| //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass identifies loops where we can generate the Hexagon hardware | 
 | // loop instruction.  The hardware loop can perform loop branches with a | 
 | // zero-cycle overhead. | 
 | // | 
 | // The pattern that defines the induction variable can changed depending on | 
 | // prior optimizations.  For example, the IndVarSimplify phase run by 'opt' | 
 | // normalizes induction variables, and the Loop Strength Reduction pass | 
 | // run by 'llc' may also make changes to the induction variable. | 
 | // The pattern detected by this phase is due to running Strength Reduction. | 
 | // | 
 | // Criteria for hardware loops: | 
 | //  - Countable loops (w/ ind. var for a trip count) | 
 | //  - Assumes loops are normalized by IndVarSimplify | 
 | //  - Try inner-most loops first | 
 | //  - No function calls in loops. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "HexagonInstrInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <iterator> | 
 | #include <map> | 
 | #include <set> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "hwloops" | 
 |  | 
 | #ifndef NDEBUG | 
 | static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); | 
 |  | 
 | // Option to create preheader only for a specific function. | 
 | static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, | 
 |                                  cl::init("")); | 
 | #endif | 
 |  | 
 | // Option to create a preheader if one doesn't exist. | 
 | static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", | 
 |     cl::Hidden, cl::init(true), | 
 |     cl::desc("Add a preheader to a hardware loop if one doesn't exist")); | 
 |  | 
 | // Turn it off by default. If a preheader block is not created here, the | 
 | // software pipeliner may be unable to find a block suitable to serve as | 
 | // a preheader. In that case SWP will not run. | 
 | static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), | 
 |   cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " | 
 |   "instructions")); | 
 |  | 
 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   FunctionPass *createHexagonHardwareLoops(); | 
 |   void initializeHexagonHardwareLoopsPass(PassRegistry&); | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | namespace { | 
 |  | 
 |   class CountValue; | 
 |  | 
 |   struct HexagonHardwareLoops : public MachineFunctionPass { | 
 |     MachineLoopInfo            *MLI; | 
 |     MachineRegisterInfo        *MRI; | 
 |     MachineDominatorTree       *MDT; | 
 |     const HexagonInstrInfo     *TII; | 
 |     const HexagonRegisterInfo  *TRI; | 
 | #ifndef NDEBUG | 
 |     static int Counter; | 
 | #endif | 
 |  | 
 |   public: | 
 |     static char ID; | 
 |  | 
 |     HexagonHardwareLoops() : MachineFunctionPass(ID) {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) override; | 
 |  | 
 |     StringRef getPassName() const override { return "Hexagon Hardware Loops"; } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.addRequired<MachineDominatorTree>(); | 
 |       AU.addRequired<MachineLoopInfo>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     using LoopFeederMap = std::map<unsigned, MachineInstr *>; | 
 |  | 
 |     /// Kinds of comparisons in the compare instructions. | 
 |     struct Comparison { | 
 |       enum Kind { | 
 |         EQ  = 0x01, | 
 |         NE  = 0x02, | 
 |         L   = 0x04, | 
 |         G   = 0x08, | 
 |         U   = 0x40, | 
 |         LTs = L, | 
 |         LEs = L | EQ, | 
 |         GTs = G, | 
 |         GEs = G | EQ, | 
 |         LTu = L      | U, | 
 |         LEu = L | EQ | U, | 
 |         GTu = G      | U, | 
 |         GEu = G | EQ | U | 
 |       }; | 
 |  | 
 |       static Kind getSwappedComparison(Kind Cmp) { | 
 |         assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); | 
 |         if ((Cmp & L) || (Cmp & G)) | 
 |           return (Kind)(Cmp ^ (L|G)); | 
 |         return Cmp; | 
 |       } | 
 |  | 
 |       static Kind getNegatedComparison(Kind Cmp) { | 
 |         if ((Cmp & L) || (Cmp & G)) | 
 |           return (Kind)((Cmp ^ (L | G)) ^ EQ); | 
 |         if ((Cmp & NE) || (Cmp & EQ)) | 
 |           return (Kind)(Cmp ^ (EQ | NE)); | 
 |         return (Kind)0; | 
 |       } | 
 |  | 
 |       static bool isSigned(Kind Cmp) { | 
 |         return (Cmp & (L | G) && !(Cmp & U)); | 
 |       } | 
 |  | 
 |       static bool isUnsigned(Kind Cmp) { | 
 |         return (Cmp & U); | 
 |       } | 
 |     }; | 
 |  | 
 |     /// Find the register that contains the loop controlling | 
 |     /// induction variable. | 
 |     /// If successful, it will return true and set the \p Reg, \p IVBump | 
 |     /// and \p IVOp arguments.  Otherwise it will return false. | 
 |     /// The returned induction register is the register R that follows the | 
 |     /// following induction pattern: | 
 |     /// loop: | 
 |     ///   R = phi ..., [ R.next, LatchBlock ] | 
 |     ///   R.next = R + #bump | 
 |     ///   if (R.next < #N) goto loop | 
 |     /// IVBump is the immediate value added to R, and IVOp is the instruction | 
 |     /// "R.next = R + #bump". | 
 |     bool findInductionRegister(MachineLoop *L, unsigned &Reg, | 
 |                                int64_t &IVBump, MachineInstr *&IVOp) const; | 
 |  | 
 |     /// Return the comparison kind for the specified opcode. | 
 |     Comparison::Kind getComparisonKind(unsigned CondOpc, | 
 |                                        MachineOperand *InitialValue, | 
 |                                        const MachineOperand *Endvalue, | 
 |                                        int64_t IVBump) const; | 
 |  | 
 |     /// Analyze the statements in a loop to determine if the loop | 
 |     /// has a computable trip count and, if so, return a value that represents | 
 |     /// the trip count expression. | 
 |     CountValue *getLoopTripCount(MachineLoop *L, | 
 |                                  SmallVectorImpl<MachineInstr *> &OldInsts); | 
 |  | 
 |     /// Return the expression that represents the number of times | 
 |     /// a loop iterates.  The function takes the operands that represent the | 
 |     /// loop start value, loop end value, and induction value.  Based upon | 
 |     /// these operands, the function attempts to compute the trip count. | 
 |     /// If the trip count is not directly available (as an immediate value, | 
 |     /// or a register), the function will attempt to insert computation of it | 
 |     /// to the loop's preheader. | 
 |     CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, | 
 |                              const MachineOperand *End, unsigned IVReg, | 
 |                              int64_t IVBump, Comparison::Kind Cmp) const; | 
 |  | 
 |     /// Return true if the instruction is not valid within a hardware | 
 |     /// loop. | 
 |     bool isInvalidLoopOperation(const MachineInstr *MI, | 
 |                                 bool IsInnerHWLoop) const; | 
 |  | 
 |     /// Return true if the loop contains an instruction that inhibits | 
 |     /// using the hardware loop. | 
 |     bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; | 
 |  | 
 |     /// Given a loop, check if we can convert it to a hardware loop. | 
 |     /// If so, then perform the conversion and return true. | 
 |     bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); | 
 |  | 
 |     /// Return true if the instruction is now dead. | 
 |     bool isDead(const MachineInstr *MI, | 
 |                 SmallVectorImpl<MachineInstr *> &DeadPhis) const; | 
 |  | 
 |     /// Remove the instruction if it is now dead. | 
 |     void removeIfDead(MachineInstr *MI); | 
 |  | 
 |     /// Make sure that the "bump" instruction executes before the | 
 |     /// compare.  We need that for the IV fixup, so that the compare | 
 |     /// instruction would not use a bumped value that has not yet been | 
 |     /// defined.  If the instructions are out of order, try to reorder them. | 
 |     bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); | 
 |  | 
 |     /// Return true if MO and MI pair is visited only once. If visited | 
 |     /// more than once, this indicates there is recursion. In such a case, | 
 |     /// return false. | 
 |     bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, | 
 |                       const MachineOperand *MO, | 
 |                       LoopFeederMap &LoopFeederPhi) const; | 
 |  | 
 |     /// Return true if the Phi may generate a value that may underflow, | 
 |     /// or may wrap. | 
 |     bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, | 
 |                                MachineBasicBlock *MBB, MachineLoop *L, | 
 |                                LoopFeederMap &LoopFeederPhi) const; | 
 |  | 
 |     /// Return true if the induction variable may underflow an unsigned | 
 |     /// value in the first iteration. | 
 |     bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, | 
 |                                      const MachineOperand *EndVal, | 
 |                                      MachineBasicBlock *MBB, MachineLoop *L, | 
 |                                      LoopFeederMap &LoopFeederPhi) const; | 
 |  | 
 |     /// Check if the given operand has a compile-time known constant | 
 |     /// value. Return true if yes, and false otherwise. When returning true, set | 
 |     /// Val to the corresponding constant value. | 
 |     bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; | 
 |  | 
 |     /// Check if the operand has a compile-time known constant value. | 
 |     bool isImmediate(const MachineOperand &MO) const { | 
 |       int64_t V; | 
 |       return checkForImmediate(MO, V); | 
 |     } | 
 |  | 
 |     /// Return the immediate for the specified operand. | 
 |     int64_t getImmediate(const MachineOperand &MO) const { | 
 |       int64_t V; | 
 |       if (!checkForImmediate(MO, V)) | 
 |         llvm_unreachable("Invalid operand"); | 
 |       return V; | 
 |     } | 
 |  | 
 |     /// Reset the given machine operand to now refer to a new immediate | 
 |     /// value.  Assumes that the operand was already referencing an immediate | 
 |     /// value, either directly, or via a register. | 
 |     void setImmediate(MachineOperand &MO, int64_t Val); | 
 |  | 
 |     /// Fix the data flow of the induction variable. | 
 |     /// The desired flow is: phi ---> bump -+-> comparison-in-latch. | 
 |     ///                                     | | 
 |     ///                                     +-> back to phi | 
 |     /// where "bump" is the increment of the induction variable: | 
 |     ///   iv = iv + #const. | 
 |     /// Due to some prior code transformations, the actual flow may look | 
 |     /// like this: | 
 |     ///   phi -+-> bump ---> back to phi | 
 |     ///        | | 
 |     ///        +-> comparison-in-latch (against upper_bound-bump), | 
 |     /// i.e. the comparison that controls the loop execution may be using | 
 |     /// the value of the induction variable from before the increment. | 
 |     /// | 
 |     /// Return true if the loop's flow is the desired one (i.e. it's | 
 |     /// either been fixed, or no fixing was necessary). | 
 |     /// Otherwise, return false.  This can happen if the induction variable | 
 |     /// couldn't be identified, or if the value in the latch's comparison | 
 |     /// cannot be adjusted to reflect the post-bump value. | 
 |     bool fixupInductionVariable(MachineLoop *L); | 
 |  | 
 |     /// Given a loop, if it does not have a preheader, create one. | 
 |     /// Return the block that is the preheader. | 
 |     MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); | 
 |   }; | 
 |  | 
 |   char HexagonHardwareLoops::ID = 0; | 
 | #ifndef NDEBUG | 
 |   int HexagonHardwareLoops::Counter = 0; | 
 | #endif | 
 |  | 
 |   /// Abstraction for a trip count of a loop. A smaller version | 
 |   /// of the MachineOperand class without the concerns of changing the | 
 |   /// operand representation. | 
 |   class CountValue { | 
 |   public: | 
 |     enum CountValueType { | 
 |       CV_Register, | 
 |       CV_Immediate | 
 |     }; | 
 |  | 
 |   private: | 
 |     CountValueType Kind; | 
 |     union Values { | 
 |       struct { | 
 |         unsigned Reg; | 
 |         unsigned Sub; | 
 |       } R; | 
 |       unsigned ImmVal; | 
 |     } Contents; | 
 |  | 
 |   public: | 
 |     explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { | 
 |       Kind = t; | 
 |       if (Kind == CV_Register) { | 
 |         Contents.R.Reg = v; | 
 |         Contents.R.Sub = u; | 
 |       } else { | 
 |         Contents.ImmVal = v; | 
 |       } | 
 |     } | 
 |  | 
 |     bool isReg() const { return Kind == CV_Register; } | 
 |     bool isImm() const { return Kind == CV_Immediate; } | 
 |  | 
 |     unsigned getReg() const { | 
 |       assert(isReg() && "Wrong CountValue accessor"); | 
 |       return Contents.R.Reg; | 
 |     } | 
 |  | 
 |     unsigned getSubReg() const { | 
 |       assert(isReg() && "Wrong CountValue accessor"); | 
 |       return Contents.R.Sub; | 
 |     } | 
 |  | 
 |     unsigned getImm() const { | 
 |       assert(isImm() && "Wrong CountValue accessor"); | 
 |       return Contents.ImmVal; | 
 |     } | 
 |  | 
 |     void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { | 
 |       if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } | 
 |       if (isImm()) { OS << Contents.ImmVal; } | 
 |     } | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", | 
 |                       "Hexagon Hardware Loops", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
 | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", | 
 |                     "Hexagon Hardware Loops", false, false) | 
 |  | 
 | FunctionPass *llvm::createHexagonHardwareLoops() { | 
 |   return new HexagonHardwareLoops(); | 
 | } | 
 |  | 
 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { | 
 |   LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); | 
 |   if (skipFunction(MF.getFunction())) | 
 |     return false; | 
 |  | 
 |   bool Changed = false; | 
 |  | 
 |   MLI = &getAnalysis<MachineLoopInfo>(); | 
 |   MRI = &MF.getRegInfo(); | 
 |   MDT = &getAnalysis<MachineDominatorTree>(); | 
 |   const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   TII = HST.getInstrInfo(); | 
 |   TRI = HST.getRegisterInfo(); | 
 |  | 
 |   for (auto &L : *MLI) | 
 |     if (!L->getParentLoop()) { | 
 |       bool L0Used = false; | 
 |       bool L1Used = false; | 
 |       Changed |= convertToHardwareLoop(L, L0Used, L1Used); | 
 |     } | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, | 
 |                                                  unsigned &Reg, | 
 |                                                  int64_t &IVBump, | 
 |                                                  MachineInstr *&IVOp | 
 |                                                  ) const { | 
 |   MachineBasicBlock *Header = L->getHeader(); | 
 |   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
 |   MachineBasicBlock *Latch = L->getLoopLatch(); | 
 |   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
 |   if (!Header || !Preheader || !Latch || !ExitingBlock) | 
 |     return false; | 
 |  | 
 |   // This pair represents an induction register together with an immediate | 
 |   // value that will be added to it in each loop iteration. | 
 |   using RegisterBump = std::pair<unsigned, int64_t>; | 
 |  | 
 |   // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived | 
 |   // from an induction operation | 
 |   //   R.next = R + bump | 
 |   // where bump is an immediate value. | 
 |   using InductionMap = std::map<unsigned, RegisterBump>; | 
 |  | 
 |   InductionMap IndMap; | 
 |  | 
 |   using instr_iterator = MachineBasicBlock::instr_iterator; | 
 |  | 
 |   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
 |        I != E && I->isPHI(); ++I) { | 
 |     MachineInstr *Phi = &*I; | 
 |  | 
 |     // Have a PHI instruction.  Get the operand that corresponds to the | 
 |     // latch block, and see if is a result of an addition of form "reg+imm", | 
 |     // where the "reg" is defined by the PHI node we are looking at. | 
 |     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | 
 |       if (Phi->getOperand(i+1).getMBB() != Latch) | 
 |         continue; | 
 |  | 
 |       unsigned PhiOpReg = Phi->getOperand(i).getReg(); | 
 |       MachineInstr *DI = MRI->getVRegDef(PhiOpReg); | 
 |  | 
 |       if (DI->getDesc().isAdd()) { | 
 |         // If the register operand to the add is the PHI we're looking at, this | 
 |         // meets the induction pattern. | 
 |         unsigned IndReg = DI->getOperand(1).getReg(); | 
 |         MachineOperand &Opnd2 = DI->getOperand(2); | 
 |         int64_t V; | 
 |         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | 
 |           unsigned UpdReg = DI->getOperand(0).getReg(); | 
 |           IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | 
 |         } | 
 |       } | 
 |     }  // for (i) | 
 |   }  // for (instr) | 
 |  | 
 |   SmallVector<MachineOperand,2> Cond; | 
 |   MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
 |   if (NotAnalyzed) | 
 |     return false; | 
 |  | 
 |   unsigned PredR, PredPos, PredRegFlags; | 
 |   if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) | 
 |     return false; | 
 |  | 
 |   MachineInstr *PredI = MRI->getVRegDef(PredR); | 
 |   if (!PredI->isCompare()) | 
 |     return false; | 
 |  | 
 |   unsigned CmpReg1 = 0, CmpReg2 = 0; | 
 |   int CmpImm = 0, CmpMask = 0; | 
 |   bool CmpAnalyzed = | 
 |       TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); | 
 |   // Fail if the compare was not analyzed, or it's not comparing a register | 
 |   // with an immediate value.  Not checking the mask here, since we handle | 
 |   // the individual compare opcodes (including A4_cmpb*) later on. | 
 |   if (!CmpAnalyzed) | 
 |     return false; | 
 |  | 
 |   // Exactly one of the input registers to the comparison should be among | 
 |   // the induction registers. | 
 |   InductionMap::iterator IndMapEnd = IndMap.end(); | 
 |   InductionMap::iterator F = IndMapEnd; | 
 |   if (CmpReg1 != 0) { | 
 |     InductionMap::iterator F1 = IndMap.find(CmpReg1); | 
 |     if (F1 != IndMapEnd) | 
 |       F = F1; | 
 |   } | 
 |   if (CmpReg2 != 0) { | 
 |     InductionMap::iterator F2 = IndMap.find(CmpReg2); | 
 |     if (F2 != IndMapEnd) { | 
 |       if (F != IndMapEnd) | 
 |         return false; | 
 |       F = F2; | 
 |     } | 
 |   } | 
 |   if (F == IndMapEnd) | 
 |     return false; | 
 |  | 
 |   Reg = F->second.first; | 
 |   IVBump = F->second.second; | 
 |   IVOp = MRI->getVRegDef(F->first); | 
 |   return true; | 
 | } | 
 |  | 
 | // Return the comparison kind for the specified opcode. | 
 | HexagonHardwareLoops::Comparison::Kind | 
 | HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, | 
 |                                         MachineOperand *InitialValue, | 
 |                                         const MachineOperand *EndValue, | 
 |                                         int64_t IVBump) const { | 
 |   Comparison::Kind Cmp = (Comparison::Kind)0; | 
 |   switch (CondOpc) { | 
 |   case Hexagon::C2_cmpeq: | 
 |   case Hexagon::C2_cmpeqi: | 
 |   case Hexagon::C2_cmpeqp: | 
 |     Cmp = Comparison::EQ; | 
 |     break; | 
 |   case Hexagon::C4_cmpneq: | 
 |   case Hexagon::C4_cmpneqi: | 
 |     Cmp = Comparison::NE; | 
 |     break; | 
 |   case Hexagon::C2_cmplt: | 
 |     Cmp = Comparison::LTs; | 
 |     break; | 
 |   case Hexagon::C2_cmpltu: | 
 |     Cmp = Comparison::LTu; | 
 |     break; | 
 |   case Hexagon::C4_cmplte: | 
 |   case Hexagon::C4_cmpltei: | 
 |     Cmp = Comparison::LEs; | 
 |     break; | 
 |   case Hexagon::C4_cmplteu: | 
 |   case Hexagon::C4_cmplteui: | 
 |     Cmp = Comparison::LEu; | 
 |     break; | 
 |   case Hexagon::C2_cmpgt: | 
 |   case Hexagon::C2_cmpgti: | 
 |   case Hexagon::C2_cmpgtp: | 
 |     Cmp = Comparison::GTs; | 
 |     break; | 
 |   case Hexagon::C2_cmpgtu: | 
 |   case Hexagon::C2_cmpgtui: | 
 |   case Hexagon::C2_cmpgtup: | 
 |     Cmp = Comparison::GTu; | 
 |     break; | 
 |   case Hexagon::C2_cmpgei: | 
 |     Cmp = Comparison::GEs; | 
 |     break; | 
 |   case Hexagon::C2_cmpgeui: | 
 |     Cmp = Comparison::GEs; | 
 |     break; | 
 |   default: | 
 |     return (Comparison::Kind)0; | 
 |   } | 
 |   return Cmp; | 
 | } | 
 |  | 
 | /// Analyze the statements in a loop to determine if the loop has | 
 | /// a computable trip count and, if so, return a value that represents | 
 | /// the trip count expression. | 
 | /// | 
 | /// This function iterates over the phi nodes in the loop to check for | 
 | /// induction variable patterns that are used in the calculation for | 
 | /// the number of time the loop is executed. | 
 | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, | 
 |     SmallVectorImpl<MachineInstr *> &OldInsts) { | 
 |   MachineBasicBlock *TopMBB = L->getTopBlock(); | 
 |   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); | 
 |   assert(PI != TopMBB->pred_end() && | 
 |          "Loop must have more than one incoming edge!"); | 
 |   MachineBasicBlock *Backedge = *PI++; | 
 |   if (PI == TopMBB->pred_end())  // dead loop? | 
 |     return nullptr; | 
 |   MachineBasicBlock *Incoming = *PI++; | 
 |   if (PI != TopMBB->pred_end())  // multiple backedges? | 
 |     return nullptr; | 
 |  | 
 |   // Make sure there is one incoming and one backedge and determine which | 
 |   // is which. | 
 |   if (L->contains(Incoming)) { | 
 |     if (L->contains(Backedge)) | 
 |       return nullptr; | 
 |     std::swap(Incoming, Backedge); | 
 |   } else if (!L->contains(Backedge)) | 
 |     return nullptr; | 
 |  | 
 |   // Look for the cmp instruction to determine if we can get a useful trip | 
 |   // count.  The trip count can be either a register or an immediate.  The | 
 |   // location of the value depends upon the type (reg or imm). | 
 |   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
 |   if (!ExitingBlock) | 
 |     return nullptr; | 
 |  | 
 |   unsigned IVReg = 0; | 
 |   int64_t IVBump = 0; | 
 |   MachineInstr *IVOp; | 
 |   bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); | 
 |   if (!FoundIV) | 
 |     return nullptr; | 
 |  | 
 |   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
 |  | 
 |   MachineOperand *InitialValue = nullptr; | 
 |   MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); | 
 |   MachineBasicBlock *Latch = L->getLoopLatch(); | 
 |   for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { | 
 |     MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); | 
 |     if (MBB == Preheader) | 
 |       InitialValue = &IV_Phi->getOperand(i); | 
 |     else if (MBB == Latch) | 
 |       IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump. | 
 |   } | 
 |   if (!InitialValue) | 
 |     return nullptr; | 
 |  | 
 |   SmallVector<MachineOperand,2> Cond; | 
 |   MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
 |   if (NotAnalyzed) | 
 |     return nullptr; | 
 |  | 
 |   MachineBasicBlock *Header = L->getHeader(); | 
 |   // TB must be non-null.  If FB is also non-null, one of them must be | 
 |   // the header.  Otherwise, branch to TB could be exiting the loop, and | 
 |   // the fall through can go to the header. | 
 |   assert (TB && "Exit block without a branch?"); | 
 |   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | 
 |     MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | 
 |     SmallVector<MachineOperand,2> LCond; | 
 |     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | 
 |     if (NotAnalyzed) | 
 |       return nullptr; | 
 |     if (TB == Latch) | 
 |       TB = (LTB == Header) ? LTB : LFB; | 
 |     else | 
 |       FB = (LTB == Header) ? LTB: LFB; | 
 |   } | 
 |   assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); | 
 |   if (!TB || (FB && TB != Header && FB != Header)) | 
 |     return nullptr; | 
 |  | 
 |   // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch | 
 |   // to put imm(0), followed by P in the vector Cond. | 
 |   // If TB is not the header, it means that the "not-taken" path must lead | 
 |   // to the header. | 
 |   bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); | 
 |   unsigned PredReg, PredPos, PredRegFlags; | 
 |   if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) | 
 |     return nullptr; | 
 |   MachineInstr *CondI = MRI->getVRegDef(PredReg); | 
 |   unsigned CondOpc = CondI->getOpcode(); | 
 |  | 
 |   unsigned CmpReg1 = 0, CmpReg2 = 0; | 
 |   int Mask = 0, ImmValue = 0; | 
 |   bool AnalyzedCmp = | 
 |       TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); | 
 |   if (!AnalyzedCmp) | 
 |     return nullptr; | 
 |  | 
 |   // The comparison operator type determines how we compute the loop | 
 |   // trip count. | 
 |   OldInsts.push_back(CondI); | 
 |   OldInsts.push_back(IVOp); | 
 |  | 
 |   // Sadly, the following code gets information based on the position | 
 |   // of the operands in the compare instruction.  This has to be done | 
 |   // this way, because the comparisons check for a specific relationship | 
 |   // between the operands (e.g. is-less-than), rather than to find out | 
 |   // what relationship the operands are in (as on PPC). | 
 |   Comparison::Kind Cmp; | 
 |   bool isSwapped = false; | 
 |   const MachineOperand &Op1 = CondI->getOperand(1); | 
 |   const MachineOperand &Op2 = CondI->getOperand(2); | 
 |   const MachineOperand *EndValue = nullptr; | 
 |  | 
 |   if (Op1.isReg()) { | 
 |     if (Op2.isImm() || Op1.getReg() == IVReg) | 
 |       EndValue = &Op2; | 
 |     else { | 
 |       EndValue = &Op1; | 
 |       isSwapped = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!EndValue) | 
 |     return nullptr; | 
 |  | 
 |   Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); | 
 |   if (!Cmp) | 
 |     return nullptr; | 
 |   if (Negated) | 
 |     Cmp = Comparison::getNegatedComparison(Cmp); | 
 |   if (isSwapped) | 
 |     Cmp = Comparison::getSwappedComparison(Cmp); | 
 |  | 
 |   if (InitialValue->isReg()) { | 
 |     unsigned R = InitialValue->getReg(); | 
 |     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | 
 |     if (!MDT->properlyDominates(DefBB, Header)) { | 
 |       int64_t V; | 
 |       if (!checkForImmediate(*InitialValue, V)) | 
 |         return nullptr; | 
 |     } | 
 |     OldInsts.push_back(MRI->getVRegDef(R)); | 
 |   } | 
 |   if (EndValue->isReg()) { | 
 |     unsigned R = EndValue->getReg(); | 
 |     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | 
 |     if (!MDT->properlyDominates(DefBB, Header)) { | 
 |       int64_t V; | 
 |       if (!checkForImmediate(*EndValue, V)) | 
 |         return nullptr; | 
 |     } | 
 |     OldInsts.push_back(MRI->getVRegDef(R)); | 
 |   } | 
 |  | 
 |   return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); | 
 | } | 
 |  | 
 | /// Helper function that returns the expression that represents the | 
 | /// number of times a loop iterates.  The function takes the operands that | 
 | /// represent the loop start value, loop end value, and induction value. | 
 | /// Based upon these operands, the function attempts to compute the trip count. | 
 | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, | 
 |                                                const MachineOperand *Start, | 
 |                                                const MachineOperand *End, | 
 |                                                unsigned IVReg, | 
 |                                                int64_t IVBump, | 
 |                                                Comparison::Kind Cmp) const { | 
 |   // Cannot handle comparison EQ, i.e. while (A == B). | 
 |   if (Cmp == Comparison::EQ) | 
 |     return nullptr; | 
 |  | 
 |   // Check if either the start or end values are an assignment of an immediate. | 
 |   // If so, use the immediate value rather than the register. | 
 |   if (Start->isReg()) { | 
 |     const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); | 
 |     if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || | 
 |                           StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) | 
 |       Start = &StartValInstr->getOperand(1); | 
 |   } | 
 |   if (End->isReg()) { | 
 |     const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | 
 |     if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || | 
 |                         EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) | 
 |       End = &EndValInstr->getOperand(1); | 
 |   } | 
 |  | 
 |   if (!Start->isReg() && !Start->isImm()) | 
 |     return nullptr; | 
 |   if (!End->isReg() && !End->isImm()) | 
 |     return nullptr; | 
 |  | 
 |   bool CmpLess =     Cmp & Comparison::L; | 
 |   bool CmpGreater =  Cmp & Comparison::G; | 
 |   bool CmpHasEqual = Cmp & Comparison::EQ; | 
 |  | 
 |   // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds. | 
 |   if (CmpLess && IVBump < 0) | 
 |     // Loop going while iv is "less" with the iv value going down.  Must wrap. | 
 |     return nullptr; | 
 |  | 
 |   if (CmpGreater && IVBump > 0) | 
 |     // Loop going while iv is "greater" with the iv value going up.  Must wrap. | 
 |     return nullptr; | 
 |  | 
 |   // Phis that may feed into the loop. | 
 |   LoopFeederMap LoopFeederPhi; | 
 |  | 
 |   // Check if the initial value may be zero and can be decremented in the first | 
 |   // iteration. If the value is zero, the endloop instruction will not decrement | 
 |   // the loop counter, so we shouldn't generate a hardware loop in this case. | 
 |   if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, | 
 |                                   LoopFeederPhi)) | 
 |       return nullptr; | 
 |  | 
 |   if (Start->isImm() && End->isImm()) { | 
 |     // Both, start and end are immediates. | 
 |     int64_t StartV = Start->getImm(); | 
 |     int64_t EndV = End->getImm(); | 
 |     int64_t Dist = EndV - StartV; | 
 |     if (Dist == 0) | 
 |       return nullptr; | 
 |  | 
 |     bool Exact = (Dist % IVBump) == 0; | 
 |  | 
 |     if (Cmp == Comparison::NE) { | 
 |       if (!Exact) | 
 |         return nullptr; | 
 |       if ((Dist < 0) ^ (IVBump < 0)) | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     // For comparisons that include the final value (i.e. include equality | 
 |     // with the final value), we need to increase the distance by 1. | 
 |     if (CmpHasEqual) | 
 |       Dist = Dist > 0 ? Dist+1 : Dist-1; | 
 |  | 
 |     // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly, | 
 |     // CmpGreater should imply Dist < 0.  These conditions could actually | 
 |     // fail, for example, in unreachable code (which may still appear to be | 
 |     // reachable in the CFG). | 
 |     if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) | 
 |       return nullptr; | 
 |  | 
 |     // "Normalized" distance, i.e. with the bump set to +-1. | 
 |     int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump | 
 |                                  : (-Dist + (-IVBump - 1)) / (-IVBump); | 
 |     assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign."); | 
 |  | 
 |     uint64_t Count = Dist1; | 
 |  | 
 |     if (Count > 0xFFFFFFFFULL) | 
 |       return nullptr; | 
 |  | 
 |     return new CountValue(CountValue::CV_Immediate, Count); | 
 |   } | 
 |  | 
 |   // A general case: Start and End are some values, but the actual | 
 |   // iteration count may not be available.  If it is not, insert | 
 |   // a computation of it into the preheader. | 
 |  | 
 |   // If the induction variable bump is not a power of 2, quit. | 
 |   // Othwerise we'd need a general integer division. | 
 |   if (!isPowerOf2_64(std::abs(IVBump))) | 
 |     return nullptr; | 
 |  | 
 |   MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); | 
 |   assert (PH && "Should have a preheader by now"); | 
 |   MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); | 
 |   DebugLoc DL; | 
 |   if (InsertPos != PH->end()) | 
 |     DL = InsertPos->getDebugLoc(); | 
 |  | 
 |   // If Start is an immediate and End is a register, the trip count | 
 |   // will be "reg - imm".  Hexagon's "subtract immediate" instruction | 
 |   // is actually "reg + -imm". | 
 |  | 
 |   // If the loop IV is going downwards, i.e. if the bump is negative, | 
 |   // then the iteration count (computed as End-Start) will need to be | 
 |   // negated.  To avoid the negation, just swap Start and End. | 
 |   if (IVBump < 0) { | 
 |     std::swap(Start, End); | 
 |     IVBump = -IVBump; | 
 |   } | 
 |   // Cmp may now have a wrong direction, e.g.  LEs may now be GEs. | 
 |   // Signedness, and "including equality" are preserved. | 
 |  | 
 |   bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) | 
 |   bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) | 
 |  | 
 |   int64_t StartV = 0, EndV = 0; | 
 |   if (Start->isImm()) | 
 |     StartV = Start->getImm(); | 
 |   if (End->isImm()) | 
 |     EndV = End->getImm(); | 
 |  | 
 |   int64_t AdjV = 0; | 
 |   // To compute the iteration count, we would need this computation: | 
 |   //   Count = (End - Start + (IVBump-1)) / IVBump | 
 |   // or, when CmpHasEqual: | 
 |   //   Count = (End - Start + (IVBump-1)+1) / IVBump | 
 |   // The "IVBump-1" part is the adjustment (AdjV).  We can avoid | 
 |   // generating an instruction specifically to add it if we can adjust | 
 |   // the immediate values for Start or End. | 
 |  | 
 |   if (CmpHasEqual) { | 
 |     // Need to add 1 to the total iteration count. | 
 |     if (Start->isImm()) | 
 |       StartV--; | 
 |     else if (End->isImm()) | 
 |       EndV++; | 
 |     else | 
 |       AdjV += 1; | 
 |   } | 
 |  | 
 |   if (Cmp != Comparison::NE) { | 
 |     if (Start->isImm()) | 
 |       StartV -= (IVBump-1); | 
 |     else if (End->isImm()) | 
 |       EndV += (IVBump-1); | 
 |     else | 
 |       AdjV += (IVBump-1); | 
 |   } | 
 |  | 
 |   unsigned R = 0, SR = 0; | 
 |   if (Start->isReg()) { | 
 |     R = Start->getReg(); | 
 |     SR = Start->getSubReg(); | 
 |   } else { | 
 |     R = End->getReg(); | 
 |     SR = End->getSubReg(); | 
 |   } | 
 |   const TargetRegisterClass *RC = MRI->getRegClass(R); | 
 |   // Hardware loops cannot handle 64-bit registers.  If it's a double | 
 |   // register, it has to have a subregister. | 
 |   if (!SR && RC == &Hexagon::DoubleRegsRegClass) | 
 |     return nullptr; | 
 |   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; | 
 |  | 
 |   // Compute DistR (register with the distance between Start and End). | 
 |   unsigned DistR, DistSR; | 
 |  | 
 |   // Avoid special case, where the start value is an imm(0). | 
 |   if (Start->isImm() && StartV == 0) { | 
 |     DistR = End->getReg(); | 
 |     DistSR = End->getSubReg(); | 
 |   } else { | 
 |     const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : | 
 |                               (RegToImm ? TII->get(Hexagon::A2_subri) : | 
 |                                           TII->get(Hexagon::A2_addi)); | 
 |     if (RegToReg || RegToImm) { | 
 |       unsigned SubR = MRI->createVirtualRegister(IntRC); | 
 |       MachineInstrBuilder SubIB = | 
 |         BuildMI(*PH, InsertPos, DL, SubD, SubR); | 
 |  | 
 |       if (RegToReg) | 
 |         SubIB.addReg(End->getReg(), 0, End->getSubReg()) | 
 |           .addReg(Start->getReg(), 0, Start->getSubReg()); | 
 |       else | 
 |         SubIB.addImm(EndV) | 
 |           .addReg(Start->getReg(), 0, Start->getSubReg()); | 
 |       DistR = SubR; | 
 |     } else { | 
 |       // If the loop has been unrolled, we should use the original loop count | 
 |       // instead of recalculating the value. This will avoid additional | 
 |       // 'Add' instruction. | 
 |       const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | 
 |       if (EndValInstr->getOpcode() == Hexagon::A2_addi && | 
 |           EndValInstr->getOperand(1).getSubReg() == 0 && | 
 |           EndValInstr->getOperand(2).getImm() == StartV) { | 
 |         DistR = EndValInstr->getOperand(1).getReg(); | 
 |       } else { | 
 |         unsigned SubR = MRI->createVirtualRegister(IntRC); | 
 |         MachineInstrBuilder SubIB = | 
 |           BuildMI(*PH, InsertPos, DL, SubD, SubR); | 
 |         SubIB.addReg(End->getReg(), 0, End->getSubReg()) | 
 |              .addImm(-StartV); | 
 |         DistR = SubR; | 
 |       } | 
 |     } | 
 |     DistSR = 0; | 
 |   } | 
 |  | 
 |   // From DistR, compute AdjR (register with the adjusted distance). | 
 |   unsigned AdjR, AdjSR; | 
 |  | 
 |   if (AdjV == 0) { | 
 |     AdjR = DistR; | 
 |     AdjSR = DistSR; | 
 |   } else { | 
 |     // Generate CountR = ADD DistR, AdjVal | 
 |     unsigned AddR = MRI->createVirtualRegister(IntRC); | 
 |     MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); | 
 |     BuildMI(*PH, InsertPos, DL, AddD, AddR) | 
 |       .addReg(DistR, 0, DistSR) | 
 |       .addImm(AdjV); | 
 |  | 
 |     AdjR = AddR; | 
 |     AdjSR = 0; | 
 |   } | 
 |  | 
 |   // From AdjR, compute CountR (register with the final count). | 
 |   unsigned CountR, CountSR; | 
 |  | 
 |   if (IVBump == 1) { | 
 |     CountR = AdjR; | 
 |     CountSR = AdjSR; | 
 |   } else { | 
 |     // The IV bump is a power of two. Log_2(IV bump) is the shift amount. | 
 |     unsigned Shift = Log2_32(IVBump); | 
 |  | 
 |     // Generate NormR = LSR DistR, Shift. | 
 |     unsigned LsrR = MRI->createVirtualRegister(IntRC); | 
 |     const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); | 
 |     BuildMI(*PH, InsertPos, DL, LsrD, LsrR) | 
 |       .addReg(AdjR, 0, AdjSR) | 
 |       .addImm(Shift); | 
 |  | 
 |     CountR = LsrR; | 
 |     CountSR = 0; | 
 |   } | 
 |  | 
 |   return new CountValue(CountValue::CV_Register, CountR, CountSR); | 
 | } | 
 |  | 
 | /// Return true if the operation is invalid within hardware loop. | 
 | bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, | 
 |                                                   bool IsInnerHWLoop) const { | 
 |   // Call is not allowed because the callee may use a hardware loop except for | 
 |   // the case when the call never returns. | 
 |   if (MI->getDesc().isCall()) | 
 |     return !TII->doesNotReturn(*MI); | 
 |  | 
 |   // Check if the instruction defines a hardware loop register. | 
 |   using namespace Hexagon; | 
 |  | 
 |   static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; | 
 |   static const unsigned Regs1[]  = { LC1, SA1 }; | 
 |   auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) | 
 |                                  : makeArrayRef(Regs1, array_lengthof(Regs1)); | 
 |   for (unsigned R : CheckRegs) | 
 |     if (MI->modifiesRegister(R, TRI)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Return true if the loop contains an instruction that inhibits | 
 | /// the use of the hardware loop instruction. | 
 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, | 
 |     bool IsInnerHWLoop) const { | 
 |   LLVM_DEBUG(dbgs() << "\nhw_loop head, " | 
 |                     << printMBBReference(**L->block_begin())); | 
 |   for (MachineBasicBlock *MBB : L->getBlocks()) { | 
 |     for (MachineBasicBlock::iterator | 
 |            MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { | 
 |       const MachineInstr *MI = &*MII; | 
 |       if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { | 
 |         LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; | 
 |                    MI->dump();); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Returns true if the instruction is dead.  This was essentially | 
 | /// copied from DeadMachineInstructionElim::isDead, but with special cases | 
 | /// for inline asm, physical registers and instructions with side effects | 
 | /// removed. | 
 | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, | 
 |                               SmallVectorImpl<MachineInstr *> &DeadPhis) const { | 
 |   // Examine each operand. | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     const MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg() || !MO.isDef()) | 
 |       continue; | 
 |  | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (MRI->use_nodbg_empty(Reg)) | 
 |       continue; | 
 |  | 
 |     using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; | 
 |  | 
 |     // This instruction has users, but if the only user is the phi node for the | 
 |     // parent block, and the only use of that phi node is this instruction, then | 
 |     // this instruction is dead: both it (and the phi node) can be removed. | 
 |     use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); | 
 |     use_nodbg_iterator End = MRI->use_nodbg_end(); | 
 |     if (std::next(I) != End || !I->getParent()->isPHI()) | 
 |       return false; | 
 |  | 
 |     MachineInstr *OnePhi = I->getParent(); | 
 |     for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { | 
 |       const MachineOperand &OPO = OnePhi->getOperand(j); | 
 |       if (!OPO.isReg() || !OPO.isDef()) | 
 |         continue; | 
 |  | 
 |       unsigned OPReg = OPO.getReg(); | 
 |       use_nodbg_iterator nextJ; | 
 |       for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); | 
 |            J != End; J = nextJ) { | 
 |         nextJ = std::next(J); | 
 |         MachineOperand &Use = *J; | 
 |         MachineInstr *UseMI = Use.getParent(); | 
 |  | 
 |         // If the phi node has a user that is not MI, bail. | 
 |         if (MI != UseMI) | 
 |           return false; | 
 |       } | 
 |     } | 
 |     DeadPhis.push_back(OnePhi); | 
 |   } | 
 |  | 
 |   // If there are no defs with uses, the instruction is dead. | 
 |   return true; | 
 | } | 
 |  | 
 | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { | 
 |   // This procedure was essentially copied from DeadMachineInstructionElim. | 
 |  | 
 |   SmallVector<MachineInstr*, 1> DeadPhis; | 
 |   if (isDead(MI, DeadPhis)) { | 
 |     LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); | 
 |  | 
 |     // It is possible that some DBG_VALUE instructions refer to this | 
 |     // instruction.  Examine each def operand for such references; | 
 |     // if found, mark the DBG_VALUE as undef (but don't delete it). | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       const MachineOperand &MO = MI->getOperand(i); | 
 |       if (!MO.isReg() || !MO.isDef()) | 
 |         continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       MachineRegisterInfo::use_iterator nextI; | 
 |       for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), | 
 |            E = MRI->use_end(); I != E; I = nextI) { | 
 |         nextI = std::next(I);  // I is invalidated by the setReg | 
 |         MachineOperand &Use = *I; | 
 |         MachineInstr *UseMI = I->getParent(); | 
 |         if (UseMI == MI) | 
 |           continue; | 
 |         if (Use.isDebug()) | 
 |           UseMI->getOperand(0).setReg(0U); | 
 |       } | 
 |     } | 
 |  | 
 |     MI->eraseFromParent(); | 
 |     for (unsigned i = 0; i < DeadPhis.size(); ++i) | 
 |       DeadPhis[i]->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 | /// Check if the loop is a candidate for converting to a hardware | 
 | /// loop.  If so, then perform the transformation. | 
 | /// | 
 | /// This function works on innermost loops first.  A loop can be converted | 
 | /// if it is a counting loop; either a register value or an immediate. | 
 | /// | 
 | /// The code makes several assumptions about the representation of the loop | 
 | /// in llvm. | 
 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, | 
 |                                                  bool &RecL0used, | 
 |                                                  bool &RecL1used) { | 
 |   // This is just for sanity. | 
 |   assert(L->getHeader() && "Loop without a header?"); | 
 |  | 
 |   bool Changed = false; | 
 |   bool L0Used = false; | 
 |   bool L1Used = false; | 
 |  | 
 |   // Process nested loops first. | 
 |   for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { | 
 |     Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); | 
 |     L0Used |= RecL0used; | 
 |     L1Used |= RecL1used; | 
 |   } | 
 |  | 
 |   // If a nested loop has been converted, then we can't convert this loop. | 
 |   if (Changed && L0Used && L1Used) | 
 |     return Changed; | 
 |  | 
 |   unsigned LOOP_i; | 
 |   unsigned LOOP_r; | 
 |   unsigned ENDLOOP; | 
 |  | 
 |   // Flag used to track loopN instruction: | 
 |   // 1 - Hardware loop is being generated for the inner most loop. | 
 |   // 0 - Hardware loop is being generated for the outer loop. | 
 |   unsigned IsInnerHWLoop = 1; | 
 |  | 
 |   if (L0Used) { | 
 |     LOOP_i = Hexagon::J2_loop1i; | 
 |     LOOP_r = Hexagon::J2_loop1r; | 
 |     ENDLOOP = Hexagon::ENDLOOP1; | 
 |     IsInnerHWLoop = 0; | 
 |   } else { | 
 |     LOOP_i = Hexagon::J2_loop0i; | 
 |     LOOP_r = Hexagon::J2_loop0r; | 
 |     ENDLOOP = Hexagon::ENDLOOP0; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Stop trying after reaching the limit (if any). | 
 |   int Limit = HWLoopLimit; | 
 |   if (Limit >= 0) { | 
 |     if (Counter >= HWLoopLimit) | 
 |       return false; | 
 |     Counter++; | 
 |   } | 
 | #endif | 
 |  | 
 |   // Does the loop contain any invalid instructions? | 
 |   if (containsInvalidInstruction(L, IsInnerHWLoop)) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock *LastMBB = L->findLoopControlBlock(); | 
 |   // Don't generate hw loop if the loop has more than one exit. | 
 |   if (!LastMBB) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); | 
 |   if (LastI == LastMBB->end()) | 
 |     return false; | 
 |  | 
 |   // Is the induction variable bump feeding the latch condition? | 
 |   if (!fixupInductionVariable(L)) | 
 |     return false; | 
 |  | 
 |   // Ensure the loop has a preheader: the loop instruction will be | 
 |   // placed there. | 
 |   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
 |   if (!Preheader) { | 
 |     Preheader = createPreheaderForLoop(L); | 
 |     if (!Preheader) | 
 |       return false; | 
 |   } | 
 |  | 
 |   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); | 
 |  | 
 |   SmallVector<MachineInstr*, 2> OldInsts; | 
 |   // Are we able to determine the trip count for the loop? | 
 |   CountValue *TripCount = getLoopTripCount(L, OldInsts); | 
 |   if (!TripCount) | 
 |     return false; | 
 |  | 
 |   // Is the trip count available in the preheader? | 
 |   if (TripCount->isReg()) { | 
 |     // There will be a use of the register inserted into the preheader, | 
 |     // so make sure that the register is actually defined at that point. | 
 |     MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); | 
 |     MachineBasicBlock *BBDef = TCDef->getParent(); | 
 |     if (!MDT->dominates(BBDef, Preheader)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Determine the loop start. | 
 |   MachineBasicBlock *TopBlock = L->getTopBlock(); | 
 |   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
 |   MachineBasicBlock *LoopStart = nullptr; | 
 |   if (ExitingBlock !=  L->getLoopLatch()) { | 
 |     MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |     SmallVector<MachineOperand, 2> Cond; | 
 |  | 
 |     if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) | 
 |       return false; | 
 |  | 
 |     if (L->contains(TB)) | 
 |       LoopStart = TB; | 
 |     else if (L->contains(FB)) | 
 |       LoopStart = FB; | 
 |     else | 
 |       return false; | 
 |   } | 
 |   else | 
 |     LoopStart = TopBlock; | 
 |  | 
 |   // Convert the loop to a hardware loop. | 
 |   LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); | 
 |   DebugLoc DL; | 
 |   if (InsertPos != Preheader->end()) | 
 |     DL = InsertPos->getDebugLoc(); | 
 |  | 
 |   if (TripCount->isReg()) { | 
 |     // Create a copy of the loop count register. | 
 |     unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |     BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) | 
 |       .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); | 
 |     // Add the Loop instruction to the beginning of the loop. | 
 |     BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) | 
 |       .addReg(CountReg); | 
 |   } else { | 
 |     assert(TripCount->isImm() && "Expecting immediate value for trip count"); | 
 |     // Add the Loop immediate instruction to the beginning of the loop, | 
 |     // if the immediate fits in the instructions.  Otherwise, we need to | 
 |     // create a new virtual register. | 
 |     int64_t CountImm = TripCount->getImm(); | 
 |     if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { | 
 |       unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) | 
 |         .addImm(CountImm); | 
 |       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) | 
 |         .addMBB(LoopStart).addReg(CountReg); | 
 |     } else | 
 |       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) | 
 |         .addMBB(LoopStart).addImm(CountImm); | 
 |   } | 
 |  | 
 |   // Make sure the loop start always has a reference in the CFG.  We need | 
 |   // to create a BlockAddress operand to get this mechanism to work both the | 
 |   // MachineBasicBlock and BasicBlock objects need the flag set. | 
 |   LoopStart->setHasAddressTaken(); | 
 |   // This line is needed to set the hasAddressTaken flag on the BasicBlock | 
 |   // object. | 
 |   BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); | 
 |  | 
 |   // Replace the loop branch with an endloop instruction. | 
 |   DebugLoc LastIDL = LastI->getDebugLoc(); | 
 |   BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); | 
 |  | 
 |   // The loop ends with either: | 
 |   //  - a conditional branch followed by an unconditional branch, or | 
 |   //  - a conditional branch to the loop start. | 
 |   if (LastI->getOpcode() == Hexagon::J2_jumpt || | 
 |       LastI->getOpcode() == Hexagon::J2_jumpf) { | 
 |     // Delete one and change/add an uncond. branch to out of the loop. | 
 |     MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); | 
 |     LastI = LastMBB->erase(LastI); | 
 |     if (!L->contains(BranchTarget)) { | 
 |       if (LastI != LastMBB->end()) | 
 |         LastI = LastMBB->erase(LastI); | 
 |       SmallVector<MachineOperand, 0> Cond; | 
 |       TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); | 
 |     } | 
 |   } else { | 
 |     // Conditional branch to loop start; just delete it. | 
 |     LastMBB->erase(LastI); | 
 |   } | 
 |   delete TripCount; | 
 |  | 
 |   // The induction operation and the comparison may now be | 
 |   // unneeded. If these are unneeded, then remove them. | 
 |   for (unsigned i = 0; i < OldInsts.size(); ++i) | 
 |     removeIfDead(OldInsts[i]); | 
 |  | 
 |   ++NumHWLoops; | 
 |  | 
 |   // Set RecL1used and RecL0used only after hardware loop has been | 
 |   // successfully generated. Doing it earlier can cause wrong loop instruction | 
 |   // to be used. | 
 |   if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. | 
 |     RecL1used = true; | 
 |   else | 
 |     RecL0used = true; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, | 
 |                                             MachineInstr *CmpI) { | 
 |   assert (BumpI != CmpI && "Bump and compare in the same instruction?"); | 
 |  | 
 |   MachineBasicBlock *BB = BumpI->getParent(); | 
 |   if (CmpI->getParent() != BB) | 
 |     return false; | 
 |  | 
 |   using instr_iterator = MachineBasicBlock::instr_iterator; | 
 |  | 
 |   // Check if things are in order to begin with. | 
 |   for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) | 
 |     if (&*I == CmpI) | 
 |       return true; | 
 |  | 
 |   // Out of order. | 
 |   unsigned PredR = CmpI->getOperand(0).getReg(); | 
 |   bool FoundBump = false; | 
 |   instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); | 
 |   for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { | 
 |     MachineInstr *In = &*I; | 
 |     for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { | 
 |       MachineOperand &MO = In->getOperand(i); | 
 |       if (MO.isReg() && MO.isUse()) { | 
 |         if (MO.getReg() == PredR)  // Found an intervening use of PredR. | 
 |           return false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (In == BumpI) { | 
 |       BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); | 
 |       FoundBump = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |   assert (FoundBump && "Cannot determine instruction order"); | 
 |   return FoundBump; | 
 | } | 
 |  | 
 | /// This function is required to break recursion. Visiting phis in a loop may | 
 | /// result in recursion during compilation. We break the recursion by making | 
 | /// sure that we visit a MachineOperand and its definition in a | 
 | /// MachineInstruction only once. If we attempt to visit more than once, then | 
 | /// there is recursion, and will return false. | 
 | bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, | 
 |                                         MachineInstr *MI, | 
 |                                         const MachineOperand *MO, | 
 |                                         LoopFeederMap &LoopFeederPhi) const { | 
 |   if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { | 
 |     LLVM_DEBUG(dbgs() << "\nhw_loop head, " | 
 |                       << printMBBReference(**L->block_begin())); | 
 |     // Ignore all BBs that form Loop. | 
 |     for (MachineBasicBlock *MBB : L->getBlocks()) { | 
 |       if (A == MBB) | 
 |         return false; | 
 |     } | 
 |     MachineInstr *Def = MRI->getVRegDef(MO->getReg()); | 
 |     LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); | 
 |     return true; | 
 |   } else | 
 |     // Already visited node. | 
 |     return false; | 
 | } | 
 |  | 
 | /// Return true if a Phi may generate a value that can underflow. | 
 | /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. | 
 | bool HexagonHardwareLoops::phiMayWrapOrUnderflow( | 
 |     MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, | 
 |     MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { | 
 |   assert(Phi->isPHI() && "Expecting a Phi."); | 
 |   // Walk through each Phi, and its used operands. Make sure that | 
 |   // if there is recursion in Phi, we won't generate hardware loops. | 
 |   for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) | 
 |     if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) | 
 |       if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, | 
 |                                       Phi->getParent(), L, LoopFeederPhi)) | 
 |         return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// Return true if the induction variable can underflow in the first iteration. | 
 | /// An example, is an initial unsigned value that is 0 and is decrement in the | 
 | /// first itertion of a do-while loop.  In this case, we cannot generate a | 
 | /// hardware loop because the endloop instruction does not decrement the loop | 
 | /// counter if it is <= 1. We only need to perform this analysis if the | 
 | /// initial value is a register. | 
 | /// | 
 | /// This function assumes the initial value may underfow unless proven | 
 | /// otherwise. If the type is signed, then we don't care because signed | 
 | /// underflow is undefined. We attempt to prove the initial value is not | 
 | /// zero by perfoming a crude analysis of the loop counter. This function | 
 | /// checks if the initial value is used in any comparison prior to the loop | 
 | /// and, if so, assumes the comparison is a range check. This is inexact, | 
 | /// but will catch the simple cases. | 
 | bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( | 
 |     const MachineOperand *InitVal, const MachineOperand *EndVal, | 
 |     MachineBasicBlock *MBB, MachineLoop *L, | 
 |     LoopFeederMap &LoopFeederPhi) const { | 
 |   // Only check register values since they are unknown. | 
 |   if (!InitVal->isReg()) | 
 |     return false; | 
 |  | 
 |   if (!EndVal->isImm()) | 
 |     return false; | 
 |  | 
 |   // A register value that is assigned an immediate is a known value, and it | 
 |   // won't underflow in the first iteration. | 
 |   int64_t Imm; | 
 |   if (checkForImmediate(*InitVal, Imm)) | 
 |     return (EndVal->getImm() == Imm); | 
 |  | 
 |   unsigned Reg = InitVal->getReg(); | 
 |  | 
 |   // We don't know the value of a physical register. | 
 |   if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |     return true; | 
 |  | 
 |   MachineInstr *Def = MRI->getVRegDef(Reg); | 
 |   if (!Def) | 
 |     return true; | 
 |  | 
 |   // If the initial value is a Phi or copy and the operands may not underflow, | 
 |   // then the definition cannot be underflow either. | 
 |   if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), | 
 |                                              L, LoopFeederPhi)) | 
 |     return false; | 
 |   if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), | 
 |                                                     EndVal, Def->getParent(), | 
 |                                                     L, LoopFeederPhi)) | 
 |     return false; | 
 |  | 
 |   // Iterate over the uses of the initial value. If the initial value is used | 
 |   // in a compare, then we assume this is a range check that ensures the loop | 
 |   // doesn't underflow. This is not an exact test and should be improved. | 
 |   for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), | 
 |          E = MRI->use_instr_nodbg_end(); I != E; ++I) { | 
 |     MachineInstr *MI = &*I; | 
 |     unsigned CmpReg1 = 0, CmpReg2 = 0; | 
 |     int CmpMask = 0, CmpValue = 0; | 
 |  | 
 |     if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) | 
 |       continue; | 
 |  | 
 |     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
 |     SmallVector<MachineOperand, 2> Cond; | 
 |     if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) | 
 |       continue; | 
 |  | 
 |     Comparison::Kind Cmp = | 
 |         getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); | 
 |     if (Cmp == 0) | 
 |       continue; | 
 |     if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) | 
 |       Cmp = Comparison::getNegatedComparison(Cmp); | 
 |     if (CmpReg2 != 0 && CmpReg2 == Reg) | 
 |       Cmp = Comparison::getSwappedComparison(Cmp); | 
 |  | 
 |     // Signed underflow is undefined. | 
 |     if (Comparison::isSigned(Cmp)) | 
 |       return false; | 
 |  | 
 |     // Check if there is a comparison of the initial value. If the initial value | 
 |     // is greater than or not equal to another value, then assume this is a | 
 |     // range check. | 
 |     if ((Cmp & Comparison::G) || Cmp == Comparison::NE) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // OK - this is a hack that needs to be improved. We really need to analyze | 
 |   // the instructions performed on the initial value. This works on the simplest | 
 |   // cases only. | 
 |   if (!Def->isCopy() && !Def->isPHI()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, | 
 |                                              int64_t &Val) const { | 
 |   if (MO.isImm()) { | 
 |     Val = MO.getImm(); | 
 |     return true; | 
 |   } | 
 |   if (!MO.isReg()) | 
 |     return false; | 
 |  | 
 |   // MO is a register. Check whether it is defined as an immediate value, | 
 |   // and if so, get the value of it in TV. That value will then need to be | 
 |   // processed to handle potential subregisters in MO. | 
 |   int64_t TV; | 
 |  | 
 |   unsigned R = MO.getReg(); | 
 |   if (!TargetRegisterInfo::isVirtualRegister(R)) | 
 |     return false; | 
 |   MachineInstr *DI = MRI->getVRegDef(R); | 
 |   unsigned DOpc = DI->getOpcode(); | 
 |   switch (DOpc) { | 
 |     case TargetOpcode::COPY: | 
 |     case Hexagon::A2_tfrsi: | 
 |     case Hexagon::A2_tfrpi: | 
 |     case Hexagon::CONST32: | 
 |     case Hexagon::CONST64: | 
 |       // Call recursively to avoid an extra check whether operand(1) is | 
 |       // indeed an immediate (it could be a global address, for example), | 
 |       // plus we can handle COPY at the same time. | 
 |       if (!checkForImmediate(DI->getOperand(1), TV)) | 
 |         return false; | 
 |       break; | 
 |     case Hexagon::A2_combineii: | 
 |     case Hexagon::A4_combineir: | 
 |     case Hexagon::A4_combineii: | 
 |     case Hexagon::A4_combineri: | 
 |     case Hexagon::A2_combinew: { | 
 |       const MachineOperand &S1 = DI->getOperand(1); | 
 |       const MachineOperand &S2 = DI->getOperand(2); | 
 |       int64_t V1, V2; | 
 |       if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) | 
 |         return false; | 
 |       TV = V2 | (static_cast<uint64_t>(V1) << 32); | 
 |       break; | 
 |     } | 
 |     case TargetOpcode::REG_SEQUENCE: { | 
 |       const MachineOperand &S1 = DI->getOperand(1); | 
 |       const MachineOperand &S3 = DI->getOperand(3); | 
 |       int64_t V1, V3; | 
 |       if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) | 
 |         return false; | 
 |       unsigned Sub2 = DI->getOperand(2).getImm(); | 
 |       unsigned Sub4 = DI->getOperand(4).getImm(); | 
 |       if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) | 
 |         TV = V1 | (V3 << 32); | 
 |       else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) | 
 |         TV = V3 | (V1 << 32); | 
 |       else | 
 |         llvm_unreachable("Unexpected form of REG_SEQUENCE"); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       return false; | 
 |   } | 
 |  | 
 |   // By now, we should have successfully obtained the immediate value defining | 
 |   // the register referenced in MO. Handle a potential use of a subregister. | 
 |   switch (MO.getSubReg()) { | 
 |     case Hexagon::isub_lo: | 
 |       Val = TV & 0xFFFFFFFFULL; | 
 |       break; | 
 |     case Hexagon::isub_hi: | 
 |       Val = (TV >> 32) & 0xFFFFFFFFULL; | 
 |       break; | 
 |     default: | 
 |       Val = TV; | 
 |       break; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { | 
 |   if (MO.isImm()) { | 
 |     MO.setImm(Val); | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(MO.isReg()); | 
 |   unsigned R = MO.getReg(); | 
 |   MachineInstr *DI = MRI->getVRegDef(R); | 
 |  | 
 |   const TargetRegisterClass *RC = MRI->getRegClass(R); | 
 |   unsigned NewR = MRI->createVirtualRegister(RC); | 
 |   MachineBasicBlock &B = *DI->getParent(); | 
 |   DebugLoc DL = DI->getDebugLoc(); | 
 |   BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); | 
 |   MO.setReg(NewR); | 
 | } | 
 |  | 
 | static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { | 
 |   // These two instructions are not extendable. | 
 |   if (CmpOpc == Hexagon::A4_cmpbeqi) | 
 |     return isUInt<8>(Imm); | 
 |   if (CmpOpc == Hexagon::A4_cmpbgti) | 
 |     return isInt<8>(Imm); | 
 |   // The rest of the comparison-with-immediate instructions are extendable. | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { | 
 |   MachineBasicBlock *Header = L->getHeader(); | 
 |   MachineBasicBlock *Latch = L->getLoopLatch(); | 
 |   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
 |  | 
 |   if (!(Header && Latch && ExitingBlock)) | 
 |     return false; | 
 |  | 
 |   // These data structures follow the same concept as the corresponding | 
 |   // ones in findInductionRegister (where some comments are). | 
 |   using RegisterBump = std::pair<unsigned, int64_t>; | 
 |   using RegisterInduction = std::pair<unsigned, RegisterBump>; | 
 |   using RegisterInductionSet = std::set<RegisterInduction>; | 
 |  | 
 |   // Register candidates for induction variables, with their associated bumps. | 
 |   RegisterInductionSet IndRegs; | 
 |  | 
 |   // Look for induction patterns: | 
 |   //   %1 = PHI ..., [ latch, %2 ] | 
 |   //   %2 = ADD %1, imm | 
 |   using instr_iterator = MachineBasicBlock::instr_iterator; | 
 |  | 
 |   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
 |        I != E && I->isPHI(); ++I) { | 
 |     MachineInstr *Phi = &*I; | 
 |  | 
 |     // Have a PHI instruction. | 
 |     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | 
 |       if (Phi->getOperand(i+1).getMBB() != Latch) | 
 |         continue; | 
 |  | 
 |       unsigned PhiReg = Phi->getOperand(i).getReg(); | 
 |       MachineInstr *DI = MRI->getVRegDef(PhiReg); | 
 |  | 
 |       if (DI->getDesc().isAdd()) { | 
 |         // If the register operand to the add/sub is the PHI we are looking | 
 |         // at, this meets the induction pattern. | 
 |         unsigned IndReg = DI->getOperand(1).getReg(); | 
 |         MachineOperand &Opnd2 = DI->getOperand(2); | 
 |         int64_t V; | 
 |         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | 
 |           unsigned UpdReg = DI->getOperand(0).getReg(); | 
 |           IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | 
 |         } | 
 |       } | 
 |     }  // for (i) | 
 |   }  // for (instr) | 
 |  | 
 |   if (IndRegs.empty()) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |   SmallVector<MachineOperand,2> Cond; | 
 |   // AnalyzeBranch returns true if it fails to analyze branch. | 
 |   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
 |   if (NotAnalyzed || Cond.empty()) | 
 |     return false; | 
 |  | 
 |   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | 
 |     MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | 
 |     SmallVector<MachineOperand,2> LCond; | 
 |     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | 
 |     if (NotAnalyzed) | 
 |       return false; | 
 |  | 
 |     // Since latch is not the exiting block, the latch branch should be an | 
 |     // unconditional branch to the loop header. | 
 |     if (TB == Latch) | 
 |       TB = (LTB == Header) ? LTB : LFB; | 
 |     else | 
 |       FB = (LTB == Header) ? LTB : LFB; | 
 |   } | 
 |   if (TB != Header) { | 
 |     if (FB != Header) { | 
 |       // The latch/exit block does not go back to the header. | 
 |       return false; | 
 |     } | 
 |     // FB is the header (i.e., uncond. jump to branch header) | 
 |     // In this case, the LoopBody -> TB should not be a back edge otherwise | 
 |     // it could result in an infinite loop after conversion to hw_loop. | 
 |     // This case can happen when the Latch has two jumps like this: | 
 |     // Jmp_c OuterLoopHeader <-- TB | 
 |     // Jmp   InnerLoopHeader <-- FB | 
 |     if (MDT->dominates(TB, FB)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Expecting a predicate register as a condition.  It won't be a hardware | 
 |   // predicate register at this point yet, just a vreg. | 
 |   // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) | 
 |   // into Cond, followed by the predicate register.  For non-negated branches | 
 |   // it's just the register. | 
 |   unsigned CSz = Cond.size(); | 
 |   if (CSz != 1 && CSz != 2) | 
 |     return false; | 
 |  | 
 |   if (!Cond[CSz-1].isReg()) | 
 |     return false; | 
 |  | 
 |   unsigned P = Cond[CSz-1].getReg(); | 
 |   MachineInstr *PredDef = MRI->getVRegDef(P); | 
 |  | 
 |   if (!PredDef->isCompare()) | 
 |     return false; | 
 |  | 
 |   SmallSet<unsigned,2> CmpRegs; | 
 |   MachineOperand *CmpImmOp = nullptr; | 
 |  | 
 |   // Go over all operands to the compare and look for immediate and register | 
 |   // operands.  Assume that if the compare has a single register use and a | 
 |   // single immediate operand, then the register is being compared with the | 
 |   // immediate value. | 
 |   for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { | 
 |     MachineOperand &MO = PredDef->getOperand(i); | 
 |     if (MO.isReg()) { | 
 |       // Skip all implicit references.  In one case there was: | 
 |       //   %140 = FCMPUGT32_rr %138, %139, implicit %usr | 
 |       if (MO.isImplicit()) | 
 |         continue; | 
 |       if (MO.isUse()) { | 
 |         if (!isImmediate(MO)) { | 
 |           CmpRegs.insert(MO.getReg()); | 
 |           continue; | 
 |         } | 
 |         // Consider the register to be the "immediate" operand. | 
 |         if (CmpImmOp) | 
 |           return false; | 
 |         CmpImmOp = &MO; | 
 |       } | 
 |     } else if (MO.isImm()) { | 
 |       if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out. | 
 |         return false; | 
 |       CmpImmOp = &MO; | 
 |     } | 
 |   } | 
 |  | 
 |   if (CmpRegs.empty()) | 
 |     return false; | 
 |  | 
 |   // Check if the compared register follows the order we want.  Fix if needed. | 
 |   for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); | 
 |        I != E; ++I) { | 
 |     // This is a success.  If the register used in the comparison is one that | 
 |     // we have identified as a bumped (updated) induction register, there is | 
 |     // nothing to do. | 
 |     if (CmpRegs.count(I->first)) | 
 |       return true; | 
 |  | 
 |     // Otherwise, if the register being compared comes out of a PHI node, | 
 |     // and has been recognized as following the induction pattern, and is | 
 |     // compared against an immediate, we can fix it. | 
 |     const RegisterBump &RB = I->second; | 
 |     if (CmpRegs.count(RB.first)) { | 
 |       if (!CmpImmOp) { | 
 |         // If both operands to the compare instruction are registers, see if | 
 |         // it can be changed to use induction register as one of the operands. | 
 |         MachineInstr *IndI = nullptr; | 
 |         MachineInstr *nonIndI = nullptr; | 
 |         MachineOperand *IndMO = nullptr; | 
 |         MachineOperand *nonIndMO = nullptr; | 
 |  | 
 |         for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { | 
 |           MachineOperand &MO = PredDef->getOperand(i); | 
 |           if (MO.isReg() && MO.getReg() == RB.first) { | 
 |             LLVM_DEBUG(dbgs() << "\n DefMI(" << i | 
 |                               << ") = " << *(MRI->getVRegDef(I->first))); | 
 |             if (IndI) | 
 |               return false; | 
 |  | 
 |             IndI = MRI->getVRegDef(I->first); | 
 |             IndMO = &MO; | 
 |           } else if (MO.isReg()) { | 
 |             LLVM_DEBUG(dbgs() << "\n DefMI(" << i | 
 |                               << ") = " << *(MRI->getVRegDef(MO.getReg()))); | 
 |             if (nonIndI) | 
 |               return false; | 
 |  | 
 |             nonIndI = MRI->getVRegDef(MO.getReg()); | 
 |             nonIndMO = &MO; | 
 |           } | 
 |         } | 
 |         if (IndI && nonIndI && | 
 |             nonIndI->getOpcode() == Hexagon::A2_addi && | 
 |             nonIndI->getOperand(2).isImm() && | 
 |             nonIndI->getOperand(2).getImm() == - RB.second) { | 
 |           bool Order = orderBumpCompare(IndI, PredDef); | 
 |           if (Order) { | 
 |             IndMO->setReg(I->first); | 
 |             nonIndMO->setReg(nonIndI->getOperand(1).getReg()); | 
 |             return true; | 
 |           } | 
 |         } | 
 |         return false; | 
 |       } | 
 |  | 
 |       // It is not valid to do this transformation on an unsigned comparison | 
 |       // because it may underflow. | 
 |       Comparison::Kind Cmp = | 
 |           getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); | 
 |       if (!Cmp || Comparison::isUnsigned(Cmp)) | 
 |         return false; | 
 |  | 
 |       // If the register is being compared against an immediate, try changing | 
 |       // the compare instruction to use induction register and adjust the | 
 |       // immediate operand. | 
 |       int64_t CmpImm = getImmediate(*CmpImmOp); | 
 |       int64_t V = RB.second; | 
 |       // Handle Overflow (64-bit). | 
 |       if (((V > 0) && (CmpImm > INT64_MAX - V)) || | 
 |           ((V < 0) && (CmpImm < INT64_MIN - V))) | 
 |         return false; | 
 |       CmpImm += V; | 
 |       // Most comparisons of register against an immediate value allow | 
 |       // the immediate to be constant-extended. There are some exceptions | 
 |       // though. Make sure the new combination will work. | 
 |       if (CmpImmOp->isImm()) | 
 |         if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) | 
 |           return false; | 
 |  | 
 |       // Make sure that the compare happens after the bump.  Otherwise, | 
 |       // after the fixup, the compare would use a yet-undefined register. | 
 |       MachineInstr *BumpI = MRI->getVRegDef(I->first); | 
 |       bool Order = orderBumpCompare(BumpI, PredDef); | 
 |       if (!Order) | 
 |         return false; | 
 |  | 
 |       // Finally, fix the compare instruction. | 
 |       setImmediate(*CmpImmOp, CmpImm); | 
 |       for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { | 
 |         MachineOperand &MO = PredDef->getOperand(i); | 
 |         if (MO.isReg() && MO.getReg() == RB.first) { | 
 |           MO.setReg(I->first); | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// createPreheaderForLoop - Create a preheader for a given loop. | 
 | MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( | 
 |       MachineLoop *L) { | 
 |   if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) | 
 |     return TmpPH; | 
 |   if (!HWCreatePreheader) | 
 |     return nullptr; | 
 |  | 
 |   MachineBasicBlock *Header = L->getHeader(); | 
 |   MachineBasicBlock *Latch = L->getLoopLatch(); | 
 |   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
 |   MachineFunction *MF = Header->getParent(); | 
 |   DebugLoc DL; | 
 |  | 
 | #ifndef NDEBUG | 
 |   if ((!PHFn.empty()) && (PHFn != MF->getName())) | 
 |     return nullptr; | 
 | #endif | 
 |  | 
 |   if (!Latch || !ExitingBlock || Header->hasAddressTaken()) | 
 |     return nullptr; | 
 |  | 
 |   using instr_iterator = MachineBasicBlock::instr_iterator; | 
 |  | 
 |   // Verify that all existing predecessors have analyzable branches | 
 |   // (or no branches at all). | 
 |   using MBBVector = std::vector<MachineBasicBlock *>; | 
 |  | 
 |   MBBVector Preds(Header->pred_begin(), Header->pred_end()); | 
 |   SmallVector<MachineOperand,2> Tmp1; | 
 |   MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
 |  | 
 |   if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) | 
 |     return nullptr; | 
 |  | 
 |   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { | 
 |     MachineBasicBlock *PB = *I; | 
 |     bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); | 
 |     if (NotAnalyzed) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); | 
 |   MF->insert(Header->getIterator(), NewPH); | 
 |  | 
 |   if (Header->pred_size() > 2) { | 
 |     // Ensure that the header has only two predecessors: the preheader and | 
 |     // the loop latch.  Any additional predecessors of the header should | 
 |     // join at the newly created preheader. Inspect all PHI nodes from the | 
 |     // header and create appropriate corresponding PHI nodes in the preheader. | 
 |  | 
 |     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
 |          I != E && I->isPHI(); ++I) { | 
 |       MachineInstr *PN = &*I; | 
 |  | 
 |       const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); | 
 |       MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); | 
 |       NewPH->insert(NewPH->end(), NewPN); | 
 |  | 
 |       unsigned PR = PN->getOperand(0).getReg(); | 
 |       const TargetRegisterClass *RC = MRI->getRegClass(PR); | 
 |       unsigned NewPR = MRI->createVirtualRegister(RC); | 
 |       NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); | 
 |  | 
 |       // Copy all non-latch operands of a header's PHI node to the newly | 
 |       // created PHI node in the preheader. | 
 |       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | 
 |         unsigned PredR = PN->getOperand(i).getReg(); | 
 |         unsigned PredRSub = PN->getOperand(i).getSubReg(); | 
 |         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | 
 |         if (PredB == Latch) | 
 |           continue; | 
 |  | 
 |         MachineOperand MO = MachineOperand::CreateReg(PredR, false); | 
 |         MO.setSubReg(PredRSub); | 
 |         NewPN->addOperand(MO); | 
 |         NewPN->addOperand(MachineOperand::CreateMBB(PredB)); | 
 |       } | 
 |  | 
 |       // Remove copied operands from the old PHI node and add the value | 
 |       // coming from the preheader's PHI. | 
 |       for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { | 
 |         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | 
 |         if (PredB != Latch) { | 
 |           PN->RemoveOperand(i+1); | 
 |           PN->RemoveOperand(i); | 
 |         } | 
 |       } | 
 |       PN->addOperand(MachineOperand::CreateReg(NewPR, false)); | 
 |       PN->addOperand(MachineOperand::CreateMBB(NewPH)); | 
 |     } | 
 |   } else { | 
 |     assert(Header->pred_size() == 2); | 
 |  | 
 |     // The header has only two predecessors, but the non-latch predecessor | 
 |     // is not a preheader (e.g. it has other successors, etc.) | 
 |     // In such a case we don't need any extra PHI nodes in the new preheader, | 
 |     // all we need is to adjust existing PHIs in the header to now refer to | 
 |     // the new preheader. | 
 |     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
 |          I != E && I->isPHI(); ++I) { | 
 |       MachineInstr *PN = &*I; | 
 |       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | 
 |         MachineOperand &MO = PN->getOperand(i+1); | 
 |         if (MO.getMBB() != Latch) | 
 |           MO.setMBB(NewPH); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // "Reroute" the CFG edges to link in the new preheader. | 
 |   // If any of the predecessors falls through to the header, insert a branch | 
 |   // to the new preheader in that place. | 
 |   SmallVector<MachineOperand,1> Tmp2; | 
 |   SmallVector<MachineOperand,1> EmptyCond; | 
 |  | 
 |   TB = FB = nullptr; | 
 |  | 
 |   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { | 
 |     MachineBasicBlock *PB = *I; | 
 |     if (PB != Latch) { | 
 |       Tmp2.clear(); | 
 |       bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); | 
 |       (void)NotAnalyzed; // suppress compiler warning | 
 |       assert (!NotAnalyzed && "Should be analyzable!"); | 
 |       if (TB != Header && (Tmp2.empty() || FB != Header)) | 
 |         TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); | 
 |       PB->ReplaceUsesOfBlockWith(Header, NewPH); | 
 |     } | 
 |   } | 
 |  | 
 |   // It can happen that the latch block will fall through into the header. | 
 |   // Insert an unconditional branch to the header. | 
 |   TB = FB = nullptr; | 
 |   bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); | 
 |   (void)LatchNotAnalyzed; // suppress compiler warning | 
 |   assert (!LatchNotAnalyzed && "Should be analyzable!"); | 
 |   if (!TB && !FB) | 
 |     TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); | 
 |  | 
 |   // Finally, the branch from the preheader to the header. | 
 |   TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); | 
 |   NewPH->addSuccessor(Header); | 
 |  | 
 |   MachineLoop *ParentLoop = L->getParentLoop(); | 
 |   if (ParentLoop) | 
 |     ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); | 
 |  | 
 |   // Update the dominator information with the new preheader. | 
 |   if (MDT) { | 
 |     if (MachineDomTreeNode *HN = MDT->getNode(Header)) { | 
 |       if (MachineDomTreeNode *DHN = HN->getIDom()) { | 
 |         MDT->addNewBlock(NewPH, DHN->getBlock()); | 
 |         MDT->changeImmediateDominator(Header, NewPH); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return NewPH; | 
 | } |