|  | //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains small standalone helper functions and enum definitions for | 
|  | // the X86 target useful for the compiler back-end and the MC libraries. | 
|  | // As such, it deliberately does not include references to LLVM core | 
|  | // code gen types, passes, etc.. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H | 
|  | #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H | 
|  |  | 
|  | #include "X86MCTargetDesc.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | namespace X86 { | 
|  | // Enums for memory operand decoding.  Each memory operand is represented with | 
|  | // a 5 operand sequence in the form: | 
|  | //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment] | 
|  | // These enums help decode this. | 
|  | enum { | 
|  | AddrBaseReg = 0, | 
|  | AddrScaleAmt = 1, | 
|  | AddrIndexReg = 2, | 
|  | AddrDisp = 3, | 
|  |  | 
|  | /// AddrSegmentReg - The operand # of the segment in the memory operand. | 
|  | AddrSegmentReg = 4, | 
|  |  | 
|  | /// AddrNumOperands - Total number of operands in a memory reference. | 
|  | AddrNumOperands = 5 | 
|  | }; | 
|  |  | 
|  | /// AVX512 static rounding constants.  These need to match the values in | 
|  | /// avx512fintrin.h. | 
|  | enum STATIC_ROUNDING { | 
|  | TO_NEAREST_INT = 0, | 
|  | TO_NEG_INF = 1, | 
|  | TO_POS_INF = 2, | 
|  | TO_ZERO = 3, | 
|  | CUR_DIRECTION = 4, | 
|  | NO_EXC = 8 | 
|  | }; | 
|  |  | 
|  | /// The constants to describe instr prefixes if there are | 
|  | enum IPREFIXES { | 
|  | IP_NO_PREFIX = 0, | 
|  | IP_HAS_OP_SIZE = 1, | 
|  | IP_HAS_AD_SIZE = 2, | 
|  | IP_HAS_REPEAT_NE = 4, | 
|  | IP_HAS_REPEAT = 8, | 
|  | IP_HAS_LOCK = 16, | 
|  | IP_HAS_NOTRACK = 32, | 
|  | IP_USE_VEX3 = 64, | 
|  | }; | 
|  |  | 
|  | enum OperandType : unsigned { | 
|  | /// AVX512 embedded rounding control. This should only have values 0-3. | 
|  | OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, | 
|  | OPERAND_COND_CODE, | 
|  | }; | 
|  |  | 
|  | // X86 specific condition code. These correspond to X86_*_COND in | 
|  | // X86InstrInfo.td. They must be kept in synch. | 
|  | enum CondCode { | 
|  | COND_O = 0, | 
|  | COND_NO = 1, | 
|  | COND_B = 2, | 
|  | COND_AE = 3, | 
|  | COND_E = 4, | 
|  | COND_NE = 5, | 
|  | COND_BE = 6, | 
|  | COND_A = 7, | 
|  | COND_S = 8, | 
|  | COND_NS = 9, | 
|  | COND_P = 10, | 
|  | COND_NP = 11, | 
|  | COND_L = 12, | 
|  | COND_GE = 13, | 
|  | COND_LE = 14, | 
|  | COND_G = 15, | 
|  | LAST_VALID_COND = COND_G, | 
|  |  | 
|  | // Artificial condition codes. These are used by AnalyzeBranch | 
|  | // to indicate a block terminated with two conditional branches that together | 
|  | // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, | 
|  | // which can't be represented on x86 with a single condition. These | 
|  | // are never used in MachineInstrs and are inverses of one another. | 
|  | COND_NE_OR_P, | 
|  | COND_E_AND_NP, | 
|  |  | 
|  | COND_INVALID | 
|  | }; | 
|  | } // end namespace X86; | 
|  |  | 
|  | /// X86II - This namespace holds all of the target specific flags that | 
|  | /// instruction info tracks. | 
|  | /// | 
|  | namespace X86II { | 
|  | /// Target Operand Flag enum. | 
|  | enum TOF { | 
|  | //===------------------------------------------------------------------===// | 
|  | // X86 Specific MachineOperand flags. | 
|  |  | 
|  | MO_NO_FLAG, | 
|  |  | 
|  | /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a | 
|  | /// relocation of: | 
|  | ///    SYMBOL_LABEL + [. - PICBASELABEL] | 
|  | MO_GOT_ABSOLUTE_ADDRESS, | 
|  |  | 
|  | /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the | 
|  | /// immediate should get the value of the symbol minus the PIC base label: | 
|  | ///    SYMBOL_LABEL - PICBASELABEL | 
|  | MO_PIC_BASE_OFFSET, | 
|  |  | 
|  | /// MO_GOT - On a symbol operand this indicates that the immediate is the | 
|  | /// offset to the GOT entry for the symbol name from the base of the GOT. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOT | 
|  | MO_GOT, | 
|  |  | 
|  | /// MO_GOTOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset to the location of the symbol name from the base of the GOT. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOTOFF | 
|  | MO_GOTOFF, | 
|  |  | 
|  | /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is | 
|  | /// offset to the GOT entry for the symbol name from the current code | 
|  | /// location. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @GOTPCREL | 
|  | MO_GOTPCREL, | 
|  |  | 
|  | /// MO_PLT - On a symbol operand this indicates that the immediate is | 
|  | /// offset to the PLT entry of symbol name from the current code location. | 
|  | /// | 
|  | /// See the X86-64 ELF ABI supplement for more details. | 
|  | ///    SYMBOL_LABEL @PLT | 
|  | MO_PLT, | 
|  |  | 
|  | /// MO_TLSGD - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index structure that contains | 
|  | /// the module number and variable offset for the symbol. Used in the | 
|  | /// general dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSGD | 
|  | MO_TLSGD, | 
|  |  | 
|  | /// MO_TLSLD - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index for the module that | 
|  | /// contains the symbol. When this index is passed to a call to | 
|  | /// __tls_get_addr, the function will return the base address of the TLS | 
|  | /// block for the symbol. Used in the x86-64 local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSLD | 
|  | MO_TLSLD, | 
|  |  | 
|  | /// MO_TLSLDM - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS index for the module that | 
|  | /// contains the symbol. When this index is passed to a call to | 
|  | /// ___tls_get_addr, the function will return the base address of the TLS | 
|  | /// block for the symbol. Used in the IA32 local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TLSLDM | 
|  | MO_TLSLDM, | 
|  |  | 
|  | /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the thread-pointer offset for the | 
|  | /// symbol. Used in the x86-64 initial exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @GOTTPOFF | 
|  | MO_GOTTPOFF, | 
|  |  | 
|  | /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the absolute address of the GOT entry with the negative thread-pointer | 
|  | /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access | 
|  | /// model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @INDNTPOFF | 
|  | MO_INDNTPOFF, | 
|  |  | 
|  | /// MO_TPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the thread-pointer offset for the symbol. Used in the x86-64 local | 
|  | /// exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @TPOFF | 
|  | MO_TPOFF, | 
|  |  | 
|  | /// MO_DTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the TLS offset of the symbol. Used | 
|  | /// in the local dynamic TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @DTPOFF | 
|  | MO_DTPOFF, | 
|  |  | 
|  | /// MO_NTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the negative thread-pointer offset for the symbol. Used in the IA32 | 
|  | /// local exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @NTPOFF | 
|  | MO_NTPOFF, | 
|  |  | 
|  | /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is | 
|  | /// the offset of the GOT entry with the negative thread-pointer offset for | 
|  | /// the symbol. Used in the PIC IA32 initial exec TLS access model. | 
|  | /// | 
|  | /// See 'ELF Handling for Thread-Local Storage' for more details. | 
|  | ///    SYMBOL_LABEL @GOTNTPOFF | 
|  | MO_GOTNTPOFF, | 
|  |  | 
|  | /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the "__imp_FOO" symbol.  This is used for | 
|  | /// dllimport linkage on windows. | 
|  | MO_DLLIMPORT, | 
|  |  | 
|  | /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a | 
|  | /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. | 
|  | MO_DARWIN_NONLAZY, | 
|  |  | 
|  | /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates | 
|  | /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is | 
|  | /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. | 
|  | MO_DARWIN_NONLAZY_PIC_BASE, | 
|  |  | 
|  | /// MO_TLVP - On a symbol operand this indicates that the immediate is | 
|  | /// some TLS offset. | 
|  | /// | 
|  | /// This is the TLS offset for the Darwin TLS mechanism. | 
|  | MO_TLVP, | 
|  |  | 
|  | /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate | 
|  | /// is some TLS offset from the picbase. | 
|  | /// | 
|  | /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. | 
|  | MO_TLVP_PIC_BASE, | 
|  |  | 
|  | /// MO_SECREL - On a symbol operand this indicates that the immediate is | 
|  | /// the offset from beginning of section. | 
|  | /// | 
|  | /// This is the TLS offset for the COFF/Windows TLS mechanism. | 
|  | MO_SECREL, | 
|  |  | 
|  | /// MO_ABS8 - On a symbol operand this indicates that the symbol is known | 
|  | /// to be an absolute symbol in range [0,128), so we can use the @ABS8 | 
|  | /// symbol modifier. | 
|  | MO_ABS8, | 
|  |  | 
|  | /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the | 
|  | /// reference is actually to the ".refptr.FOO" symbol.  This is used for | 
|  | /// stub symbols on windows. | 
|  | MO_COFFSTUB, | 
|  | }; | 
|  |  | 
|  | enum : uint64_t { | 
|  | //===------------------------------------------------------------------===// | 
|  | // Instruction encodings.  These are the standard/most common forms for X86 | 
|  | // instructions. | 
|  | // | 
|  |  | 
|  | // PseudoFrm - This represents an instruction that is a pseudo instruction | 
|  | // or one that has not been implemented yet.  It is illegal to code generate | 
|  | // it, but tolerated for intermediate implementation stages. | 
|  | Pseudo         = 0, | 
|  |  | 
|  | /// Raw - This form is for instructions that don't have any operands, so | 
|  | /// they are just a fixed opcode value, like 'leave'. | 
|  | RawFrm         = 1, | 
|  |  | 
|  | /// AddRegFrm - This form is used for instructions like 'push r32' that have | 
|  | /// their one register operand added to their opcode. | 
|  | AddRegFrm      = 2, | 
|  |  | 
|  | /// RawFrmMemOffs - This form is for instructions that store an absolute | 
|  | /// memory offset as an immediate with a possible segment override. | 
|  | RawFrmMemOffs  = 3, | 
|  |  | 
|  | /// RawFrmSrc - This form is for instructions that use the source index | 
|  | /// register SI/ESI/RSI with a possible segment override. | 
|  | RawFrmSrc      = 4, | 
|  |  | 
|  | /// RawFrmDst - This form is for instructions that use the destination index | 
|  | /// register DI/EDI/RDI. | 
|  | RawFrmDst      = 5, | 
|  |  | 
|  | /// RawFrmDstSrc - This form is for instructions that use the source index | 
|  | /// register SI/ESI/RSI with a possible segment override, and also the | 
|  | /// destination index register DI/EDI/RDI. | 
|  | RawFrmDstSrc   = 6, | 
|  |  | 
|  | /// RawFrmImm8 - This is used for the ENTER instruction, which has two | 
|  | /// immediates, the first of which is a 16-bit immediate (specified by | 
|  | /// the imm encoding) and the second is a 8-bit fixed value. | 
|  | RawFrmImm8 = 7, | 
|  |  | 
|  | /// RawFrmImm16 - This is used for CALL FAR instructions, which have two | 
|  | /// immediates, the first of which is a 16 or 32-bit immediate (specified by | 
|  | /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD | 
|  | /// manual, this operand is described as pntr16:32 and pntr16:16 | 
|  | RawFrmImm16 = 8, | 
|  |  | 
|  | /// AddCCFrm - This form is used for Jcc that encode the condition code | 
|  | /// in the lower 4 bits of the opcode. | 
|  | AddCCFrm = 9, | 
|  |  | 
|  | /// MRM[0-7][rm] - These forms are used to represent instructions that use | 
|  | /// a Mod/RM byte, and use the middle field to hold extended opcode | 
|  | /// information.  In the intel manual these are represented as /0, /1, ... | 
|  | /// | 
|  |  | 
|  | /// MRMDestMem - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a destination, which in this case is memory. | 
|  | /// | 
|  | MRMDestMem     = 32, | 
|  |  | 
|  | /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a source, which in this case is memory. | 
|  | /// | 
|  | MRMSrcMem      = 33, | 
|  |  | 
|  | /// MRMSrcMem4VOp3 - This form is used for instructions that encode | 
|  | /// operand 3 with VEX.VVVV and load from memory. | 
|  | /// | 
|  | MRMSrcMem4VOp3 = 34, | 
|  |  | 
|  | /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM | 
|  | /// byte to specify the fourth source, which in this case is memory. | 
|  | /// | 
|  | MRMSrcMemOp4   = 35, | 
|  |  | 
|  | /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM | 
|  | /// byte to specify the operands and also encodes a condition code. | 
|  | /// | 
|  | MRMSrcMemCC    = 36, | 
|  |  | 
|  | /// MRMXm - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a memory source, but doesn't use the middle field. And has | 
|  | /// a condition code. | 
|  | /// | 
|  | MRMXmCC = 38, | 
|  |  | 
|  | /// MRMXm - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a memory source, but doesn't use the middle field. | 
|  | /// | 
|  | MRMXm = 39, | 
|  |  | 
|  | // Next, instructions that operate on a memory r/m operand... | 
|  | MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3 | 
|  | MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7 | 
|  |  | 
|  | /// MRMDestReg - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a destination, which in this case is a register. | 
|  | /// | 
|  | MRMDestReg     = 48, | 
|  |  | 
|  | /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a source, which in this case is a register. | 
|  | /// | 
|  | MRMSrcReg      = 49, | 
|  |  | 
|  | /// MRMSrcReg4VOp3 - This form is used for instructions that encode | 
|  | /// operand 3 with VEX.VVVV and do not load from memory. | 
|  | /// | 
|  | MRMSrcReg4VOp3 = 50, | 
|  |  | 
|  | /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM | 
|  | /// byte to specify the fourth source, which in this case is a register. | 
|  | /// | 
|  | MRMSrcRegOp4   = 51, | 
|  |  | 
|  | /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM | 
|  | /// byte to specify the operands and also encodes a condition code | 
|  | /// | 
|  | MRMSrcRegCC    = 52, | 
|  |  | 
|  | /// MRMXCCr - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a register source, but doesn't use the middle field. And has | 
|  | /// a condition code. | 
|  | /// | 
|  | MRMXrCC = 54, | 
|  |  | 
|  | /// MRMXr - This form is used for instructions that use the Mod/RM byte | 
|  | /// to specify a register source, but doesn't use the middle field. | 
|  | /// | 
|  | MRMXr = 55, | 
|  |  | 
|  | // Instructions that operate on a register r/m operand... | 
|  | MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3 | 
|  | MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7 | 
|  |  | 
|  | /// MRM_XX - A mod/rm byte of exactly 0xXX. | 
|  | MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67, | 
|  | MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71, | 
|  | MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75, | 
|  | MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79, | 
|  | MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83, | 
|  | MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87, | 
|  | MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91, | 
|  | MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95, | 
|  | MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99, | 
|  | MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103, | 
|  | MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107, | 
|  | MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111, | 
|  | MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115, | 
|  | MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119, | 
|  | MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123, | 
|  | MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127, | 
|  |  | 
|  | FormMask       = 127, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // Actual flags... | 
|  |  | 
|  | // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. | 
|  | // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in | 
|  | // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 | 
|  | // prefix in 16-bit mode. | 
|  | OpSizeShift = 7, | 
|  | OpSizeMask = 0x3 << OpSizeShift, | 
|  |  | 
|  | OpSizeFixed  = 0 << OpSizeShift, | 
|  | OpSize16     = 1 << OpSizeShift, | 
|  | OpSize32     = 2 << OpSizeShift, | 
|  |  | 
|  | // AsSize - AdSizeX implies this instruction determines its need of 0x67 | 
|  | // prefix from a normal ModRM memory operand. The other types indicate that | 
|  | // an operand is encoded with a specific width and a prefix is needed if | 
|  | // it differs from the current mode. | 
|  | AdSizeShift = OpSizeShift + 2, | 
|  | AdSizeMask  = 0x3 << AdSizeShift, | 
|  |  | 
|  | AdSizeX  = 0 << AdSizeShift, | 
|  | AdSize16 = 1 << AdSizeShift, | 
|  | AdSize32 = 2 << AdSizeShift, | 
|  | AdSize64 = 3 << AdSizeShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // OpPrefix - There are several prefix bytes that are used as opcode | 
|  | // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is | 
|  | // no prefix. | 
|  | // | 
|  | OpPrefixShift = AdSizeShift + 2, | 
|  | OpPrefixMask  = 0x3 << OpPrefixShift, | 
|  |  | 
|  | // PD - Prefix code for packed double precision vector floating point | 
|  | // operations performed in the SSE registers. | 
|  | PD = 1 << OpPrefixShift, | 
|  |  | 
|  | // XS, XD - These prefix codes are for single and double precision scalar | 
|  | // floating point operations performed in the SSE registers. | 
|  | XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // OpMap - This field determines which opcode map this instruction | 
|  | // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. | 
|  | // | 
|  | OpMapShift = OpPrefixShift + 2, | 
|  | OpMapMask  = 0x7 << OpMapShift, | 
|  |  | 
|  | // OB - OneByte - Set if this instruction has a one byte opcode. | 
|  | OB = 0 << OpMapShift, | 
|  |  | 
|  | // TB - TwoByte - Set if this instruction has a two byte opcode, which | 
|  | // starts with a 0x0F byte before the real opcode. | 
|  | TB = 1 << OpMapShift, | 
|  |  | 
|  | // T8, TA - Prefix after the 0x0F prefix. | 
|  | T8 = 2 << OpMapShift,  TA = 3 << OpMapShift, | 
|  |  | 
|  | // XOP8 - Prefix to include use of imm byte. | 
|  | XOP8 = 4 << OpMapShift, | 
|  |  | 
|  | // XOP9 - Prefix to exclude use of imm byte. | 
|  | XOP9 = 5 << OpMapShift, | 
|  |  | 
|  | // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. | 
|  | XOPA = 6 << OpMapShift, | 
|  |  | 
|  | /// ThreeDNow - This indicates that the instruction uses the | 
|  | /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents | 
|  | /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction | 
|  | /// storing a classifier in the imm8 field.  To simplify our implementation, | 
|  | /// we handle this by storeing the classifier in the opcode field and using | 
|  | /// this flag to indicate that the encoder should do the wacky 3DNow! thing. | 
|  | ThreeDNow = 7 << OpMapShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. | 
|  | // They are used to specify GPRs and SSE registers, 64-bit operand size, | 
|  | // etc. We only cares about REX.W and REX.R bits and only the former is | 
|  | // statically determined. | 
|  | // | 
|  | REXShift    = OpMapShift + 3, | 
|  | REX_W       = 1 << REXShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // This three-bit field describes the size of an immediate operand.  Zero is | 
|  | // unused so that we can tell if we forgot to set a value. | 
|  | ImmShift = REXShift + 1, | 
|  | ImmMask    = 15 << ImmShift, | 
|  | Imm8       = 1 << ImmShift, | 
|  | Imm8PCRel  = 2 << ImmShift, | 
|  | Imm8Reg    = 3 << ImmShift, | 
|  | Imm16      = 4 << ImmShift, | 
|  | Imm16PCRel = 5 << ImmShift, | 
|  | Imm32      = 6 << ImmShift, | 
|  | Imm32PCRel = 7 << ImmShift, | 
|  | Imm32S     = 8 << ImmShift, | 
|  | Imm64      = 9 << ImmShift, | 
|  |  | 
|  | //===------------------------------------------------------------------===// | 
|  | // FP Instruction Classification...  Zero is non-fp instruction. | 
|  |  | 
|  | // FPTypeMask - Mask for all of the FP types... | 
|  | FPTypeShift = ImmShift + 4, | 
|  | FPTypeMask  = 7 << FPTypeShift, | 
|  |  | 
|  | // NotFP - The default, set for instructions that do not use FP registers. | 
|  | NotFP      = 0 << FPTypeShift, | 
|  |  | 
|  | // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 | 
|  | ZeroArgFP  = 1 << FPTypeShift, | 
|  |  | 
|  | // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst | 
|  | OneArgFP   = 2 << FPTypeShift, | 
|  |  | 
|  | // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a | 
|  | // result back to ST(0).  For example, fcos, fsqrt, etc. | 
|  | // | 
|  | OneArgFPRW = 3 << FPTypeShift, | 
|  |  | 
|  | // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an | 
|  | // explicit argument, storing the result to either ST(0) or the implicit | 
|  | // argument.  For example: fadd, fsub, fmul, etc... | 
|  | TwoArgFP   = 4 << FPTypeShift, | 
|  |  | 
|  | // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an | 
|  | // explicit argument, but have no destination.  Example: fucom, fucomi, ... | 
|  | CompareFP  = 5 << FPTypeShift, | 
|  |  | 
|  | // CondMovFP - "2 operand" floating point conditional move instructions. | 
|  | CondMovFP  = 6 << FPTypeShift, | 
|  |  | 
|  | // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly. | 
|  | SpecialFP  = 7 << FPTypeShift, | 
|  |  | 
|  | // Lock prefix | 
|  | LOCKShift = FPTypeShift + 3, | 
|  | LOCK = 1 << LOCKShift, | 
|  |  | 
|  | // REP prefix | 
|  | REPShift = LOCKShift + 1, | 
|  | REP = 1 << REPShift, | 
|  |  | 
|  | // Execution domain for SSE instructions. | 
|  | // 0 means normal, non-SSE instruction. | 
|  | SSEDomainShift = REPShift + 1, | 
|  |  | 
|  | // Encoding | 
|  | EncodingShift = SSEDomainShift + 2, | 
|  | EncodingMask = 0x3 << EncodingShift, | 
|  |  | 
|  | // VEX - encoding using 0xC4/0xC5 | 
|  | VEX = 1 << EncodingShift, | 
|  |  | 
|  | /// XOP - Opcode prefix used by XOP instructions. | 
|  | XOP = 2 << EncodingShift, | 
|  |  | 
|  | // VEX_EVEX - Specifies that this instruction use EVEX form which provides | 
|  | // syntax support up to 32 512-bit register operands and up to 7 16-bit | 
|  | // mask operands as well as source operand data swizzling/memory operand | 
|  | // conversion, eviction hint, and rounding mode. | 
|  | EVEX = 3 << EncodingShift, | 
|  |  | 
|  | // Opcode | 
|  | OpcodeShift   = EncodingShift + 2, | 
|  |  | 
|  | /// VEX_W - Has a opcode specific functionality, but is used in the same | 
|  | /// way as REX_W is for regular SSE instructions. | 
|  | VEX_WShift  = OpcodeShift + 8, | 
|  | VEX_W       = 1ULL << VEX_WShift, | 
|  |  | 
|  | /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 | 
|  | /// address instructions in SSE are represented as 3 address ones in AVX | 
|  | /// and the additional register is encoded in VEX_VVVV prefix. | 
|  | VEX_4VShift = VEX_WShift + 1, | 
|  | VEX_4V      = 1ULL << VEX_4VShift, | 
|  |  | 
|  | /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current | 
|  | /// instruction uses 256-bit wide registers. This is usually auto detected | 
|  | /// if a VR256 register is used, but some AVX instructions also have this | 
|  | /// field marked when using a f256 memory references. | 
|  | VEX_LShift = VEX_4VShift + 1, | 
|  | VEX_L       = 1ULL << VEX_LShift, | 
|  |  | 
|  | // EVEX_K - Set if this instruction requires masking | 
|  | EVEX_KShift = VEX_LShift + 1, | 
|  | EVEX_K      = 1ULL << EVEX_KShift, | 
|  |  | 
|  | // EVEX_Z - Set if this instruction has EVEX.Z field set. | 
|  | EVEX_ZShift = EVEX_KShift + 1, | 
|  | EVEX_Z      = 1ULL << EVEX_ZShift, | 
|  |  | 
|  | // EVEX_L2 - Set if this instruction has EVEX.L' field set. | 
|  | EVEX_L2Shift = EVEX_ZShift + 1, | 
|  | EVEX_L2     = 1ULL << EVEX_L2Shift, | 
|  |  | 
|  | // EVEX_B - Set if this instruction has EVEX.B field set. | 
|  | EVEX_BShift = EVEX_L2Shift + 1, | 
|  | EVEX_B      = 1ULL << EVEX_BShift, | 
|  |  | 
|  | // The scaling factor for the AVX512's 8-bit compressed displacement. | 
|  | CD8_Scale_Shift = EVEX_BShift + 1, | 
|  | CD8_Scale_Mask = 127ULL << CD8_Scale_Shift, | 
|  |  | 
|  | /// Explicitly specified rounding control | 
|  | EVEX_RCShift = CD8_Scale_Shift + 7, | 
|  | EVEX_RC = 1ULL << EVEX_RCShift, | 
|  |  | 
|  | // NOTRACK prefix | 
|  | NoTrackShift = EVEX_RCShift + 1, | 
|  | NOTRACK = 1ULL << NoTrackShift | 
|  | }; | 
|  |  | 
|  | // getBaseOpcodeFor - This function returns the "base" X86 opcode for the | 
|  | // specified machine instruction. | 
|  | // | 
|  | inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { | 
|  | return TSFlags >> X86II::OpcodeShift; | 
|  | } | 
|  |  | 
|  | inline bool hasImm(uint64_t TSFlags) { | 
|  | return (TSFlags & X86II::ImmMask) != 0; | 
|  | } | 
|  |  | 
|  | /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field | 
|  | /// of the specified instruction. | 
|  | inline unsigned getSizeOfImm(uint64_t TSFlags) { | 
|  | switch (TSFlags & X86II::ImmMask) { | 
|  | default: llvm_unreachable("Unknown immediate size"); | 
|  | case X86II::Imm8: | 
|  | case X86II::Imm8PCRel: | 
|  | case X86II::Imm8Reg:    return 1; | 
|  | case X86II::Imm16: | 
|  | case X86II::Imm16PCRel: return 2; | 
|  | case X86II::Imm32: | 
|  | case X86II::Imm32S: | 
|  | case X86II::Imm32PCRel: return 4; | 
|  | case X86II::Imm64:      return 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isImmPCRel - Return true if the immediate of the specified instruction's | 
|  | /// TSFlags indicates that it is pc relative. | 
|  | inline unsigned isImmPCRel(uint64_t TSFlags) { | 
|  | switch (TSFlags & X86II::ImmMask) { | 
|  | default: llvm_unreachable("Unknown immediate size"); | 
|  | case X86II::Imm8PCRel: | 
|  | case X86II::Imm16PCRel: | 
|  | case X86II::Imm32PCRel: | 
|  | return true; | 
|  | case X86II::Imm8: | 
|  | case X86II::Imm8Reg: | 
|  | case X86II::Imm16: | 
|  | case X86II::Imm32: | 
|  | case X86II::Imm32S: | 
|  | case X86II::Imm64: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isImmSigned - Return true if the immediate of the specified instruction's | 
|  | /// TSFlags indicates that it is signed. | 
|  | inline unsigned isImmSigned(uint64_t TSFlags) { | 
|  | switch (TSFlags & X86II::ImmMask) { | 
|  | default: llvm_unreachable("Unknown immediate signedness"); | 
|  | case X86II::Imm32S: | 
|  | return true; | 
|  | case X86II::Imm8: | 
|  | case X86II::Imm8PCRel: | 
|  | case X86II::Imm8Reg: | 
|  | case X86II::Imm16: | 
|  | case X86II::Imm16PCRel: | 
|  | case X86II::Imm32: | 
|  | case X86II::Imm32PCRel: | 
|  | case X86II::Imm64: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getOperandBias - compute whether all of the def operands are repeated | 
|  | ///                  in the uses and therefore should be skipped. | 
|  | /// This determines the start of the unique operand list. We need to determine | 
|  | /// if all of the defs have a corresponding tied operand in the uses. | 
|  | /// Unfortunately, the tied operand information is encoded in the uses not | 
|  | /// the defs so we have to use some heuristics to find which operands to | 
|  | /// query. | 
|  | inline unsigned getOperandBias(const MCInstrDesc& Desc) { | 
|  | unsigned NumDefs = Desc.getNumDefs(); | 
|  | unsigned NumOps = Desc.getNumOperands(); | 
|  | switch (NumDefs) { | 
|  | default: llvm_unreachable("Unexpected number of defs"); | 
|  | case 0: | 
|  | return 0; | 
|  | case 1: | 
|  | // Common two addr case. | 
|  | if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) | 
|  | return 1; | 
|  | // Check for AVX-512 scatter which has a TIED_TO in the second to last | 
|  | // operand. | 
|  | if (NumOps == 8 && | 
|  | Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) | 
|  | return 1; | 
|  | return 0; | 
|  | case 2: | 
|  | // XCHG/XADD have two destinations and two sources. | 
|  | if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && | 
|  | Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) | 
|  | return 2; | 
|  | // Check for gather. AVX-512 has the second tied operand early. AVX2 | 
|  | // has it as the last op. | 
|  | if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && | 
|  | (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || | 
|  | Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) | 
|  | return 2; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getMemoryOperandNo - The function returns the MCInst operand # for the | 
|  | /// first field of the memory operand.  If the instruction doesn't have a | 
|  | /// memory operand, this returns -1. | 
|  | /// | 
|  | /// Note that this ignores tied operands.  If there is a tied register which | 
|  | /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only | 
|  | /// counted as one operand. | 
|  | /// | 
|  | inline int getMemoryOperandNo(uint64_t TSFlags) { | 
|  | bool HasVEX_4V = TSFlags & X86II::VEX_4V; | 
|  | bool HasEVEX_K = TSFlags & X86II::EVEX_K; | 
|  |  | 
|  | switch (TSFlags & X86II::FormMask) { | 
|  | default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); | 
|  | case X86II::Pseudo: | 
|  | case X86II::RawFrm: | 
|  | case X86II::AddRegFrm: | 
|  | case X86II::RawFrmImm8: | 
|  | case X86II::RawFrmImm16: | 
|  | case X86II::RawFrmMemOffs: | 
|  | case X86II::RawFrmSrc: | 
|  | case X86II::RawFrmDst: | 
|  | case X86II::RawFrmDstSrc: | 
|  | case X86II::AddCCFrm: | 
|  | return -1; | 
|  | case X86II::MRMDestMem: | 
|  | return 0; | 
|  | case X86II::MRMSrcMem: | 
|  | // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a | 
|  | // mask register. | 
|  | return 1 + HasVEX_4V + HasEVEX_K; | 
|  | case X86II::MRMSrcMem4VOp3: | 
|  | // Skip registers encoded in reg. | 
|  | return 1 + HasEVEX_K; | 
|  | case X86II::MRMSrcMemOp4: | 
|  | // Skip registers encoded in reg, VEX_VVVV, and I8IMM. | 
|  | return 3; | 
|  | case X86II::MRMSrcMemCC: | 
|  | // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a | 
|  | // mask register. | 
|  | return 1; | 
|  | case X86II::MRMDestReg: | 
|  | case X86II::MRMSrcReg: | 
|  | case X86II::MRMSrcReg4VOp3: | 
|  | case X86II::MRMSrcRegOp4: | 
|  | case X86II::MRMSrcRegCC: | 
|  | case X86II::MRMXrCC: | 
|  | case X86II::MRMXr: | 
|  | case X86II::MRM0r: case X86II::MRM1r: | 
|  | case X86II::MRM2r: case X86II::MRM3r: | 
|  | case X86II::MRM4r: case X86II::MRM5r: | 
|  | case X86II::MRM6r: case X86II::MRM7r: | 
|  | return -1; | 
|  | case X86II::MRMXmCC: | 
|  | case X86II::MRMXm: | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | // Start from 0, skip registers encoded in VEX_VVVV or a mask register. | 
|  | return 0 + HasVEX_4V + HasEVEX_K; | 
|  | case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: | 
|  | case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: | 
|  | case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: | 
|  | case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: | 
|  | case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: | 
|  | case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: | 
|  | case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: | 
|  | case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: | 
|  | case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: | 
|  | case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: | 
|  | case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: | 
|  | case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: | 
|  | case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: | 
|  | case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: | 
|  | case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: | 
|  | case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: | 
|  | case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: | 
|  | case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: | 
|  | case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: | 
|  | case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: | 
|  | case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: | 
|  | case X86II::MRM_FF: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or | 
|  | /// higher) register?  e.g. r8, xmm8, xmm13, etc. | 
|  | inline bool isX86_64ExtendedReg(unsigned RegNo) { | 
|  | if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) || | 
|  | (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) || | 
|  | (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) | 
|  | return true; | 
|  |  | 
|  | switch (RegNo) { | 
|  | default: break; | 
|  | case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11: | 
|  | case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15: | 
|  | case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D: | 
|  | case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D: | 
|  | case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W: | 
|  | case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W: | 
|  | case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B: | 
|  | case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B: | 
|  | case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11: | 
|  | case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15: | 
|  | case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11: | 
|  | case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher) | 
|  | /// registers? e.g. zmm21, etc. | 
|  | static inline bool is32ExtendedReg(unsigned RegNo) { | 
|  | return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || | 
|  | (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || | 
|  | (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline bool isX86_64NonExtLowByteReg(unsigned reg) { | 
|  | return (reg == X86::SPL || reg == X86::BPL || | 
|  | reg == X86::SIL || reg == X86::DIL); | 
|  | } | 
|  |  | 
|  | /// isKMasked - Is this a masked instruction. | 
|  | inline bool isKMasked(uint64_t TSFlags) { | 
|  | return (TSFlags & X86II::EVEX_K) != 0; | 
|  | } | 
|  |  | 
|  | /// isKMergedMasked - Is this a merge masked instruction. | 
|  | inline bool isKMergeMasked(uint64_t TSFlags) { | 
|  | return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace llvm; | 
|  |  | 
|  | #endif |