| //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // When profitable, replace GPR targeting i64 instructions with their | 
 | // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined | 
 | // as minimizing the number of cross-class register copies. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TODO: Graph based predicate heuristics. | 
 | // Walking the instruction list linearly will get many, perhaps most, of | 
 | // the cases, but to do a truly thorough job of this, we need a more | 
 | // wholistic approach. | 
 | // | 
 | // This optimization is very similar in spirit to the register allocator's | 
 | // spill placement, only here we're determining where to place cross-class | 
 | // register copies rather than spills. As such, a similar approach is | 
 | // called for. | 
 | // | 
 | // We want to build up a set of graphs of all instructions which are candidates | 
 | // for transformation along with instructions which generate their inputs and | 
 | // consume their outputs. For each edge in the graph, we assign a weight | 
 | // based on whether there is a copy required there (weight zero if not) and | 
 | // the block frequency of the block containing the defining or using | 
 | // instruction, whichever is less. Our optimization is then a graph problem | 
 | // to minimize the total weight of all the graphs, then transform instructions | 
 | // and add or remove copy instructions as called for to implement the | 
 | // solution. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "AArch64.h" | 
 | #include "AArch64InstrInfo.h" | 
 | #include "AArch64RegisterInfo.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "aarch64-simd-scalar" | 
 |  | 
 | // Allow forcing all i64 operations with equivalent SIMD instructions to use | 
 | // them. For stress-testing the transformation function. | 
 | static cl::opt<bool> | 
 | TransformAll("aarch64-simd-scalar-force-all", | 
 |              cl::desc("Force use of AdvSIMD scalar instructions everywhere"), | 
 |              cl::init(false), cl::Hidden); | 
 |  | 
 | STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); | 
 | STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); | 
 | STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); | 
 |  | 
 | #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization" | 
 |  | 
 | namespace { | 
 | class AArch64AdvSIMDScalar : public MachineFunctionPass { | 
 |   MachineRegisterInfo *MRI; | 
 |   const TargetInstrInfo *TII; | 
 |  | 
 | private: | 
 |   // isProfitableToTransform - Predicate function to determine whether an | 
 |   // instruction should be transformed to its equivalent AdvSIMD scalar | 
 |   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. | 
 |   bool isProfitableToTransform(const MachineInstr &MI) const; | 
 |  | 
 |   // transformInstruction - Perform the transformation of an instruction | 
 |   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs | 
 |   // to be the correct register class, minimizing cross-class copies. | 
 |   void transformInstruction(MachineInstr &MI); | 
 |  | 
 |   // processMachineBasicBlock - Main optimzation loop. | 
 |   bool processMachineBasicBlock(MachineBasicBlock *MBB); | 
 |  | 
 | public: | 
 |   static char ID; // Pass identification, replacement for typeid. | 
 |   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) { | 
 |     initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   bool runOnMachineFunction(MachineFunction &F) override; | 
 |  | 
 |   StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.setPreservesCFG(); | 
 |     MachineFunctionPass::getAnalysisUsage(AU); | 
 |   } | 
 | }; | 
 | char AArch64AdvSIMDScalar::ID = 0; | 
 | } // end anonymous namespace | 
 |  | 
 | INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", | 
 |                 AARCH64_ADVSIMD_NAME, false, false) | 
 |  | 
 | static bool isGPR64(unsigned Reg, unsigned SubReg, | 
 |                     const MachineRegisterInfo *MRI) { | 
 |   if (SubReg) | 
 |     return false; | 
 |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass); | 
 |   return AArch64::GPR64RegClass.contains(Reg); | 
 | } | 
 |  | 
 | static bool isFPR64(unsigned Reg, unsigned SubReg, | 
 |                     const MachineRegisterInfo *MRI) { | 
 |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) && | 
 |             SubReg == 0) || | 
 |            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) && | 
 |             SubReg == AArch64::dsub); | 
 |   // Physical register references just check the register class directly. | 
 |   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || | 
 |          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); | 
 | } | 
 |  | 
 | // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 | 
 | // copy instruction. Return zero_reg if the instruction is not a copy. | 
 | static MachineOperand *getSrcFromCopy(MachineInstr *MI, | 
 |                                       const MachineRegisterInfo *MRI, | 
 |                                       unsigned &SubReg) { | 
 |   SubReg = 0; | 
 |   // The "FMOV Xd, Dn" instruction is the typical form. | 
 |   if (MI->getOpcode() == AArch64::FMOVDXr || | 
 |       MI->getOpcode() == AArch64::FMOVXDr) | 
 |     return &MI->getOperand(1); | 
 |   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see | 
 |   // these at this stage, but it's easy to check for. | 
 |   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { | 
 |     SubReg = AArch64::dsub; | 
 |     return &MI->getOperand(1); | 
 |   } | 
 |   // Or just a plain COPY instruction. This can be directly to/from FPR64, | 
 |   // or it can be a dsub subreg reference to an FPR128. | 
 |   if (MI->getOpcode() == AArch64::COPY) { | 
 |     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | 
 |                 MRI) && | 
 |         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) | 
 |       return &MI->getOperand(1); | 
 |     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | 
 |                 MRI) && | 
 |         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), | 
 |                 MRI)) { | 
 |       SubReg = MI->getOperand(1).getSubReg(); | 
 |       return &MI->getOperand(1); | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, this is some other kind of instruction. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent | 
 | // that we're considering transforming to, return that AdvSIMD opcode. For all | 
 | // others, return the original opcode. | 
 | static unsigned getTransformOpcode(unsigned Opc) { | 
 |   switch (Opc) { | 
 |   default: | 
 |     break; | 
 |   // FIXME: Lots more possibilities. | 
 |   case AArch64::ADDXrr: | 
 |     return AArch64::ADDv1i64; | 
 |   case AArch64::SUBXrr: | 
 |     return AArch64::SUBv1i64; | 
 |   case AArch64::ANDXrr: | 
 |     return AArch64::ANDv8i8; | 
 |   case AArch64::EORXrr: | 
 |     return AArch64::EORv8i8; | 
 |   case AArch64::ORRXrr: | 
 |     return AArch64::ORRv8i8; | 
 |   } | 
 |   // No AdvSIMD equivalent, so just return the original opcode. | 
 |   return Opc; | 
 | } | 
 |  | 
 | static bool isTransformable(const MachineInstr &MI) { | 
 |   unsigned Opc = MI.getOpcode(); | 
 |   return Opc != getTransformOpcode(Opc); | 
 | } | 
 |  | 
 | // isProfitableToTransform - Predicate function to determine whether an | 
 | // instruction should be transformed to its equivalent AdvSIMD scalar | 
 | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. | 
 | bool AArch64AdvSIMDScalar::isProfitableToTransform( | 
 |     const MachineInstr &MI) const { | 
 |   // If this instruction isn't eligible to be transformed (no SIMD equivalent), | 
 |   // early exit since that's the common case. | 
 |   if (!isTransformable(MI)) | 
 |     return false; | 
 |  | 
 |   // Count the number of copies we'll need to add and approximate the number | 
 |   // of copies that a transform will enable us to remove. | 
 |   unsigned NumNewCopies = 3; | 
 |   unsigned NumRemovableCopies = 0; | 
 |  | 
 |   unsigned OrigSrc0 = MI.getOperand(1).getReg(); | 
 |   unsigned OrigSrc1 = MI.getOperand(2).getReg(); | 
 |   unsigned SubReg0; | 
 |   unsigned SubReg1; | 
 |   if (!MRI->def_empty(OrigSrc0)) { | 
 |     MachineRegisterInfo::def_instr_iterator Def = | 
 |         MRI->def_instr_begin(OrigSrc0); | 
 |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
 |     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | 
 |     // If the source was from a copy, we don't need to insert a new copy. | 
 |     if (MOSrc0) | 
 |       --NumNewCopies; | 
 |     // If there are no other users of the original source, we can delete | 
 |     // that instruction. | 
 |     if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0)) | 
 |       ++NumRemovableCopies; | 
 |   } | 
 |   if (!MRI->def_empty(OrigSrc1)) { | 
 |     MachineRegisterInfo::def_instr_iterator Def = | 
 |         MRI->def_instr_begin(OrigSrc1); | 
 |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
 |     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | 
 |     if (MOSrc1) | 
 |       --NumNewCopies; | 
 |     // If there are no other users of the original source, we can delete | 
 |     // that instruction. | 
 |     if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1)) | 
 |       ++NumRemovableCopies; | 
 |   } | 
 |  | 
 |   // If any of the uses of the original instructions is a cross class copy, | 
 |   // that's a copy that will be removable if we transform. Likewise, if | 
 |   // any of the uses is a transformable instruction, it's likely the tranforms | 
 |   // will chain, enabling us to save a copy there, too. This is an aggressive | 
 |   // heuristic that approximates the graph based cost analysis described above. | 
 |   unsigned Dst = MI.getOperand(0).getReg(); | 
 |   bool AllUsesAreCopies = true; | 
 |   for (MachineRegisterInfo::use_instr_nodbg_iterator | 
 |            Use = MRI->use_instr_nodbg_begin(Dst), | 
 |            E = MRI->use_instr_nodbg_end(); | 
 |        Use != E; ++Use) { | 
 |     unsigned SubReg; | 
 |     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use)) | 
 |       ++NumRemovableCopies; | 
 |     // If the use is an INSERT_SUBREG, that's still something that can | 
 |     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's | 
 |     // preferable to have it use the FPR64 in most cases, as if the source | 
 |     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. | 
 |     // Ditto for a lane insert. | 
 |     else if (Use->getOpcode() == AArch64::INSERT_SUBREG || | 
 |              Use->getOpcode() == AArch64::INSvi64gpr) | 
 |       ; | 
 |     else | 
 |       AllUsesAreCopies = false; | 
 |   } | 
 |   // If all of the uses of the original destination register are copies to | 
 |   // FPR64, then we won't end up having a new copy back to GPR64 either. | 
 |   if (AllUsesAreCopies) | 
 |     --NumNewCopies; | 
 |  | 
 |   // If a transform will not increase the number of cross-class copies required, | 
 |   // return true. | 
 |   if (NumNewCopies <= NumRemovableCopies) | 
 |     return true; | 
 |  | 
 |   // Finally, even if we otherwise wouldn't transform, check if we're forcing | 
 |   // transformation of everything. | 
 |   return TransformAll; | 
 | } | 
 |  | 
 | static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, | 
 |                                 unsigned Dst, unsigned Src, bool IsKill) { | 
 |   MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | 
 |                                     TII->get(AArch64::COPY), Dst) | 
 |                                 .addReg(Src, getKillRegState(IsKill)); | 
 |   LLVM_DEBUG(dbgs() << "    adding copy: " << *MIB); | 
 |   ++NumCopiesInserted; | 
 |   return MIB; | 
 | } | 
 |  | 
 | // transformInstruction - Perform the transformation of an instruction | 
 | // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs | 
 | // to be the correct register class, minimizing cross-class copies. | 
 | void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) { | 
 |   LLVM_DEBUG(dbgs() << "Scalar transform: " << MI); | 
 |  | 
 |   MachineBasicBlock *MBB = MI.getParent(); | 
 |   unsigned OldOpc = MI.getOpcode(); | 
 |   unsigned NewOpc = getTransformOpcode(OldOpc); | 
 |   assert(OldOpc != NewOpc && "transform an instruction to itself?!"); | 
 |  | 
 |   // Check if we need a copy for the source registers. | 
 |   unsigned OrigSrc0 = MI.getOperand(1).getReg(); | 
 |   unsigned OrigSrc1 = MI.getOperand(2).getReg(); | 
 |   unsigned Src0 = 0, SubReg0; | 
 |   unsigned Src1 = 0, SubReg1; | 
 |   bool KillSrc0 = false, KillSrc1 = false; | 
 |   if (!MRI->def_empty(OrigSrc0)) { | 
 |     MachineRegisterInfo::def_instr_iterator Def = | 
 |         MRI->def_instr_begin(OrigSrc0); | 
 |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
 |     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | 
 |     // If there are no other users of the original source, we can delete | 
 |     // that instruction. | 
 |     if (MOSrc0) { | 
 |       Src0 = MOSrc0->getReg(); | 
 |       KillSrc0 = MOSrc0->isKill(); | 
 |       // Src0 is going to be reused, thus, it cannot be killed anymore. | 
 |       MOSrc0->setIsKill(false); | 
 |       if (MRI->hasOneNonDBGUse(OrigSrc0)) { | 
 |         assert(MOSrc0 && "Can't delete copy w/o a valid original source!"); | 
 |         Def->eraseFromParent(); | 
 |         ++NumCopiesDeleted; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (!MRI->def_empty(OrigSrc1)) { | 
 |     MachineRegisterInfo::def_instr_iterator Def = | 
 |         MRI->def_instr_begin(OrigSrc1); | 
 |     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
 |     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | 
 |     // If there are no other users of the original source, we can delete | 
 |     // that instruction. | 
 |     if (MOSrc1) { | 
 |       Src1 = MOSrc1->getReg(); | 
 |       KillSrc1 = MOSrc1->isKill(); | 
 |       // Src0 is going to be reused, thus, it cannot be killed anymore. | 
 |       MOSrc1->setIsKill(false); | 
 |       if (MRI->hasOneNonDBGUse(OrigSrc1)) { | 
 |         assert(MOSrc1 && "Can't delete copy w/o a valid original source!"); | 
 |         Def->eraseFromParent(); | 
 |         ++NumCopiesDeleted; | 
 |       } | 
 |     } | 
 |   } | 
 |   // If we weren't able to reference the original source directly, create a | 
 |   // copy. | 
 |   if (!Src0) { | 
 |     SubReg0 = 0; | 
 |     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
 |     insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0); | 
 |     KillSrc0 = true; | 
 |   } | 
 |   if (!Src1) { | 
 |     SubReg1 = 0; | 
 |     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
 |     insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1); | 
 |     KillSrc1 = true; | 
 |   } | 
 |  | 
 |   // Create a vreg for the destination. | 
 |   // FIXME: No need to do this if the ultimate user expects an FPR64. | 
 |   // Check for that and avoid the copy if possible. | 
 |   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
 |  | 
 |   // For now, all of the new instructions have the same simple three-register | 
 |   // form, so no need to special case based on what instruction we're | 
 |   // building. | 
 |   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst) | 
 |       .addReg(Src0, getKillRegState(KillSrc0), SubReg0) | 
 |       .addReg(Src1, getKillRegState(KillSrc1), SubReg1); | 
 |  | 
 |   // Now copy the result back out to a GPR. | 
 |   // FIXME: Try to avoid this if all uses could actually just use the FPR64 | 
 |   // directly. | 
 |   insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true); | 
 |  | 
 |   // Erase the old instruction. | 
 |   MI.eraseFromParent(); | 
 |  | 
 |   ++NumScalarInsnsUsed; | 
 | } | 
 |  | 
 | // processMachineBasicBlock - Main optimzation loop. | 
 | bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { | 
 |   bool Changed = false; | 
 |   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { | 
 |     MachineInstr &MI = *I++; | 
 |     if (isProfitableToTransform(MI)) { | 
 |       transformInstruction(MI); | 
 |       Changed = true; | 
 |     } | 
 |   } | 
 |   return Changed; | 
 | } | 
 |  | 
 | // runOnMachineFunction - Pass entry point from PassManager. | 
 | bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { | 
 |   bool Changed = false; | 
 |   LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n"); | 
 |  | 
 |   if (skipFunction(mf.getFunction())) | 
 |     return false; | 
 |  | 
 |   MRI = &mf.getRegInfo(); | 
 |   TII = mf.getSubtarget().getInstrInfo(); | 
 |  | 
 |   // Just check things on a one-block-at-a-time basis. | 
 |   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) | 
 |     if (processMachineBasicBlock(&*I)) | 
 |       Changed = true; | 
 |   return Changed; | 
 | } | 
 |  | 
 | // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine | 
 | // to add the pass to the PassManager. | 
 | FunctionPass *llvm::createAArch64AdvSIMDScalar() { | 
 |   return new AArch64AdvSIMDScalar(); | 
 | } |