 |   switch (I->getOpcode()) { | 
 |     case Instruction::LShr: | 
 |       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1))) | 
 |         return SI->getZExtValue() > 0; | 
 |       return false; | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |       return hasZeroSignBit(I->getOperand(0)) && | 
 |              hasZeroSignBit(I->getOperand(1)); | 
 |     case Instruction::And: | 
 |       return hasZeroSignBit(I->getOperand(0)) || | 
 |              hasZeroSignBit(I->getOperand(1)); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) { | 
 |   S.addRule("sink-zext", | 
 |     // Sink zext past bitwise operations. | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       if (I->getOpcode() != Instruction::ZExt) | 
 |         return nullptr; | 
 |       Instruction *T = dyn_cast<Instruction>(I->getOperand(0)); | 
 |       if (!T) | 
 |         return nullptr; | 
 |       switch (T->getOpcode()) { | 
 |         case Instruction::And: | 
 |         case Instruction::Or: | 
 |         case Instruction::Xor: | 
 |           break; | 
 |         default: | 
 |           return nullptr; | 
 |       } | 
 |       IRBuilder<> B(Ctx); | 
 |       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(), | 
 |                            B.CreateZExt(T->getOperand(0), I->getType()), | 
 |                            B.CreateZExt(T->getOperand(1), I->getType())); | 
 |     }); | 
 |   S.addRule("xor/and -> and/xor", | 
 |     // (xor (and x a) (and y a)) -> (and (xor x y) a) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       if (I->getOpcode() != Instruction::Xor) | 
 |         return nullptr; | 
 |       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0)); | 
 |       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1)); | 
 |       if (!And0 || !And1) | 
 |         return nullptr; | 
 |       if (And0->getOpcode() != Instruction::And || | 
 |           And1->getOpcode() != Instruction::And) | 
 |         return nullptr; | 
 |       if (And0->getOperand(1) != And1->getOperand(1)) | 
 |         return nullptr; | 
 |       IRBuilder<> B(Ctx); | 
 |       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)), | 
 |                          And0->getOperand(1)); | 
 |     }); | 
 |   S.addRule("sink binop into select", | 
 |     // (Op (select c x y) z) -> (select c (Op x z) (Op y z)) | 
 |     // (Op x (select c y z)) -> (select c (Op x y) (Op x z)) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       BinaryOperator *BO = dyn_cast<BinaryOperator>(I); | 
 |       if (!BO) | 
 |         return nullptr; | 
 |       Instruction::BinaryOps Op = BO->getOpcode(); | 
 |       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) { | 
 |         IRBuilder<> B(Ctx); | 
 |         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue(); | 
 |         Value *Z = BO->getOperand(1); | 
 |         return B.CreateSelect(Sel->getCondition(), | 
 |                               B.CreateBinOp(Op, X, Z), | 
 |                               B.CreateBinOp(Op, Y, Z)); | 
 |       } | 
 |       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) { | 
 |         IRBuilder<> B(Ctx); | 
 |         Value *X = BO->getOperand(0); | 
 |         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue(); | 
 |         return B.CreateSelect(Sel->getCondition(), | 
 |                               B.CreateBinOp(Op, X, Y), | 
 |                               B.CreateBinOp(Op, X, Z)); | 
 |       } | 
 |       return nullptr; | 
 |     }); | 
 |   S.addRule("fold select-select", | 
 |     // (select c (select c x y) z) -> (select c x z) | 
 |     // (select c x (select c y z)) -> (select c x z) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       SelectInst *Sel = dyn_cast<SelectInst>(I); | 
 |       if (!Sel) | 
 |         return nullptr; | 
 |       IRBuilder<> B(Ctx); | 
 |       Value *C = Sel->getCondition(); | 
 |       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) { | 
 |         if (Sel0->getCondition() == C) | 
 |           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue()); | 
 |       } | 
 |       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) { | 
 |         if (Sel1->getCondition() == C) | 
 |           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue()); | 
 |       } | 
 |       return nullptr; | 
 |     }); | 
 |   S.addRule("or-signbit -> xor-signbit", | 
 |     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       if (I->getOpcode() != Instruction::Or) | 
 |         return nullptr; | 
 |       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1)); | 
 |       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit()) | 
 |         return nullptr; | 
 |       if (!hasZeroSignBit(I->getOperand(0))) | 
 |         return nullptr; | 
 |       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb); | 
 |     }); | 
 |   S.addRule("sink lshr into binop", | 
 |     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c)) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       if (I->getOpcode() != Instruction::LShr) | 
 |         return nullptr; | 
 |       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0)); | 
 |       if (!BitOp) | 
 |         return nullptr; | 
 |       switch (BitOp->getOpcode()) { | 
 |         case Instruction::And: | 
 |         case Instruction::Or: | 
 |         case Instruction::Xor: | 
 |           break; | 
 |         default: | 
 |           return nullptr; | 
 |       } | 
 |       IRBuilder<> B(Ctx); | 
 |       Value *S = I->getOperand(1); | 
 |       return B.CreateBinOp(BitOp->getOpcode(), | 
 |                 B.CreateLShr(BitOp->getOperand(0), S), | 
 |                 B.CreateLShr(BitOp->getOperand(1), S)); | 
 |     }); | 
 |   S.addRule("expose bitop-const", | 
 |     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b)) | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       auto IsBitOp = [](unsigned Op) -> bool { | 
 |         switch (Op) { | 
 |           case Instruction::And: | 
 |           case Instruction::Or: | 
 |           case Instruction::Xor: | 
 |             return true; | 
 |         } | 
 |         return false; | 
 |       }; | 
 |       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I); | 
 |       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode())) | 
 |         return nullptr; | 
 |       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0)); | 
 |       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode())) | 
 |         return nullptr; | 
 |       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1)); | 
 |       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1)); | 
 |       if (!CA || !CB) | 
 |         return nullptr; | 
 |       IRBuilder<> B(Ctx); | 
 |       Value *X = BitOp2->getOperand(0); | 
 |       return B.CreateBinOp(BitOp2->getOpcode(), X, | 
 |                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB)); | 
 |     }); | 
 | } | 
 |  | 
 | void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) { | 
 |   S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a", | 
 |     [](Instruction *I, LLVMContext &Ctx) -> Value* { | 
 |       if (I->getOpcode() != Instruction::And) | 
 |         return nullptr; | 
 |       Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0)); | 
 |       ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1)); | 
 |       if (!Xor || !C0) | 
 |         return nullptr; | 
 |       if (Xor->getOpcode() != Instruction::Xor) | 
 |         return nullptr; | 
 |       Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0)); | 
 |       Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1)); | 
 |       // Pick the first non-null and. | 
 |       if (!And0 || And0->getOpcode() != Instruction::And) | 
 |         std::swap(And0, And1); | 
 |       ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1)); | 
 |       if (!C1) | 
 |         return nullptr; | 
 |       uint32_t V0 = C0->getZExtValue(); | 
 |       uint32_t V1 = C1->getZExtValue(); | 
 |       if (V0 != (V0 & V1)) | 
 |         return nullptr; | 
 |       IRBuilder<> B(Ctx); | 
 |       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0); | 
 |     }); | 
 | } | 
 |  | 
 | bool PolynomialMultiplyRecognize::recognize() { | 
 |   LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n" | 
 |                     << *CurLoop << '\n'); | 
 |   // Restrictions: | 
 |   // - The loop must consist of a single block. | 
 |   // - The iteration count must be known at compile-time. | 
 |   // - The loop must have an induction variable starting from 0, and | 
 |   //   incremented in each iteration of the loop. | 
 |   BasicBlock *LoopB = CurLoop->getHeader(); | 
 |   LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB); | 
 |  | 
 |   if (LoopB != CurLoop->getLoopLatch()) | 
 |     return false; | 
 |   BasicBlock *ExitB = CurLoop->getExitBlock(); | 
 |   if (ExitB == nullptr) | 
 |     return false; | 
 |   BasicBlock *EntryB = CurLoop->getLoopPreheader(); | 
 |   if (EntryB == nullptr) | 
 |     return false; | 
 |  | 
 |   unsigned IterCount = 0; | 
 |   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop); | 
 |   if (isa<SCEVCouldNotCompute>(CT)) | 
 |     return false; | 
 |   if (auto *CV = dyn_cast<SCEVConstant>(CT)) | 
 |     IterCount = CV->getValue()->getZExtValue() + 1; | 
 |  | 
 |   Value *CIV = getCountIV(LoopB); | 
 |   ParsedValues PV; | 
 |   Simplifier PreSimp; | 
 |   PV.IterCount = IterCount; | 
 |   LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount | 
 |                     << '\n'); | 
 |  | 
 |   setupPreSimplifier(PreSimp); | 
 |  | 
 |   // Perform a preliminary scan of select instructions to see if any of them | 
 |   // looks like a generator of the polynomial multiply steps. Assume that a | 
 |   // loop can only contain a single transformable operation, so stop the | 
 |   // traversal after the first reasonable candidate was found. | 
 |   // XXX: Currently this approach can modify the loop before being 100% sure | 
 |   // that the transformation can be carried out. | 
 |   bool FoundPreScan = false; | 
 |   auto FeedsPHI = [LoopB](const Value *V) -> bool { | 
 |     for (const Value *U : V->users()) { | 
 |       if (const auto *P = dyn_cast<const PHINode>(U)) | 
 |         if (P->getParent() == LoopB) | 
 |           return true; | 
 |     } | 
 |     return false; | 
 |   }; | 
 |   for (Instruction &In : *LoopB) { | 
 |     SelectInst *SI = dyn_cast<SelectInst>(&In); | 
 |     if (!SI || !FeedsPHI(SI)) | 
 |       continue; | 
 |  | 
 |     Simplifier::Context C(SI); | 
 |     Value *T = PreSimp.simplify(C); | 
 |     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI; | 
 |     LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n'); | 
 |     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) { | 
 |       FoundPreScan = true; | 
 |       if (SelI != SI) { | 
 |         Value *NewSel = C.materialize(LoopB, SI->getIterator()); | 
 |         SI->replaceAllUsesWith(NewSel); | 
 |         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!FoundPreScan) { | 
 |     LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!PV.Left) { | 
 |     // The right shift version actually only returns the higher bits of | 
 |     // the result (each iteration discards the LSB). If we want to convert it | 
 |     // to a left-shifting loop, the working data type must be at least as | 
 |     // wide as the target's pmpy instruction. | 
 |     if (!promoteTypes(LoopB, ExitB)) | 
 |       return false; | 
 |     // Run post-promotion simplifications. | 
 |     Simplifier PostSimp; | 
 |     setupPostSimplifier(PostSimp); | 
 |     for (Instruction &In : *LoopB) { | 
 |       SelectInst *SI = dyn_cast<SelectInst>(&In); | 
 |       if (!SI || !FeedsPHI(SI)) | 
 |         continue; | 
 |       Simplifier::Context C(SI); | 
 |       Value *T = PostSimp.simplify(C); | 
 |       SelectInst *SelI = dyn_cast_or_null<SelectInst>(T); | 
 |       if (SelI != SI) { | 
 |         Value *NewSel = C.materialize(LoopB, SI->getIterator()); | 
 |         SI->replaceAllUsesWith(NewSel); | 
 |         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     if (!convertShiftsToLeft(LoopB, ExitB, IterCount)) | 
 |       return false; | 
 |     cleanupLoopBody(LoopB); | 
 |   } | 
 |  | 
 |   // Scan the loop again, find the generating select instruction. | 
 |   bool FoundScan = false; | 
 |   for (Instruction &In : *LoopB) { | 
 |     SelectInst *SelI = dyn_cast<SelectInst>(&In); | 
 |     if (!SelI) | 
 |       continue; | 
 |     LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n'); | 
 |     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false); | 
 |     if (FoundScan) | 
 |       break; | 
 |   } | 
 |   assert(FoundScan); | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     StringRef PP = (PV.M ? "(P+M)" : "P"); | 
 |     if (!PV.Inv) | 
 |       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n"; | 
 |     else | 
 |       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " | 
 |              << PP << "\n"; | 
 |     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n"; | 
 |     if (PV.M) | 
 |       dbgs() << "  M:" << *PV.M << "\n"; | 
 |     dbgs() << "  Q:" << *PV.Q << "\n"; | 
 |     dbgs() << "  Iteration count:" << PV.IterCount << "\n"; | 
 |   }); | 
 |  | 
 |   BasicBlock::iterator At(EntryB->getTerminator()); | 
 |   Value *PM = generate(At, PV); | 
 |   if (PM == nullptr) | 
 |     return false; | 
 |  | 
 |   if (PM->getType() != PV.Res->getType()) | 
 |     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false); | 
 |  | 
 |   PV.Res->replaceAllUsesWith(PM); | 
 |   PV.Res->eraseFromParent(); | 
 |   return true; | 
 | } | 
 |  | 
 | int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) | 
 |     return SC->getAPInt().getSExtValue(); | 
 |   return 0; | 
 | } | 
 |  | 
 | bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { | 
 |   // Allow volatile stores if HexagonVolatileMemcpy is enabled. | 
 |   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) | 
 |     return false; | 
 |  | 
 |   Value *StoredVal = SI->getValueOperand(); | 
 |   Value *StorePtr = SI->getPointerOperand(); | 
 |  | 
 |   // Reject stores that are so large that they overflow an unsigned. | 
 |   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); | 
 |   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) | 
 |     return false; | 
 |  | 
 |   // See if the pointer expression is an AddRec like {base,+,1} on the current | 
 |   // loop, which indicates a strided store.  If we have something else, it's a | 
 |   // random store we can't handle. | 
 |   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
 |   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | 
 |     return false; | 
 |  | 
 |   // Check to see if the stride matches the size of the store.  If so, then we | 
 |   // know that every byte is touched in the loop. | 
 |   int Stride = getSCEVStride(StoreEv); | 
 |   if (Stride == 0) | 
 |     return false; | 
 |   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
 |   if (StoreSize != unsigned(std::abs(Stride))) | 
 |     return false; | 
 |  | 
 |   // The store must be feeding a non-volatile load. | 
 |   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); | 
 |   if (!LI || !LI->isSimple()) | 
 |     return false; | 
 |  | 
 |   // See if the pointer expression is an AddRec like {base,+,1} on the current | 
 |   // loop, which indicates a strided load.  If we have something else, it's a | 
 |   // random load we can't handle. | 
 |   Value *LoadPtr = LI->getPointerOperand(); | 
 |   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); | 
 |   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | 
 |     return false; | 
 |  | 
 |   // The store and load must share the same stride. | 
 |   if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) | 
 |     return false; | 
 |  | 
 |   // Success.  This store can be converted into a memcpy. | 
 |   return true; | 
 | } | 
 |  | 
 | /// mayLoopAccessLocation - Return true if the specified loop might access the | 
 | /// specified pointer location, which is a loop-strided access.  The 'Access' | 
 | /// argument specifies what the verboten forms of access are (read or write). | 
 | static bool | 
 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, | 
 |                       const SCEV *BECount, unsigned StoreSize, | 
 |                       AliasAnalysis &AA, | 
 |                       SmallPtrSetImpl<Instruction *> &Ignored) { | 
 |   // Get the location that may be stored across the loop.  Since the access | 
 |   // is strided positively through memory, we say that the modified location | 
 |   // starts at the pointer and has infinite size. | 
 |   LocationSize AccessSize = LocationSize::unknown(); | 
 |  | 
 |   // If the loop iterates a fixed number of times, we can refine the access | 
 |   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize | 
 |   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) | 
 |     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * | 
 |                                        StoreSize); | 
 |  | 
 |   // TODO: For this to be really effective, we have to dive into the pointer | 
 |   // operand in the store.  Store to &A[i] of 100 will always return may alias | 
 |   // with store of &A[100], we need to StoreLoc to be "A" with size of 100, | 
 |   // which will then no-alias a store to &A[100]. | 
 |   MemoryLocation StoreLoc(Ptr, AccessSize); | 
 |  | 
 |   for (auto *B : L->blocks()) | 
 |     for (auto &I : *B) | 
 |       if (Ignored.count(&I) == 0 && | 
 |           isModOrRefSet( | 
 |               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) | 
 |         return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, | 
 |       SmallVectorImpl<StoreInst*> &Stores) { | 
 |   Stores.clear(); | 
 |   for (Instruction &I : *BB) | 
 |     if (StoreInst *SI = dyn_cast<StoreInst>(&I)) | 
 |       if (isLegalStore(CurLoop, SI)) | 
 |         Stores.push_back(SI); | 
 | } | 
 |  | 
 | bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, | 
 |       StoreInst *SI, const SCEV *BECount) { | 
 |   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) && | 
 |          "Expected only non-volatile stores, or Hexagon-specific memcpy" | 
 |          "to volatile destination."); | 
 |  | 
 |   Value *StorePtr = SI->getPointerOperand(); | 
 |   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | 
 |   unsigned Stride = getSCEVStride(StoreEv); | 
 |   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | 
 |   if (Stride != StoreSize) | 
 |     return false; | 
 |  | 
 |   // See if the pointer expression is an AddRec like {base,+,1} on the current | 
 |   // loop, which indicates a strided load.  If we have something else, it's a | 
 |   // random load we can't handle. | 
 |   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); | 
 |   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); | 
 |  | 
 |   // The trip count of the loop and the base pointer of the addrec SCEV is | 
 |   // guaranteed to be loop invariant, which means that it should dominate the | 
 |   // header.  This allows us to insert code for it in the preheader. | 
 |   BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
 |   Instruction *ExpPt = Preheader->getTerminator(); | 
 |   IRBuilder<> Builder(ExpPt); | 
 |   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom"); | 
 |  | 
 |   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace()); | 
 |  | 
 |   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn | 
 |   // this into a memcpy/memmove in the loop preheader now if we want.  However, | 
 |   // this would be unsafe to do if there is anything else in the loop that may | 
 |   // read or write the memory region we're storing to.  For memcpy, this | 
 |   // includes the load that feeds the stores.  Check for an alias by generating | 
 |   // the base address and checking everything. | 
 |   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(), | 
 |       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt); | 
 |   Value *LoadBasePtr = nullptr; | 
 |  | 
 |   bool Overlap = false; | 
 |   bool DestVolatile = SI->isVolatile(); | 
 |   Type *BECountTy = BECount->getType(); | 
 |  | 
 |   if (DestVolatile) { | 
 |     // The trip count must fit in i32, since it is the type of the "num_words" | 
 |     // argument to hexagon_memcpy_forward_vp4cp4n2. | 
 |     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) { | 
 | CleanupAndExit: | 
 |       // If we generated new code for the base pointer, clean up. | 
 |       Expander.clear(); | 
 |       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { | 
 |         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); | 
 |         StoreBasePtr = nullptr; | 
 |       } | 
 |       if (LoadBasePtr) { | 
 |         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); | 
 |         LoadBasePtr = nullptr; | 
 |       } | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   SmallPtrSet<Instruction*, 2> Ignore1; | 
 |   Ignore1.insert(SI); | 
 |   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, | 
 |                             StoreSize, *AA, Ignore1)) { | 
 |     // Check if the load is the offending instruction. | 
 |     Ignore1.insert(LI); | 
 |     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, | 
 |                               BECount, StoreSize, *AA, Ignore1)) { | 
 |       // Still bad. Nothing we can do. | 
 |       goto CleanupAndExit; | 
 |     } | 
 |     // It worked with the load ignored. | 
 |     Overlap = true; | 
 |   } | 
 |  | 
 |   if (!Overlap) { | 
 |     if (DisableMemcpyIdiom || !HasMemcpy) | 
 |       goto CleanupAndExit; | 
 |   } else { | 
 |     // Don't generate memmove if this function will be inlined. This is | 
 |     // because the caller will undergo this transformation after inlining. | 
 |     Function *Func = CurLoop->getHeader()->getParent(); | 
 |     if (Func->hasFnAttribute(Attribute::AlwaysInline)) | 
 |       goto CleanupAndExit; | 
 |  | 
 |     // In case of a memmove, the call to memmove will be executed instead | 
 |     // of the loop, so we need to make sure that there is nothing else in | 
 |     // the loop than the load, store and instructions that these two depend | 
 |     // on. | 
 |     SmallVector<Instruction*,2> Insts; | 
 |     Insts.push_back(SI); | 
 |     Insts.push_back(LI); | 
 |     if (!coverLoop(CurLoop, Insts)) | 
 |       goto CleanupAndExit; | 
 |  | 
 |     if (DisableMemmoveIdiom || !HasMemmove) | 
 |       goto CleanupAndExit; | 
 |     bool IsNested = CurLoop->getParentLoop() != nullptr; | 
 |     if (IsNested && OnlyNonNestedMemmove) | 
 |       goto CleanupAndExit; | 
 |   } | 
 |  | 
 |   // For a memcpy, we have to make sure that the input array is not being | 
 |   // mutated by the loop. | 
 |   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(), | 
 |       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt); | 
 |  | 
 |   SmallPtrSet<Instruction*, 2> Ignore2; | 
 |   Ignore2.insert(SI); | 
 |   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, | 
 |                             StoreSize, *AA, Ignore2)) | 
 |     goto CleanupAndExit; | 
 |  | 
 |   // Check the stride. | 
 |   bool StridePos = getSCEVStride(LoadEv) >= 0; | 
 |  | 
 |   // Currently, the volatile memcpy only emulates traversing memory forward. | 
 |   if (!StridePos && DestVolatile) | 
 |     goto CleanupAndExit; | 
 |  | 
 |   bool RuntimeCheck = (Overlap || DestVolatile); | 
 |  | 
 |   BasicBlock *ExitB; | 
 |   if (RuntimeCheck) { | 
 |     // The runtime check needs a single exit block. | 
 |     SmallVector<BasicBlock*, 8> ExitBlocks; | 
 |     CurLoop->getUniqueExitBlocks(ExitBlocks); | 
 |     if (ExitBlocks.size() != 1) | 
 |       goto CleanupAndExit; | 
 |     ExitB = ExitBlocks[0]; | 
 |   } | 
 |  | 
 |   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to | 
 |   // pointer size if it isn't already. | 
 |   LLVMContext &Ctx = SI->getContext(); | 
 |   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); | 
 |   DebugLoc DLoc = SI->getDebugLoc(); | 
 |  | 
 |   const SCEV *NumBytesS = | 
 |       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); | 
 |   if (StoreSize != 1) | 
 |     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), | 
 |                                SCEV::FlagNUW); | 
 |   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt); | 
 |   if (Instruction *In = dyn_cast<Instruction>(NumBytes)) | 
 |     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) | 
 |       NumBytes = Simp; | 
 |  | 
 |   CallInst *NewCall; | 
 |  | 
 |   if (RuntimeCheck) { | 
 |     unsigned Threshold = RuntimeMemSizeThreshold; | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) { | 
 |       uint64_t C = CI->getZExtValue(); | 
 |       if (Threshold != 0 && C < Threshold) | 
 |         goto CleanupAndExit; | 
 |       if (C < CompileTimeMemSizeThreshold) | 
 |         goto CleanupAndExit; | 
 |     } | 
 |  | 
 |     BasicBlock *Header = CurLoop->getHeader(); | 
 |     Function *Func = Header->getParent(); | 
 |     Loop *ParentL = LF->getLoopFor(Preheader); | 
 |     StringRef HeaderName = Header->getName(); | 
 |  | 
 |     // Create a new (empty) preheader, and update the PHI nodes in the | 
 |     // header to use the new preheader. | 
 |     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph", | 
 |                                                   Func, Header); | 
 |     if (ParentL) | 
 |       ParentL->addBasicBlockToLoop(NewPreheader, *LF); | 
 |     IRBuilder<>(NewPreheader).CreateBr(Header); | 
 |     for (auto &In : *Header) { | 
 |       PHINode *PN = dyn_cast<PHINode>(&In); | 
 |       if (!PN) | 
 |         break; | 
 |       int bx = PN->getBasicBlockIndex(Preheader); | 
 |       if (bx >= 0) | 
 |         PN->setIncomingBlock(bx, NewPreheader); | 
 |     } | 
 |     DT->addNewBlock(NewPreheader, Preheader); | 
 |     DT->changeImmediateDominator(Header, NewPreheader); | 
 |  | 
 |     // Check for safe conditions to execute memmove. | 
 |     // If stride is positive, copying things from higher to lower addresses | 
 |     // is equivalent to memmove.  For negative stride, it's the other way | 
 |     // around.  Copying forward in memory with positive stride may not be | 
 |     // same as memmove since we may be copying values that we just stored | 
 |     // in some previous iteration. | 
 |     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy); | 
 |     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy); | 
 |     Value *LowA = StridePos ? SA : LA; | 
 |     Value *HighA = StridePos ? LA : SA; | 
 |     Value *CmpA = Builder.CreateICmpULT(LowA, HighA); | 
 |     Value *Cond = CmpA; | 
 |  | 
 |     // Check for distance between pointers. Since the case LowA < HighA | 
 |     // is checked for above, assume LowA >= HighA. | 
 |     Value *Dist = Builder.CreateSub(LowA, HighA); | 
 |     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist); | 
 |     Value *CmpEither = Builder.CreateOr(Cond, CmpD); | 
 |     Cond = CmpEither; | 
 |  | 
 |     if (Threshold != 0) { | 
 |       Type *Ty = NumBytes->getType(); | 
 |       Value *Thr = ConstantInt::get(Ty, Threshold); | 
 |       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes); | 
 |       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB); | 
 |       Cond = CmpBoth; | 
 |     } | 
 |     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli", | 
 |                                               Func, NewPreheader); | 
 |     if (ParentL) | 
 |       ParentL->addBasicBlockToLoop(MemmoveB, *LF); | 
 |     Instruction *OldT = Preheader->getTerminator(); | 
 |     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader); | 
 |     OldT->eraseFromParent(); | 
 |     Preheader->setName(Preheader->getName()+".old"); | 
 |     DT->addNewBlock(MemmoveB, Preheader); | 
 |     // Find the new immediate dominator of the exit block. | 
 |     BasicBlock *ExitD = Preheader; | 
 |     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) { | 
 |       BasicBlock *PB = *PI; | 
 |       ExitD = DT->findNearestCommonDominator(ExitD, PB); | 
 |       if (!ExitD) | 
 |         break; | 
 |     } | 
 |     // If the prior immediate dominator of ExitB was dominated by the | 
 |     // old preheader, then the old preheader becomes the new immediate | 
 |     // dominator.  Otherwise don't change anything (because the newly | 
 |     // added blocks are dominated by the old preheader). | 
 |     if (ExitD && DT->dominates(Preheader, ExitD)) { | 
 |       DomTreeNode *BN = DT->getNode(ExitB); | 
 |       DomTreeNode *DN = DT->getNode(ExitD); | 
 |       BN->setIDom(DN); | 
 |     } | 
 |  | 
 |     // Add a call to memmove to the conditional block. | 
 |     IRBuilder<> CondBuilder(MemmoveB); | 
 |     CondBuilder.CreateBr(ExitB); | 
 |     CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); | 
 |  | 
 |     if (DestVolatile) { | 
 |       Type *Int32Ty = Type::getInt32Ty(Ctx); | 
 |       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx); | 
 |       Type *VoidTy = Type::getVoidTy(Ctx); | 
 |       Module *M = Func->getParent(); | 
 |       Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy, | 
 |                                             Int32PtrTy, Int32PtrTy, Int32Ty); | 
 |       Function *Fn = cast<Function>(CF); | 
 |       Fn->setLinkage(Function::ExternalLinkage); | 
 |  | 
 |       const SCEV *OneS = SE->getConstant(Int32Ty, 1); | 
 |       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty); | 
 |       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW); | 
 |       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty, | 
 |                                                MemmoveB->getTerminator()); | 
 |       if (Instruction *In = dyn_cast<Instruction>(NumWords)) | 
 |         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) | 
 |           NumWords = Simp; | 
 |  | 
 |       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy) | 
 |                       ? StoreBasePtr | 
 |                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy); | 
 |       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy) | 
 |                       ? LoadBasePtr | 
 |                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy); | 
 |       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords}); | 
 |     } else { | 
 |       NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(), | 
 |                                           LoadBasePtr, LI->getAlignment(), | 
 |                                           NumBytes); | 
 |     } | 
 |   } else { | 
 |     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), | 
 |                                    LoadBasePtr, LI->getAlignment(), | 
 |                                    NumBytes); | 
 |     // Okay, the memcpy has been formed.  Zap the original store and | 
 |     // anything that feeds into it. | 
 |     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI); | 
 |   } | 
 |  | 
 |   NewCall->setDebugLoc(DLoc); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ") | 
 |                     << *NewCall << "\n" | 
 |                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n" | 
 |                     << "    from store ptr=" << *StoreEv << " at: " << *SI | 
 |                     << "\n"); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Check if the instructions in Insts, together with their dependencies | 
 | // cover the loop in the sense that the loop could be safely eliminated once | 
 | // the instructions in Insts are removed. | 
 | bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, | 
 |       SmallVectorImpl<Instruction*> &Insts) const { | 
 |   SmallSet<BasicBlock*,8> LoopBlocks; | 
 |   for (auto *B : L->blocks()) | 
 |     LoopBlocks.insert(B); | 
 |  | 
 |   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end()); | 
 |  | 
 |   // Collect all instructions from the loop that the instructions in Insts | 
 |   // depend on (plus their dependencies, etc.).  These instructions will | 
 |   // constitute the expression trees that feed those in Insts, but the trees | 
 |   // will be limited only to instructions contained in the loop. | 
 |   for (unsigned i = 0; i < Worklist.size(); ++i) { | 
 |     Instruction *In = Worklist[i]; | 
 |     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { | 
 |       Instruction *OpI = dyn_cast<Instruction>(I); | 
 |       if (!OpI) | 
 |         continue; | 
 |       BasicBlock *PB = OpI->getParent(); | 
 |       if (!LoopBlocks.count(PB)) | 
 |         continue; | 
 |       Worklist.insert(OpI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Scan all instructions in the loop, if any of them have a user outside | 
 |   // of the loop, or outside of the expressions collected above, then either | 
 |   // the loop has a side-effect visible outside of it, or there are | 
 |   // instructions in it that are not involved in the original set Insts. | 
 |   for (auto *B : L->blocks()) { | 
 |     for (auto &In : *B) { | 
 |       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In)) | 
 |         continue; | 
 |       if (!Worklist.count(&In) && In.mayHaveSideEffects()) | 
 |         return false; | 
 |       for (const auto &K : In.users()) { | 
 |         Instruction *UseI = dyn_cast<Instruction>(K); | 
 |         if (!UseI) | 
 |           continue; | 
 |         BasicBlock *UseB = UseI->getParent(); | 
 |         if (LF->getLoopFor(UseB) != L) | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop | 
 | /// with the specified backedge count.  This block is known to be in the current | 
 | /// loop and not in any subloops. | 
 | bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, | 
 |       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { | 
 |   // We can only promote stores in this block if they are unconditionally | 
 |   // executed in the loop.  For a block to be unconditionally executed, it has | 
 |   // to dominate all the exit blocks of the loop.  Verify this now. | 
 |   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { | 
 |     return DT->dominates(BB, EB); | 
 |   }; | 
 |   if (!all_of(ExitBlocks, DominatedByBB)) | 
 |     return false; | 
 |  | 
 |   bool MadeChange = false; | 
 |   // Look for store instructions, which may be optimized to memset/memcpy. | 
 |   SmallVector<StoreInst*,8> Stores; | 
 |   collectStores(CurLoop, BB, Stores); | 
 |  | 
 |   // Optimize the store into a memcpy, if it feeds an similarly strided load. | 
 |   for (auto &SI : Stores) | 
 |     MadeChange |= processCopyingStore(CurLoop, SI, BECount); | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { | 
 |   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); | 
 |   if (PMR.recognize()) | 
 |     return true; | 
 |  | 
 |   if (!HasMemcpy && !HasMemmove) | 
 |     return false; | 
 |  | 
 |   const SCEV *BECount = SE->getBackedgeTakenCount(L); | 
 |   assert(!isa<SCEVCouldNotCompute>(BECount) && | 
 |          "runOnCountableLoop() called on a loop without a predictable" | 
 |          "backedge-taken count"); | 
 |  | 
 |   SmallVector<BasicBlock *, 8> ExitBlocks; | 
 |   L->getUniqueExitBlocks(ExitBlocks); | 
 |  | 
 |   bool Changed = false; | 
 |  | 
 |   // Scan all the blocks in the loop that are not in subloops. | 
 |   for (auto *BB : L->getBlocks()) { | 
 |     // Ignore blocks in subloops. | 
 |     if (LF->getLoopFor(BB) != L) | 
 |       continue; | 
 |     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks); | 
 |   } | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { | 
 |   const Module &M = *L->getHeader()->getParent()->getParent(); | 
 |   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon) | 
 |     return false; | 
 |  | 
 |   if (skipLoop(L)) | 
 |     return false; | 
 |  | 
 |   // If the loop could not be converted to canonical form, it must have an | 
 |   // indirectbr in it, just give up. | 
 |   if (!L->getLoopPreheader()) | 
 |     return false; | 
 |  | 
 |   // Disable loop idiom recognition if the function's name is a common idiom. | 
 |   StringRef Name = L->getHeader()->getParent()->getName(); | 
 |   if (Name == "memset" || Name == "memcpy" || Name == "memmove") | 
 |     return false; | 
 |  | 
 |   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
 |   DL = &L->getHeader()->getModule()->getDataLayout(); | 
 |   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |   LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
 |   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
 |   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
 |  | 
 |   HasMemcpy = TLI->has(LibFunc_memcpy); | 
 |   HasMemmove = TLI->has(LibFunc_memmove); | 
 |  | 
 |   if (SE->hasLoopInvariantBackedgeTakenCount(L)) | 
 |     return runOnCountableLoop(L); | 
 |   return false; | 
 | } | 
 |  | 
 | Pass *llvm::createHexagonLoopIdiomPass() { | 
 |   return new HexagonLoopIdiomRecognize(); | 
 | } |