| //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the X86 implementation of TargetFrameLowering class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "X86FrameLowering.h" | 
 | #include "MCTargetDesc/X86MCTargetDesc.h" | 
 | #include "X86InstrBuilder.h" | 
 | #include "X86InstrInfo.h" | 
 | #include "X86MachineFunctionInfo.h" | 
 | #include "X86Subtarget.h" | 
 | #include "X86TargetMachine.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/EHPersonalities.h" | 
 | #include "llvm/CodeGen/LivePhysRegs.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCObjectFileInfo.h" | 
 | #include "llvm/MC/MCSymbol.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include <cstdlib> | 
 |  | 
 | #define DEBUG_TYPE "x86-fl" | 
 |  | 
 | STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); | 
 | STATISTIC(NumFrameExtraProbe, | 
 |           "Number of extra stack probes generated in prologue"); | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, | 
 |                                    MaybeAlign StackAlignOverride) | 
 |     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), | 
 |                           STI.is64Bit() ? -8 : -4), | 
 |       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { | 
 |   // Cache a bunch of frame-related predicates for this subtarget. | 
 |   SlotSize = TRI->getSlotSize(); | 
 |   Is64Bit = STI.is64Bit(); | 
 |   IsLP64 = STI.isTarget64BitLP64(); | 
 |   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. | 
 |   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); | 
 |   StackPtr = TRI->getStackRegister(); | 
 | } | 
 |  | 
 | bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { | 
 |   return !MF.getFrameInfo().hasVarSizedObjects() && | 
 |          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && | 
 |          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); | 
 | } | 
 |  | 
 | /// canSimplifyCallFramePseudos - If there is a reserved call frame, the | 
 | /// call frame pseudos can be simplified.  Having a FP, as in the default | 
 | /// implementation, is not sufficient here since we can't always use it. | 
 | /// Use a more nuanced condition. | 
 | bool | 
 | X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { | 
 |   return hasReservedCallFrame(MF) || | 
 |          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || | 
 |          (hasFP(MF) && !TRI->hasStackRealignment(MF)) || | 
 |          TRI->hasBasePointer(MF); | 
 | } | 
 |  | 
 | // needsFrameIndexResolution - Do we need to perform FI resolution for | 
 | // this function. Normally, this is required only when the function | 
 | // has any stack objects. However, FI resolution actually has another job, | 
 | // not apparent from the title - it resolves callframesetup/destroy | 
 | // that were not simplified earlier. | 
 | // So, this is required for x86 functions that have push sequences even | 
 | // when there are no stack objects. | 
 | bool | 
 | X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { | 
 |   return MF.getFrameInfo().hasStackObjects() || | 
 |          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); | 
 | } | 
 |  | 
 | /// hasFP - Return true if the specified function should have a dedicated frame | 
 | /// pointer register.  This is true if the function has variable sized allocas | 
 | /// or if frame pointer elimination is disabled. | 
 | bool X86FrameLowering::hasFP(const MachineFunction &MF) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   return (MF.getTarget().Options.DisableFramePointerElim(MF) || | 
 |           TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || | 
 |           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || | 
 |           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || | 
 |           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || | 
 |           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || | 
 |           MFI.hasStackMap() || MFI.hasPatchPoint() || | 
 |           (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); | 
 | } | 
 |  | 
 | static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { | 
 |   if (IsLP64) { | 
 |     if (isInt<8>(Imm)) | 
 |       return X86::SUB64ri8; | 
 |     return X86::SUB64ri32; | 
 |   } else { | 
 |     if (isInt<8>(Imm)) | 
 |       return X86::SUB32ri8; | 
 |     return X86::SUB32ri; | 
 |   } | 
 | } | 
 |  | 
 | static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { | 
 |   if (IsLP64) { | 
 |     if (isInt<8>(Imm)) | 
 |       return X86::ADD64ri8; | 
 |     return X86::ADD64ri32; | 
 |   } else { | 
 |     if (isInt<8>(Imm)) | 
 |       return X86::ADD32ri8; | 
 |     return X86::ADD32ri; | 
 |   } | 
 | } | 
 |  | 
 | static unsigned getSUBrrOpcode(bool IsLP64) { | 
 |   return IsLP64 ? X86::SUB64rr : X86::SUB32rr; | 
 | } | 
 |  | 
 | static unsigned getADDrrOpcode(bool IsLP64) { | 
 |   return IsLP64 ? X86::ADD64rr : X86::ADD32rr; | 
 | } | 
 |  | 
 | static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { | 
 |   if (IsLP64) { | 
 |     if (isInt<8>(Imm)) | 
 |       return X86::AND64ri8; | 
 |     return X86::AND64ri32; | 
 |   } | 
 |   if (isInt<8>(Imm)) | 
 |     return X86::AND32ri8; | 
 |   return X86::AND32ri; | 
 | } | 
 |  | 
 | static unsigned getLEArOpcode(bool IsLP64) { | 
 |   return IsLP64 ? X86::LEA64r : X86::LEA32r; | 
 | } | 
 |  | 
 | static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { | 
 |   if (Use64BitReg) { | 
 |     if (isUInt<32>(Imm)) | 
 |       return X86::MOV32ri64; | 
 |     if (isInt<32>(Imm)) | 
 |       return X86::MOV64ri32; | 
 |     return X86::MOV64ri; | 
 |   } | 
 |   return X86::MOV32ri; | 
 | } | 
 |  | 
 | static bool isEAXLiveIn(MachineBasicBlock &MBB) { | 
 |   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { | 
 |     unsigned Reg = RegMask.PhysReg; | 
 |  | 
 |     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || | 
 |         Reg == X86::AH || Reg == X86::AL) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if the flags need to be preserved before the terminators. | 
 | /// This would be the case, if the eflags is live-in of the region | 
 | /// composed by the terminators or live-out of that region, without | 
 | /// being defined by a terminator. | 
 | static bool | 
 | flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { | 
 |   for (const MachineInstr &MI : MBB.terminators()) { | 
 |     bool BreakNext = false; | 
 |     for (const MachineOperand &MO : MI.operands()) { | 
 |       if (!MO.isReg()) | 
 |         continue; | 
 |       Register Reg = MO.getReg(); | 
 |       if (Reg != X86::EFLAGS) | 
 |         continue; | 
 |  | 
 |       // This terminator needs an eflags that is not defined | 
 |       // by a previous another terminator: | 
 |       // EFLAGS is live-in of the region composed by the terminators. | 
 |       if (!MO.isDef()) | 
 |         return true; | 
 |       // This terminator defines the eflags, i.e., we don't need to preserve it. | 
 |       // However, we still need to check this specific terminator does not | 
 |       // read a live-in value. | 
 |       BreakNext = true; | 
 |     } | 
 |     // We found a definition of the eflags, no need to preserve them. | 
 |     if (BreakNext) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // None of the terminators use or define the eflags. | 
 |   // Check if they are live-out, that would imply we need to preserve them. | 
 |   for (const MachineBasicBlock *Succ : MBB.successors()) | 
 |     if (Succ->isLiveIn(X86::EFLAGS)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// emitSPUpdate - Emit a series of instructions to increment / decrement the | 
 | /// stack pointer by a constant value. | 
 | void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, | 
 |                                     MachineBasicBlock::iterator &MBBI, | 
 |                                     const DebugLoc &DL, | 
 |                                     int64_t NumBytes, bool InEpilogue) const { | 
 |   bool isSub = NumBytes < 0; | 
 |   uint64_t Offset = isSub ? -NumBytes : NumBytes; | 
 |   MachineInstr::MIFlag Flag = | 
 |       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; | 
 |  | 
 |   uint64_t Chunk = (1LL << 31) - 1; | 
 |  | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); | 
 |  | 
 |   // It's ok to not take into account large chunks when probing, as the | 
 |   // allocation is split in smaller chunks anyway. | 
 |   if (EmitInlineStackProbe && !InEpilogue) { | 
 |  | 
 |     // This pseudo-instruction is going to be expanded, potentially using a | 
 |     // loop, by inlineStackProbe(). | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); | 
 |     return; | 
 |   } else if (Offset > Chunk) { | 
 |     // Rather than emit a long series of instructions for large offsets, | 
 |     // load the offset into a register and do one sub/add | 
 |     unsigned Reg = 0; | 
 |     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); | 
 |  | 
 |     if (isSub && !isEAXLiveIn(MBB)) | 
 |       Reg = Rax; | 
 |     else | 
 |       Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); | 
 |  | 
 |     unsigned AddSubRROpc = | 
 |         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); | 
 |     if (Reg) { | 
 |       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) | 
 |           .addImm(Offset) | 
 |           .setMIFlag(Flag); | 
 |       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) | 
 |                              .addReg(StackPtr) | 
 |                              .addReg(Reg); | 
 |       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
 |       return; | 
 |     } else if (Offset > 8 * Chunk) { | 
 |       // If we would need more than 8 add or sub instructions (a >16GB stack | 
 |       // frame), it's worth spilling RAX to materialize this immediate. | 
 |       //   pushq %rax | 
 |       //   movabsq +-$Offset+-SlotSize, %rax | 
 |       //   addq %rsp, %rax | 
 |       //   xchg %rax, (%rsp) | 
 |       //   movq (%rsp), %rsp | 
 |       assert(Is64Bit && "can't have 32-bit 16GB stack frame"); | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) | 
 |           .addReg(Rax, RegState::Kill) | 
 |           .setMIFlag(Flag); | 
 |       // Subtract is not commutative, so negate the offset and always use add. | 
 |       // Subtract 8 less and add 8 more to account for the PUSH we just did. | 
 |       if (isSub) | 
 |         Offset = -(Offset - SlotSize); | 
 |       else | 
 |         Offset = Offset + SlotSize; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) | 
 |           .addImm(Offset) | 
 |           .setMIFlag(Flag); | 
 |       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) | 
 |                              .addReg(Rax) | 
 |                              .addReg(StackPtr); | 
 |       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
 |       // Exchange the new SP in RAX with the top of the stack. | 
 |       addRegOffset( | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), | 
 |           StackPtr, false, 0); | 
 |       // Load new SP from the top of the stack into RSP. | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), | 
 |                    StackPtr, false, 0); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   while (Offset) { | 
 |     uint64_t ThisVal = std::min(Offset, Chunk); | 
 |     if (ThisVal == SlotSize) { | 
 |       // Use push / pop for slot sized adjustments as a size optimization. We | 
 |       // need to find a dead register when using pop. | 
 |       unsigned Reg = isSub | 
 |         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) | 
 |         : TRI->findDeadCallerSavedReg(MBB, MBBI); | 
 |       if (Reg) { | 
 |         unsigned Opc = isSub | 
 |           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) | 
 |           : (Is64Bit ? X86::POP64r  : X86::POP32r); | 
 |         BuildMI(MBB, MBBI, DL, TII.get(Opc)) | 
 |             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) | 
 |             .setMIFlag(Flag); | 
 |         Offset -= ThisVal; | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) | 
 |         .setMIFlag(Flag); | 
 |  | 
 |     Offset -= ThisVal; | 
 |   } | 
 | } | 
 |  | 
 | MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
 |     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { | 
 |   assert(Offset != 0 && "zero offset stack adjustment requested"); | 
 |  | 
 |   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue | 
 |   // is tricky. | 
 |   bool UseLEA; | 
 |   if (!InEpilogue) { | 
 |     // Check if inserting the prologue at the beginning | 
 |     // of MBB would require to use LEA operations. | 
 |     // We need to use LEA operations if EFLAGS is live in, because | 
 |     // it means an instruction will read it before it gets defined. | 
 |     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); | 
 |   } else { | 
 |     // If we can use LEA for SP but we shouldn't, check that none | 
 |     // of the terminators uses the eflags. Otherwise we will insert | 
 |     // a ADD that will redefine the eflags and break the condition. | 
 |     // Alternatively, we could move the ADD, but this may not be possible | 
 |     // and is an optimization anyway. | 
 |     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); | 
 |     if (UseLEA && !STI.useLeaForSP()) | 
 |       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); | 
 |     // If that assert breaks, that means we do not do the right thing | 
 |     // in canUseAsEpilogue. | 
 |     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && | 
 |            "We shouldn't have allowed this insertion point"); | 
 |   } | 
 |  | 
 |   MachineInstrBuilder MI; | 
 |   if (UseLEA) { | 
 |     MI = addRegOffset(BuildMI(MBB, MBBI, DL, | 
 |                               TII.get(getLEArOpcode(Uses64BitFramePtr)), | 
 |                               StackPtr), | 
 |                       StackPtr, false, Offset); | 
 |   } else { | 
 |     bool IsSub = Offset < 0; | 
 |     uint64_t AbsOffset = IsSub ? -Offset : Offset; | 
 |     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) | 
 |                                : getADDriOpcode(Uses64BitFramePtr, AbsOffset); | 
 |     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) | 
 |              .addReg(StackPtr) | 
 |              .addImm(AbsOffset); | 
 |     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. | 
 |   } | 
 |   return MI; | 
 | } | 
 |  | 
 | int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, | 
 |                                      MachineBasicBlock::iterator &MBBI, | 
 |                                      bool doMergeWithPrevious) const { | 
 |   if ((doMergeWithPrevious && MBBI == MBB.begin()) || | 
 |       (!doMergeWithPrevious && MBBI == MBB.end())) | 
 |     return 0; | 
 |  | 
 |   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; | 
 |  | 
 |   PI = skipDebugInstructionsBackward(PI, MBB.begin()); | 
 |   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI | 
 |   // instruction, and that there are no DBG_VALUE or other instructions between | 
 |   // ADD/SUB/LEA and its corresponding CFI instruction. | 
 |   /* TODO: Add support for the case where there are multiple CFI instructions | 
 |     below the ADD/SUB/LEA, e.g.: | 
 |     ... | 
 |     add | 
 |     cfi_def_cfa_offset | 
 |     cfi_offset | 
 |     ... | 
 |   */ | 
 |   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) | 
 |     PI = std::prev(PI); | 
 |  | 
 |   unsigned Opc = PI->getOpcode(); | 
 |   int Offset = 0; | 
 |  | 
 |   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || | 
 |        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && | 
 |       PI->getOperand(0).getReg() == StackPtr){ | 
 |     assert(PI->getOperand(1).getReg() == StackPtr); | 
 |     Offset = PI->getOperand(2).getImm(); | 
 |   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && | 
 |              PI->getOperand(0).getReg() == StackPtr && | 
 |              PI->getOperand(1).getReg() == StackPtr && | 
 |              PI->getOperand(2).getImm() == 1 && | 
 |              PI->getOperand(3).getReg() == X86::NoRegister && | 
 |              PI->getOperand(5).getReg() == X86::NoRegister) { | 
 |     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. | 
 |     Offset = PI->getOperand(4).getImm(); | 
 |   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || | 
 |               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && | 
 |              PI->getOperand(0).getReg() == StackPtr) { | 
 |     assert(PI->getOperand(1).getReg() == StackPtr); | 
 |     Offset = -PI->getOperand(2).getImm(); | 
 |   } else | 
 |     return 0; | 
 |  | 
 |   PI = MBB.erase(PI); | 
 |   if (PI != MBB.end() && PI->isCFIInstruction()) { | 
 |     auto CIs = MBB.getParent()->getFrameInstructions(); | 
 |     MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; | 
 |     if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || | 
 |         CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) | 
 |       PI = MBB.erase(PI); | 
 |   } | 
 |   if (!doMergeWithPrevious) | 
 |     MBBI = skipDebugInstructionsForward(PI, MBB.end()); | 
 |  | 
 |   return Offset; | 
 | } | 
 |  | 
 | void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, | 
 |                                 MachineBasicBlock::iterator MBBI, | 
 |                                 const DebugLoc &DL, | 
 |                                 const MCCFIInstruction &CFIInst, | 
 |                                 MachineInstr::MIFlag Flag) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   unsigned CFIIndex = MF.addFrameInst(CFIInst); | 
 |   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) | 
 |       .addCFIIndex(CFIIndex) | 
 |       .setMIFlag(Flag); | 
 | } | 
 |  | 
 | /// Emits Dwarf Info specifying offsets of callee saved registers and | 
 | /// frame pointer. This is called only when basic block sections are enabled. | 
 | void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   if (!hasFP(MF)) { | 
 |     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); | 
 |     return; | 
 |   } | 
 |   const MachineModuleInfo &MMI = MF.getMMI(); | 
 |   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); | 
 |   const Register FramePtr = TRI->getFrameRegister(MF); | 
 |   const Register MachineFramePtr = | 
 |       STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) | 
 |                                : FramePtr; | 
 |   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); | 
 |   // Offset = space for return address + size of the frame pointer itself. | 
 |   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); | 
 |   BuildCFI(MBB, MBBI, DebugLoc{}, | 
 |            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); | 
 |   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); | 
 | } | 
 |  | 
 | void X86FrameLowering::emitCalleeSavedFrameMoves( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
 |     const DebugLoc &DL, bool IsPrologue) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   MachineModuleInfo &MMI = MF.getMMI(); | 
 |   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); | 
 |  | 
 |   // Add callee saved registers to move list. | 
 |   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
 |  | 
 |   // Calculate offsets. | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); | 
 |     Register Reg = I.getReg(); | 
 |     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); | 
 |  | 
 |     if (IsPrologue) { | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); | 
 |     } else { | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::createRestore(nullptr, DwarfReg)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, | 
 |                                             MachineBasicBlock &MBB) const { | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |  | 
 |   // Insertion point. | 
 |   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); | 
 |  | 
 |   // Fake a debug loc. | 
 |   DebugLoc DL; | 
 |   if (MBBI != MBB.end()) | 
 |     DL = MBBI->getDebugLoc(); | 
 |  | 
 |   // Zero out FP stack if referenced. Do this outside of the loop below so that | 
 |   // it's done only once. | 
 |   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); | 
 |   for (MCRegister Reg : RegsToZero.set_bits()) { | 
 |     if (!X86::RFP80RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; | 
 |     for (unsigned i = 0; i != NumFPRegs; ++i) | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); | 
 |  | 
 |     for (unsigned i = 0; i != NumFPRegs; ++i) | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); | 
 |     break; | 
 |   } | 
 |  | 
 |   // For GPRs, we only care to clear out the 32-bit register. | 
 |   BitVector GPRsToZero(TRI->getNumRegs()); | 
 |   for (MCRegister Reg : RegsToZero.set_bits()) | 
 |     if (TRI->isGeneralPurposeRegister(MF, Reg)) { | 
 |       GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); | 
 |       RegsToZero.reset(Reg); | 
 |     } | 
 |  | 
 |   for (MCRegister Reg : GPRsToZero.set_bits()) | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) | 
 |         .addReg(Reg, RegState::Undef) | 
 |         .addReg(Reg, RegState::Undef); | 
 |  | 
 |   // Zero out registers. | 
 |   for (MCRegister Reg : RegsToZero.set_bits()) { | 
 |     if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) | 
 |       // FIXME: Ignore MMX registers? | 
 |       continue; | 
 |  | 
 |     unsigned XorOp; | 
 |     if (X86::VR128RegClass.contains(Reg)) { | 
 |       // XMM# | 
 |       if (!ST.hasSSE1()) | 
 |         continue; | 
 |       XorOp = X86::PXORrr; | 
 |     } else if (X86::VR256RegClass.contains(Reg)) { | 
 |       // YMM# | 
 |       if (!ST.hasAVX()) | 
 |         continue; | 
 |       XorOp = X86::VPXORrr; | 
 |     } else if (X86::VR512RegClass.contains(Reg)) { | 
 |       // ZMM# | 
 |       if (!ST.hasAVX512()) | 
 |         continue; | 
 |       XorOp = X86::VPXORYrr; | 
 |     } else if (X86::VK1RegClass.contains(Reg) || | 
 |                X86::VK2RegClass.contains(Reg) || | 
 |                X86::VK4RegClass.contains(Reg) || | 
 |                X86::VK8RegClass.contains(Reg) || | 
 |                X86::VK16RegClass.contains(Reg)) { | 
 |       if (!ST.hasVLX()) | 
 |         continue; | 
 |       XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; | 
 |     } else { | 
 |       continue; | 
 |     } | 
 |  | 
 |     BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) | 
 |       .addReg(Reg, RegState::Undef) | 
 |       .addReg(Reg, RegState::Undef); | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbe( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, | 
 |     std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   if (STI.isTargetWindowsCoreCLR()) { | 
 |     if (InProlog) { | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) | 
 |           .addImm(0 /* no explicit stack size */); | 
 |     } else { | 
 |       emitStackProbeInline(MF, MBB, MBBI, DL, false); | 
 |     } | 
 |   } else { | 
 |     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); | 
 |   } | 
 | } | 
 |  | 
 | bool X86FrameLowering::stackProbeFunctionModifiesSP() const { | 
 |   return STI.isOSWindows() && !STI.isTargetWin64(); | 
 | } | 
 |  | 
 | void X86FrameLowering::inlineStackProbe(MachineFunction &MF, | 
 |                                         MachineBasicBlock &PrologMBB) const { | 
 |   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { | 
 |     return MI.getOpcode() == X86::STACKALLOC_W_PROBING; | 
 |   }); | 
 |   if (Where != PrologMBB.end()) { | 
 |     DebugLoc DL = PrologMBB.findDebugLoc(Where); | 
 |     emitStackProbeInline(MF, PrologMBB, Where, DL, true); | 
 |     Where->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, | 
 |                                             MachineBasicBlock &MBB, | 
 |                                             MachineBasicBlock::iterator MBBI, | 
 |                                             const DebugLoc &DL, | 
 |                                             bool InProlog) const { | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) | 
 |     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); | 
 |   else | 
 |     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeInlineGeneric( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { | 
 |   MachineInstr &AllocWithProbe = *MBBI; | 
 |   uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); | 
 |  | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && | 
 |          "different expansion expected for CoreCLR 64 bit"); | 
 |  | 
 |   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); | 
 |   uint64_t ProbeChunk = StackProbeSize * 8; | 
 |  | 
 |   uint64_t MaxAlign = | 
 |       TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; | 
 |  | 
 |   // Synthesize a loop or unroll it, depending on the number of iterations. | 
 |   // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left | 
 |   // between the unaligned rsp and current rsp. | 
 |   if (Offset > ProbeChunk) { | 
 |     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, | 
 |                                     MaxAlign % StackProbeSize); | 
 |   } else { | 
 |     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, | 
 |                                      MaxAlign % StackProbeSize); | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeInlineGenericBlock( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, | 
 |     uint64_t AlignOffset) const { | 
 |  | 
 |   const bool NeedsDwarfCFI = needsDwarfCFI(MF); | 
 |   const bool HasFP = hasFP(MF); | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; | 
 |   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); | 
 |  | 
 |   uint64_t CurrentOffset = 0; | 
 |  | 
 |   assert(AlignOffset < StackProbeSize); | 
 |  | 
 |   // If the offset is so small it fits within a page, there's nothing to do. | 
 |   if (StackProbeSize < Offset + AlignOffset) { | 
 |  | 
 |     uint64_t StackAdjustment = StackProbeSize - AlignOffset; | 
 |     BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     if (!HasFP && NeedsDwarfCFI) { | 
 |       BuildCFI( | 
 |           MBB, MBBI, DL, | 
 |           MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); | 
 |     } | 
 |  | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) | 
 |                      .setMIFlag(MachineInstr::FrameSetup), | 
 |                  StackPtr, false, 0) | 
 |         .addImm(0) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     NumFrameExtraProbe++; | 
 |     CurrentOffset = StackProbeSize - AlignOffset; | 
 |   } | 
 |  | 
 |   // For the next N - 1 pages, just probe. I tried to take advantage of | 
 |   // natural probes but it implies much more logic and there was very few | 
 |   // interesting natural probes to interleave. | 
 |   while (CurrentOffset + StackProbeSize < Offset) { | 
 |     BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |     if (!HasFP && NeedsDwarfCFI) { | 
 |       BuildCFI( | 
 |           MBB, MBBI, DL, | 
 |           MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); | 
 |     } | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) | 
 |                      .setMIFlag(MachineInstr::FrameSetup), | 
 |                  StackPtr, false, 0) | 
 |         .addImm(0) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     NumFrameExtraProbe++; | 
 |     CurrentOffset += StackProbeSize; | 
 |   } | 
 |  | 
 |   // No need to probe the tail, it is smaller than a Page. | 
 |   uint64_t ChunkSize = Offset - CurrentOffset; | 
 |   if (ChunkSize == SlotSize) { | 
 |     // Use push for slot sized adjustments as a size optimization, | 
 |     // like emitSPUpdate does when not probing. | 
 |     unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; | 
 |     unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; | 
 |     BuildMI(MBB, MBBI, DL, TII.get(Opc)) | 
 |         .addReg(Reg, RegState::Undef) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } else { | 
 |     BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |   // No need to adjust Dwarf CFA offset here, the last position of the stack has | 
 |   // been defined | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeInlineGenericLoop( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, | 
 |     uint64_t AlignOffset) const { | 
 |   assert(Offset && "null offset"); | 
 |  | 
 |   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != | 
 |              MachineBasicBlock::LQR_Live && | 
 |          "Inline stack probe loop will clobber live EFLAGS."); | 
 |  | 
 |   const bool NeedsDwarfCFI = needsDwarfCFI(MF); | 
 |   const bool HasFP = hasFP(MF); | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; | 
 |   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); | 
 |  | 
 |   if (AlignOffset) { | 
 |     if (AlignOffset < StackProbeSize) { | 
 |       // Perform a first smaller allocation followed by a probe. | 
 |       BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) | 
 |                        .setMIFlag(MachineInstr::FrameSetup), | 
 |                    StackPtr, false, 0) | 
 |           .addImm(0) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       NumFrameExtraProbe++; | 
 |       Offset -= AlignOffset; | 
 |     } | 
 |   } | 
 |  | 
 |   // Synthesize a loop | 
 |   NumFrameLoopProbe++; | 
 |   const BasicBlock *LLVM_BB = MBB.getBasicBlock(); | 
 |  | 
 |   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
 |  | 
 |   MachineFunction::iterator MBBIter = ++MBB.getIterator(); | 
 |   MF.insert(MBBIter, testMBB); | 
 |   MF.insert(MBBIter, tailMBB); | 
 |  | 
 |   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 | 
 |                               : Is64Bit         ? X86::R11D | 
 |                                                 : X86::EAX; | 
 |  | 
 |   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) | 
 |       .addReg(StackPtr) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   // save loop bound | 
 |   { | 
 |     const unsigned BoundOffset = alignDown(Offset, StackProbeSize); | 
 |     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); | 
 |     BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) | 
 |         .addReg(FinalStackProbed) | 
 |         .addImm(BoundOffset) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |     // while in the loop, use loop-invariant reg for CFI, | 
 |     // instead of the stack pointer, which changes during the loop | 
 |     if (!HasFP && NeedsDwarfCFI) { | 
 |       // x32 uses the same DWARF register numbers as x86-64, | 
 |       // so there isn't a register number for r11d, we must use r11 instead | 
 |       const Register DwarfFinalStackProbed = | 
 |           STI.isTarget64BitILP32() | 
 |               ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) | 
 |               : FinalStackProbed; | 
 |  | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::createDefCfaRegister( | 
 |                    nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); | 
 |     } | 
 |   } | 
 |  | 
 |   // allocate a page | 
 |   BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, | 
 |                        /*InEpilogue=*/false) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   // touch the page | 
 |   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) | 
 |                    .setMIFlag(MachineInstr::FrameSetup), | 
 |                StackPtr, false, 0) | 
 |       .addImm(0) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   // cmp with stack pointer bound | 
 |   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) | 
 |       .addReg(StackPtr) | 
 |       .addReg(FinalStackProbed) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   // jump | 
 |   BuildMI(testMBB, DL, TII.get(X86::JCC_1)) | 
 |       .addMBB(testMBB) | 
 |       .addImm(X86::COND_NE) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |   testMBB->addSuccessor(testMBB); | 
 |   testMBB->addSuccessor(tailMBB); | 
 |  | 
 |   // BB management | 
 |   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); | 
 |   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); | 
 |   MBB.addSuccessor(testMBB); | 
 |  | 
 |   // handle tail | 
 |   const uint64_t TailOffset = Offset % StackProbeSize; | 
 |   MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); | 
 |   if (TailOffset) { | 
 |     BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, | 
 |                          /*InEpilogue=*/false) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |  | 
 |   // after the loop, switch back to stack pointer for CFI | 
 |   if (!HasFP && NeedsDwarfCFI) { | 
 |     // x32 uses the same DWARF register numbers as x86-64, | 
 |     // so there isn't a register number for esp, we must use rsp instead | 
 |     const Register DwarfStackPtr = | 
 |         STI.isTarget64BitILP32() | 
 |             ? Register(getX86SubSuperRegister(StackPtr, 64)) | 
 |             : Register(StackPtr); | 
 |  | 
 |     BuildCFI(*tailMBB, TailMBBIter, DL, | 
 |              MCCFIInstruction::createDefCfaRegister( | 
 |                  nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); | 
 |   } | 
 |  | 
 |   // Update Live In information | 
 |   recomputeLiveIns(*testMBB); | 
 |   recomputeLiveIns(*tailMBB); | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   assert(STI.is64Bit() && "different expansion needed for 32 bit"); | 
 |   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); | 
 |   const TargetInstrInfo &TII = *STI.getInstrInfo(); | 
 |   const BasicBlock *LLVM_BB = MBB.getBasicBlock(); | 
 |  | 
 |   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != | 
 |              MachineBasicBlock::LQR_Live && | 
 |          "Inline stack probe loop will clobber live EFLAGS."); | 
 |  | 
 |   // RAX contains the number of bytes of desired stack adjustment. | 
 |   // The handling here assumes this value has already been updated so as to | 
 |   // maintain stack alignment. | 
 |   // | 
 |   // We need to exit with RSP modified by this amount and execute suitable | 
 |   // page touches to notify the OS that we're growing the stack responsibly. | 
 |   // All stack probing must be done without modifying RSP. | 
 |   // | 
 |   // MBB: | 
 |   //    SizeReg = RAX; | 
 |   //    ZeroReg = 0 | 
 |   //    CopyReg = RSP | 
 |   //    Flags, TestReg = CopyReg - SizeReg | 
 |   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg | 
 |   //    LimitReg = gs magic thread env access | 
 |   //    if FinalReg >= LimitReg goto ContinueMBB | 
 |   // RoundBB: | 
 |   //    RoundReg = page address of FinalReg | 
 |   // LoopMBB: | 
 |   //    LoopReg = PHI(LimitReg,ProbeReg) | 
 |   //    ProbeReg = LoopReg - PageSize | 
 |   //    [ProbeReg] = 0 | 
 |   //    if (ProbeReg > RoundReg) goto LoopMBB | 
 |   // ContinueMBB: | 
 |   //    RSP = RSP - RAX | 
 |   //    [rest of original MBB] | 
 |  | 
 |   // Set up the new basic blocks | 
 |   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); | 
 |  | 
 |   MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); | 
 |   MF.insert(MBBIter, RoundMBB); | 
 |   MF.insert(MBBIter, LoopMBB); | 
 |   MF.insert(MBBIter, ContinueMBB); | 
 |  | 
 |   // Split MBB and move the tail portion down to ContinueMBB. | 
 |   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); | 
 |   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); | 
 |   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); | 
 |  | 
 |   // Some useful constants | 
 |   const int64_t ThreadEnvironmentStackLimit = 0x10; | 
 |   const int64_t PageSize = 0x1000; | 
 |   const int64_t PageMask = ~(PageSize - 1); | 
 |  | 
 |   // Registers we need. For the normal case we use virtual | 
 |   // registers. For the prolog expansion we use RAX, RCX and RDX. | 
 |   MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   const TargetRegisterClass *RegClass = &X86::GR64RegClass; | 
 |   const Register SizeReg = InProlog ? X86::RAX | 
 |                                     : MRI.createVirtualRegister(RegClass), | 
 |                  ZeroReg = InProlog ? X86::RCX | 
 |                                     : MRI.createVirtualRegister(RegClass), | 
 |                  CopyReg = InProlog ? X86::RDX | 
 |                                     : MRI.createVirtualRegister(RegClass), | 
 |                  TestReg = InProlog ? X86::RDX | 
 |                                     : MRI.createVirtualRegister(RegClass), | 
 |                  FinalReg = InProlog ? X86::RDX | 
 |                                      : MRI.createVirtualRegister(RegClass), | 
 |                  RoundedReg = InProlog ? X86::RDX | 
 |                                        : MRI.createVirtualRegister(RegClass), | 
 |                  LimitReg = InProlog ? X86::RCX | 
 |                                      : MRI.createVirtualRegister(RegClass), | 
 |                  JoinReg = InProlog ? X86::RCX | 
 |                                     : MRI.createVirtualRegister(RegClass), | 
 |                  ProbeReg = InProlog ? X86::RCX | 
 |                                      : MRI.createVirtualRegister(RegClass); | 
 |  | 
 |   // SP-relative offsets where we can save RCX and RDX. | 
 |   int64_t RCXShadowSlot = 0; | 
 |   int64_t RDXShadowSlot = 0; | 
 |  | 
 |   // If inlining in the prolog, save RCX and RDX. | 
 |   if (InProlog) { | 
 |     // Compute the offsets. We need to account for things already | 
 |     // pushed onto the stack at this point: return address, frame | 
 |     // pointer (if used), and callee saves. | 
 |     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); | 
 |     const bool HasFP = hasFP(MF); | 
 |  | 
 |     // Check if we need to spill RCX and/or RDX. | 
 |     // Here we assume that no earlier prologue instruction changes RCX and/or | 
 |     // RDX, so checking the block live-ins is enough. | 
 |     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); | 
 |     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); | 
 |     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); | 
 |     // Assign the initial slot to both registers, then change RDX's slot if both | 
 |     // need to be spilled. | 
 |     if (IsRCXLiveIn) | 
 |       RCXShadowSlot = InitSlot; | 
 |     if (IsRDXLiveIn) | 
 |       RDXShadowSlot = InitSlot; | 
 |     if (IsRDXLiveIn && IsRCXLiveIn) | 
 |       RDXShadowSlot += 8; | 
 |     // Emit the saves if needed. | 
 |     if (IsRCXLiveIn) | 
 |       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, | 
 |                    RCXShadowSlot) | 
 |           .addReg(X86::RCX); | 
 |     if (IsRDXLiveIn) | 
 |       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, | 
 |                    RDXShadowSlot) | 
 |           .addReg(X86::RDX); | 
 |   } else { | 
 |     // Not in the prolog. Copy RAX to a virtual reg. | 
 |     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); | 
 |   } | 
 |  | 
 |   // Add code to MBB to check for overflow and set the new target stack pointer | 
 |   // to zero if so. | 
 |   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) | 
 |       .addReg(ZeroReg, RegState::Undef) | 
 |       .addReg(ZeroReg, RegState::Undef); | 
 |   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); | 
 |   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) | 
 |       .addReg(CopyReg) | 
 |       .addReg(SizeReg); | 
 |   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) | 
 |       .addReg(TestReg) | 
 |       .addReg(ZeroReg) | 
 |       .addImm(X86::COND_B); | 
 |  | 
 |   // FinalReg now holds final stack pointer value, or zero if | 
 |   // allocation would overflow. Compare against the current stack | 
 |   // limit from the thread environment block. Note this limit is the | 
 |   // lowest touched page on the stack, not the point at which the OS | 
 |   // will cause an overflow exception, so this is just an optimization | 
 |   // to avoid unnecessarily touching pages that are below the current | 
 |   // SP but already committed to the stack by the OS. | 
 |   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) | 
 |       .addReg(0) | 
 |       .addImm(1) | 
 |       .addReg(0) | 
 |       .addImm(ThreadEnvironmentStackLimit) | 
 |       .addReg(X86::GS); | 
 |   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); | 
 |   // Jump if the desired stack pointer is at or above the stack limit. | 
 |   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); | 
 |  | 
 |   // Add code to roundMBB to round the final stack pointer to a page boundary. | 
 |   RoundMBB->addLiveIn(FinalReg); | 
 |   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) | 
 |       .addReg(FinalReg) | 
 |       .addImm(PageMask); | 
 |   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); | 
 |  | 
 |   // LimitReg now holds the current stack limit, RoundedReg page-rounded | 
 |   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page | 
 |   // and probe until we reach RoundedReg. | 
 |   if (!InProlog) { | 
 |     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) | 
 |         .addReg(LimitReg) | 
 |         .addMBB(RoundMBB) | 
 |         .addReg(ProbeReg) | 
 |         .addMBB(LoopMBB); | 
 |   } | 
 |  | 
 |   LoopMBB->addLiveIn(JoinReg); | 
 |   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, | 
 |                false, -PageSize); | 
 |  | 
 |   // Probe by storing a byte onto the stack. | 
 |   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) | 
 |       .addReg(ProbeReg) | 
 |       .addImm(1) | 
 |       .addReg(0) | 
 |       .addImm(0) | 
 |       .addReg(0) | 
 |       .addImm(0); | 
 |  | 
 |   LoopMBB->addLiveIn(RoundedReg); | 
 |   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) | 
 |       .addReg(RoundedReg) | 
 |       .addReg(ProbeReg); | 
 |   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); | 
 |  | 
 |   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); | 
 |  | 
 |   // If in prolog, restore RDX and RCX. | 
 |   if (InProlog) { | 
 |     if (RCXShadowSlot) // It means we spilled RCX in the prologue. | 
 |       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, | 
 |                            TII.get(X86::MOV64rm), X86::RCX), | 
 |                    X86::RSP, false, RCXShadowSlot); | 
 |     if (RDXShadowSlot) // It means we spilled RDX in the prologue. | 
 |       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, | 
 |                            TII.get(X86::MOV64rm), X86::RDX), | 
 |                    X86::RSP, false, RDXShadowSlot); | 
 |   } | 
 |  | 
 |   // Now that the probing is done, add code to continueMBB to update | 
 |   // the stack pointer for real. | 
 |   ContinueMBB->addLiveIn(SizeReg); | 
 |   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) | 
 |       .addReg(X86::RSP) | 
 |       .addReg(SizeReg); | 
 |  | 
 |   // Add the control flow edges we need. | 
 |   MBB.addSuccessor(ContinueMBB); | 
 |   MBB.addSuccessor(RoundMBB); | 
 |   RoundMBB->addSuccessor(LoopMBB); | 
 |   LoopMBB->addSuccessor(ContinueMBB); | 
 |   LoopMBB->addSuccessor(LoopMBB); | 
 |  | 
 |   // Mark all the instructions added to the prolog as frame setup. | 
 |   if (InProlog) { | 
 |     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { | 
 |       BeforeMBBI->setFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |     for (MachineInstr &MI : *RoundMBB) { | 
 |       MI.setFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |     for (MachineInstr &MI : *LoopMBB) { | 
 |       MI.setFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |     for (MachineInstr &MI : | 
 |          llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { | 
 |       MI.setFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::emitStackProbeCall( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, | 
 |     std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { | 
 |   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; | 
 |  | 
 |   // FIXME: Add indirect thunk support and remove this. | 
 |   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) | 
 |     report_fatal_error("Emitting stack probe calls on 64-bit with the large " | 
 |                        "code model and indirect thunks not yet implemented."); | 
 |  | 
 |   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != | 
 |              MachineBasicBlock::LQR_Live && | 
 |          "Stack probe calls will clobber live EFLAGS."); | 
 |  | 
 |   unsigned CallOp; | 
 |   if (Is64Bit) | 
 |     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; | 
 |   else | 
 |     CallOp = X86::CALLpcrel32; | 
 |  | 
 |   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); | 
 |  | 
 |   MachineInstrBuilder CI; | 
 |   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); | 
 |  | 
 |   // All current stack probes take AX and SP as input, clobber flags, and | 
 |   // preserve all registers. x86_64 probes leave RSP unmodified. | 
 |   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { | 
 |     // For the large code model, we have to call through a register. Use R11, | 
 |     // as it is scratch in all supported calling conventions. | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) | 
 |         .addExternalSymbol(MF.createExternalSymbolName(Symbol)); | 
 |     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); | 
 |   } else { | 
 |     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) | 
 |         .addExternalSymbol(MF.createExternalSymbolName(Symbol)); | 
 |   } | 
 |  | 
 |   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; | 
 |   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; | 
 |   CI.addReg(AX, RegState::Implicit) | 
 |       .addReg(SP, RegState::Implicit) | 
 |       .addReg(AX, RegState::Define | RegState::Implicit) | 
 |       .addReg(SP, RegState::Define | RegState::Implicit) | 
 |       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); | 
 |  | 
 |   MachineInstr *ModInst = CI; | 
 |   if (STI.isTargetWin64() || !STI.isOSWindows()) { | 
 |     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. | 
 |     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp | 
 |     // themselves. They also does not clobber %rax so we can reuse it when | 
 |     // adjusting %rsp. | 
 |     // All other platforms do not specify a particular ABI for the stack probe | 
 |     // function, so we arbitrarily define it to not adjust %esp/%rsp itself. | 
 |     ModInst = | 
 |         BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) | 
 |             .addReg(SP) | 
 |             .addReg(AX); | 
 |   } | 
 |  | 
 |   // DebugInfo variable locations -- if there's an instruction number for the | 
 |   // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that | 
 |   // modifies SP. | 
 |   if (InstrNum) { | 
 |     if (STI.isTargetWin64() || !STI.isOSWindows()) { | 
 |       // Label destination operand of the subtract. | 
 |       MF.makeDebugValueSubstitution(*InstrNum, | 
 |                                     {ModInst->getDebugInstrNum(), 0}); | 
 |     } else { | 
 |       // Label the call. The operand number is the penultimate operand, zero | 
 |       // based. | 
 |       unsigned SPDefOperand = ModInst->getNumOperands() - 2; | 
 |       MF.makeDebugValueSubstitution( | 
 |           *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); | 
 |     } | 
 |   } | 
 |  | 
 |   if (InProlog) { | 
 |     // Apply the frame setup flag to all inserted instrs. | 
 |     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) | 
 |       ExpansionMBBI->setFlag(MachineInstr::FrameSetup); | 
 |   } | 
 | } | 
 |  | 
 | static unsigned calculateSetFPREG(uint64_t SPAdjust) { | 
 |   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well | 
 |   // and might require smaller successive adjustments. | 
 |   const uint64_t Win64MaxSEHOffset = 128; | 
 |   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); | 
 |   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. | 
 |   return SEHFrameOffset & -16; | 
 | } | 
 |  | 
 | // If we're forcing a stack realignment we can't rely on just the frame | 
 | // info, we need to know the ABI stack alignment as well in case we | 
 | // have a call out.  Otherwise just make sure we have some alignment - we'll | 
 | // go with the minimum SlotSize. | 
 | uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. | 
 |   Align StackAlign = getStackAlign(); | 
 |   if (MF.getFunction().hasFnAttribute("stackrealign")) { | 
 |     if (MFI.hasCalls()) | 
 |       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; | 
 |     else if (MaxAlign < SlotSize) | 
 |       MaxAlign = Align(SlotSize); | 
 |   } | 
 |   return MaxAlign.value(); | 
 | } | 
 |  | 
 | void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, | 
 |                                           MachineBasicBlock::iterator MBBI, | 
 |                                           const DebugLoc &DL, unsigned Reg, | 
 |                                           uint64_t MaxAlign) const { | 
 |   uint64_t Val = -MaxAlign; | 
 |   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); | 
 |  | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); | 
 |   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); | 
 |  | 
 |   // We want to make sure that (in worst case) less than StackProbeSize bytes | 
 |   // are not probed after the AND. This assumption is used in | 
 |   // emitStackProbeInlineGeneric. | 
 |   if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { | 
 |     { | 
 |       NumFrameLoopProbe++; | 
 |       MachineBasicBlock *entryMBB = | 
 |           MF.CreateMachineBasicBlock(MBB.getBasicBlock()); | 
 |       MachineBasicBlock *headMBB = | 
 |           MF.CreateMachineBasicBlock(MBB.getBasicBlock()); | 
 |       MachineBasicBlock *bodyMBB = | 
 |           MF.CreateMachineBasicBlock(MBB.getBasicBlock()); | 
 |       MachineBasicBlock *footMBB = | 
 |           MF.CreateMachineBasicBlock(MBB.getBasicBlock()); | 
 |  | 
 |       MachineFunction::iterator MBBIter = MBB.getIterator(); | 
 |       MF.insert(MBBIter, entryMBB); | 
 |       MF.insert(MBBIter, headMBB); | 
 |       MF.insert(MBBIter, bodyMBB); | 
 |       MF.insert(MBBIter, footMBB); | 
 |       const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; | 
 |       Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 | 
 |                                   : Is64Bit         ? X86::R11D | 
 |                                                     : X86::EAX; | 
 |  | 
 |       // Setup entry block | 
 |       { | 
 |  | 
 |         entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); | 
 |         BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) | 
 |             .addReg(StackPtr) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         MachineInstr *MI = | 
 |             BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) | 
 |                 .addReg(FinalStackProbed) | 
 |                 .addImm(Val) | 
 |                 .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         // The EFLAGS implicit def is dead. | 
 |         MI->getOperand(3).setIsDead(); | 
 |  | 
 |         BuildMI(entryMBB, DL, | 
 |                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) | 
 |             .addReg(FinalStackProbed) | 
 |             .addReg(StackPtr) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) | 
 |             .addMBB(&MBB) | 
 |             .addImm(X86::COND_E) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         entryMBB->addSuccessor(headMBB); | 
 |         entryMBB->addSuccessor(&MBB); | 
 |       } | 
 |  | 
 |       // Loop entry block | 
 |  | 
 |       { | 
 |         const unsigned SUBOpc = | 
 |             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); | 
 |         BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) | 
 |             .addReg(StackPtr) | 
 |             .addImm(StackProbeSize) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         BuildMI(headMBB, DL, | 
 |                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) | 
 |             .addReg(StackPtr) | 
 |             .addReg(FinalStackProbed) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         // jump to the footer if StackPtr < FinalStackProbed | 
 |         BuildMI(headMBB, DL, TII.get(X86::JCC_1)) | 
 |             .addMBB(footMBB) | 
 |             .addImm(X86::COND_B) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         headMBB->addSuccessor(bodyMBB); | 
 |         headMBB->addSuccessor(footMBB); | 
 |       } | 
 |  | 
 |       // setup loop body | 
 |       { | 
 |         addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) | 
 |                          .setMIFlag(MachineInstr::FrameSetup), | 
 |                      StackPtr, false, 0) | 
 |             .addImm(0) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         const unsigned SUBOpc = | 
 |             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); | 
 |         BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) | 
 |             .addReg(StackPtr) | 
 |             .addImm(StackProbeSize) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         // cmp with stack pointer bound | 
 |         BuildMI(bodyMBB, DL, | 
 |                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) | 
 |             .addReg(FinalStackProbed) | 
 |             .addReg(StackPtr) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         // jump back while FinalStackProbed < StackPtr | 
 |         BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) | 
 |             .addMBB(bodyMBB) | 
 |             .addImm(X86::COND_B) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         bodyMBB->addSuccessor(bodyMBB); | 
 |         bodyMBB->addSuccessor(footMBB); | 
 |       } | 
 |  | 
 |       // setup loop footer | 
 |       { | 
 |         BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) | 
 |             .addReg(FinalStackProbed) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) | 
 |                          .setMIFlag(MachineInstr::FrameSetup), | 
 |                      StackPtr, false, 0) | 
 |             .addImm(0) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         footMBB->addSuccessor(&MBB); | 
 |       } | 
 |  | 
 |       recomputeLiveIns(*headMBB); | 
 |       recomputeLiveIns(*bodyMBB); | 
 |       recomputeLiveIns(*footMBB); | 
 |       recomputeLiveIns(MBB); | 
 |     } | 
 |   } else { | 
 |     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) | 
 |                            .addReg(Reg) | 
 |                            .addImm(Val) | 
 |                            .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |     // The EFLAGS implicit def is dead. | 
 |     MI->getOperand(3).setIsDead(); | 
 |   } | 
 | } | 
 |  | 
 | bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { | 
 |   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be | 
 |   // clobbered by any interrupt handler. | 
 |   assert(&STI == &MF.getSubtarget<X86Subtarget>() && | 
 |          "MF used frame lowering for wrong subtarget"); | 
 |   const Function &Fn = MF.getFunction(); | 
 |   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); | 
 |   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); | 
 | } | 
 |  | 
 | /// Return true if we need to use the restricted Windows x64 prologue and | 
 | /// epilogue code patterns that can be described with WinCFI (.seh_* | 
 | /// directives). | 
 | bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { | 
 |   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
 | } | 
 |  | 
 | bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { | 
 |   return !isWin64Prologue(MF) && MF.needsFrameMoves(); | 
 | } | 
 |  | 
 | /// emitPrologue - Push callee-saved registers onto the stack, which | 
 | /// automatically adjust the stack pointer. Adjust the stack pointer to allocate | 
 | /// space for local variables. Also emit labels used by the exception handler to | 
 | /// generate the exception handling frames. | 
 |  | 
 | /* | 
 |   Here's a gist of what gets emitted: | 
 |  | 
 |   ; Establish frame pointer, if needed | 
 |   [if needs FP] | 
 |       push  %rbp | 
 |       .cfi_def_cfa_offset 16 | 
 |       .cfi_offset %rbp, -16 | 
 |       .seh_pushreg %rpb | 
 |       mov  %rsp, %rbp | 
 |       .cfi_def_cfa_register %rbp | 
 |  | 
 |   ; Spill general-purpose registers | 
 |   [for all callee-saved GPRs] | 
 |       pushq %<reg> | 
 |       [if not needs FP] | 
 |          .cfi_def_cfa_offset (offset from RETADDR) | 
 |       .seh_pushreg %<reg> | 
 |  | 
 |   ; If the required stack alignment > default stack alignment | 
 |   ; rsp needs to be re-aligned.  This creates a "re-alignment gap" | 
 |   ; of unknown size in the stack frame. | 
 |   [if stack needs re-alignment] | 
 |       and  $MASK, %rsp | 
 |  | 
 |   ; Allocate space for locals | 
 |   [if target is Windows and allocated space > 4096 bytes] | 
 |       ; Windows needs special care for allocations larger | 
 |       ; than one page. | 
 |       mov $NNN, %rax | 
 |       call ___chkstk_ms/___chkstk | 
 |       sub  %rax, %rsp | 
 |   [else] | 
 |       sub  $NNN, %rsp | 
 |  | 
 |   [if needs FP] | 
 |       .seh_stackalloc (size of XMM spill slots) | 
 |       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots | 
 |   [else] | 
 |       .seh_stackalloc NNN | 
 |  | 
 |   ; Spill XMMs | 
 |   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, | 
 |   ; they may get spilled on any platform, if the current function | 
 |   ; calls @llvm.eh.unwind.init | 
 |   [if needs FP] | 
 |       [for all callee-saved XMM registers] | 
 |           movaps  %<xmm reg>, -MMM(%rbp) | 
 |       [for all callee-saved XMM registers] | 
 |           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) | 
 |               ; i.e. the offset relative to (%rbp - SEHFrameOffset) | 
 |   [else] | 
 |       [for all callee-saved XMM registers] | 
 |           movaps  %<xmm reg>, KKK(%rsp) | 
 |       [for all callee-saved XMM registers] | 
 |           .seh_savexmm %<xmm reg>, KKK | 
 |  | 
 |   .seh_endprologue | 
 |  | 
 |   [if needs base pointer] | 
 |       mov  %rsp, %rbx | 
 |       [if needs to restore base pointer] | 
 |           mov %rsp, -MMM(%rbp) | 
 |  | 
 |   ; Emit CFI info | 
 |   [if needs FP] | 
 |       [for all callee-saved registers] | 
 |           .cfi_offset %<reg>, (offset from %rbp) | 
 |   [else] | 
 |        .cfi_def_cfa_offset (offset from RETADDR) | 
 |       [for all callee-saved registers] | 
 |           .cfi_offset %<reg>, (offset from %rsp) | 
 |  | 
 |   Notes: | 
 |   - .seh directives are emitted only for Windows 64 ABI | 
 |   - .cv_fpo directives are emitted on win32 when emitting CodeView | 
 |   - .cfi directives are emitted for all other ABIs | 
 |   - for 32-bit code, substitute %e?? registers for %r?? | 
 | */ | 
 |  | 
 | void X86FrameLowering::emitPrologue(MachineFunction &MF, | 
 |                                     MachineBasicBlock &MBB) const { | 
 |   assert(&STI == &MF.getSubtarget<X86Subtarget>() && | 
 |          "MF used frame lowering for wrong subtarget"); | 
 |   MachineBasicBlock::iterator MBBI = MBB.begin(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   const Function &Fn = MF.getFunction(); | 
 |   MachineModuleInfo &MMI = MF.getMMI(); | 
 |   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. | 
 |   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate. | 
 |   bool IsFunclet = MBB.isEHFuncletEntry(); | 
 |   EHPersonality Personality = EHPersonality::Unknown; | 
 |   if (Fn.hasPersonalityFn()) | 
 |     Personality = classifyEHPersonality(Fn.getPersonalityFn()); | 
 |   bool FnHasClrFunclet = | 
 |       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; | 
 |   bool IsClrFunclet = IsFunclet && FnHasClrFunclet; | 
 |   bool HasFP = hasFP(MF); | 
 |   bool IsWin64Prologue = isWin64Prologue(MF); | 
 |   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); | 
 |   // FIXME: Emit FPO data for EH funclets. | 
 |   bool NeedsWinFPO = | 
 |       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); | 
 |   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; | 
 |   bool NeedsDwarfCFI = needsDwarfCFI(MF); | 
 |   Register FramePtr = TRI->getFrameRegister(MF); | 
 |   const Register MachineFramePtr = | 
 |       STI.isTarget64BitILP32() | 
 |           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; | 
 |   Register BasePtr = TRI->getBaseRegister(); | 
 |   bool HasWinCFI = false; | 
 |  | 
 |   // Debug location must be unknown since the first debug location is used | 
 |   // to determine the end of the prologue. | 
 |   DebugLoc DL; | 
 |  | 
 |   // Space reserved for stack-based arguments when making a (ABI-guaranteed) | 
 |   // tail call. | 
 |   unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); | 
 |   if (TailCallArgReserveSize  && IsWin64Prologue) | 
 |     report_fatal_error("Can't handle guaranteed tail call under win64 yet"); | 
 |  | 
 |   const bool EmitStackProbeCall = | 
 |       STI.getTargetLowering()->hasStackProbeSymbol(MF); | 
 |   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); | 
 |  | 
 |   if (HasFP && X86FI->hasSwiftAsyncContext()) { | 
 |     switch (MF.getTarget().Options.SwiftAsyncFramePointer) { | 
 |     case SwiftAsyncFramePointerMode::DeploymentBased: | 
 |       if (STI.swiftAsyncContextIsDynamicallySet()) { | 
 |         // The special symbol below is absolute and has a *value* suitable to be | 
 |         // combined with the frame pointer directly. | 
 |         BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) | 
 |             .addUse(MachineFramePtr) | 
 |             .addUse(X86::RIP) | 
 |             .addImm(1) | 
 |             .addUse(X86::NoRegister) | 
 |             .addExternalSymbol("swift_async_extendedFramePointerFlags", | 
 |                                X86II::MO_GOTPCREL) | 
 |             .addUse(X86::NoRegister); | 
 |         break; | 
 |       } | 
 |       [[fallthrough]]; | 
 |  | 
 |     case SwiftAsyncFramePointerMode::Always: | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) | 
 |           .addUse(MachineFramePtr) | 
 |           .addImm(60) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       break; | 
 |  | 
 |     case SwiftAsyncFramePointerMode::Never: | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Re-align the stack on 64-bit if the x86-interrupt calling convention is | 
 |   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte | 
 |   // stack alignment. | 
 |   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && | 
 |       Fn.arg_size() == 2) { | 
 |     StackSize += 8; | 
 |     MFI.setStackSize(StackSize); | 
 |     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); | 
 |   } | 
 |  | 
 |   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf | 
 |   // function, and use up to 128 bytes of stack space, don't have a frame | 
 |   // pointer, calls, or dynamic alloca then we do not need to adjust the | 
 |   // stack pointer (we fit in the Red Zone). We also check that we don't | 
 |   // push and pop from the stack. | 
 |   if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && | 
 |       !MFI.hasVarSizedObjects() &&             // No dynamic alloca. | 
 |       !MFI.adjustsStack() &&                   // No calls. | 
 |       !EmitStackProbeCall &&                   // No stack probes. | 
 |       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. | 
 |       !MF.shouldSplitStack()) {                // Regular stack | 
 |     uint64_t MinSize = | 
 |         X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); | 
 |     if (HasFP) MinSize += SlotSize; | 
 |     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); | 
 |     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); | 
 |     MFI.setStackSize(StackSize); | 
 |   } | 
 |  | 
 |   // Insert stack pointer adjustment for later moving of return addr.  Only | 
 |   // applies to tail call optimized functions where the callee argument stack | 
 |   // size is bigger than the callers. | 
 |   if (TailCallArgReserveSize != 0) { | 
 |     BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, | 
 |                          /*InEpilogue=*/false) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |  | 
 |   // Mapping for machine moves: | 
 |   // | 
 |   //   DST: VirtualFP AND | 
 |   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset | 
 |   //        ELSE                        => DW_CFA_def_cfa | 
 |   // | 
 |   //   SRC: VirtualFP AND | 
 |   //        DST: Register               => DW_CFA_def_cfa_register | 
 |   // | 
 |   //   ELSE | 
 |   //        OFFSET < 0                  => DW_CFA_offset_extended_sf | 
 |   //        REG < 64                    => DW_CFA_offset + Reg | 
 |   //        ELSE                        => DW_CFA_offset_extended | 
 |  | 
 |   uint64_t NumBytes = 0; | 
 |   int stackGrowth = -SlotSize; | 
 |  | 
 |   // Find the funclet establisher parameter | 
 |   Register Establisher = X86::NoRegister; | 
 |   if (IsClrFunclet) | 
 |     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; | 
 |   else if (IsFunclet) | 
 |     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; | 
 |  | 
 |   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { | 
 |     // Immediately spill establisher into the home slot. | 
 |     // The runtime cares about this. | 
 |     // MOV64mr %rdx, 16(%rsp) | 
 |     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) | 
 |         .addReg(Establisher) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     MBB.addLiveIn(Establisher); | 
 |   } | 
 |  | 
 |   if (HasFP) { | 
 |     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); | 
 |  | 
 |     // Calculate required stack adjustment. | 
 |     uint64_t FrameSize = StackSize - SlotSize; | 
 |     // If required, include space for extra hidden slot for stashing base pointer. | 
 |     if (X86FI->getRestoreBasePointer()) | 
 |       FrameSize += SlotSize; | 
 |  | 
 |     NumBytes = FrameSize - | 
 |                (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); | 
 |  | 
 |     // Callee-saved registers are pushed on stack before the stack is realigned. | 
 |     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) | 
 |       NumBytes = alignTo(NumBytes, MaxAlign); | 
 |  | 
 |     // Save EBP/RBP into the appropriate stack slot. | 
 |     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) | 
 |       .addReg(MachineFramePtr, RegState::Kill) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |     if (NeedsDwarfCFI) { | 
 |       // Mark the place where EBP/RBP was saved. | 
 |       // Define the current CFA rule to use the provided offset. | 
 |       assert(StackSize); | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth), | 
 |                MachineInstr::FrameSetup); | 
 |  | 
 |       // Change the rule for the FramePtr to be an "offset" rule. | 
 |       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, | 
 |                                               2 * stackGrowth), | 
 |                MachineInstr::FrameSetup); | 
 |     } | 
 |  | 
 |     if (NeedsWinCFI) { | 
 |       HasWinCFI = true; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) | 
 |           .addImm(FramePtr) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |  | 
 |     if (!IsFunclet) { | 
 |       if (X86FI->hasSwiftAsyncContext()) { | 
 |         const auto &Attrs = MF.getFunction().getAttributes(); | 
 |  | 
 |         // Before we update the live frame pointer we have to ensure there's a | 
 |         // valid (or null) asynchronous context in its slot just before FP in | 
 |         // the frame record, so store it now. | 
 |         if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { | 
 |           // We have an initial context in r14, store it just before the frame | 
 |           // pointer. | 
 |           MBB.addLiveIn(X86::R14); | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) | 
 |               .addReg(X86::R14) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |         } else { | 
 |           // No initial context, store null so that there's no pointer that | 
 |           // could be misused. | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) | 
 |               .addImm(0) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |         } | 
 |  | 
 |         if (NeedsWinCFI) { | 
 |           HasWinCFI = true; | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) | 
 |               .addImm(X86::R14) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |         } | 
 |  | 
 |         BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) | 
 |             .addUse(X86::RSP) | 
 |             .addImm(1) | 
 |             .addUse(X86::NoRegister) | 
 |             .addImm(8) | 
 |             .addUse(X86::NoRegister) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |         BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) | 
 |             .addUse(X86::RSP) | 
 |             .addImm(8) | 
 |             .setMIFlag(MachineInstr::FrameSetup); | 
 |       } | 
 |  | 
 |       if (!IsWin64Prologue && !IsFunclet) { | 
 |         // Update EBP with the new base value. | 
 |         if (!X86FI->hasSwiftAsyncContext()) | 
 |           BuildMI(MBB, MBBI, DL, | 
 |                   TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), | 
 |                   FramePtr) | 
 |               .addReg(StackPtr) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |         if (NeedsDwarfCFI) { | 
 |           // Mark effective beginning of when frame pointer becomes valid. | 
 |           // Define the current CFA to use the EBP/RBP register. | 
 |           unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); | 
 |           BuildCFI( | 
 |               MBB, MBBI, DL, | 
 |               MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), | 
 |               MachineInstr::FrameSetup); | 
 |         } | 
 |  | 
 |         if (NeedsWinFPO) { | 
 |           // .cv_fpo_setframe $FramePtr | 
 |           HasWinCFI = true; | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) | 
 |               .addImm(FramePtr) | 
 |               .addImm(0) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     assert(!IsFunclet && "funclets without FPs not yet implemented"); | 
 |     NumBytes = StackSize - | 
 |                (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); | 
 |   } | 
 |  | 
 |   // Update the offset adjustment, which is mainly used by codeview to translate | 
 |   // from ESP to VFRAME relative local variable offsets. | 
 |   if (!IsFunclet) { | 
 |     if (HasFP && TRI->hasStackRealignment(MF)) | 
 |       MFI.setOffsetAdjustment(-NumBytes); | 
 |     else | 
 |       MFI.setOffsetAdjustment(-StackSize); | 
 |   } | 
 |  | 
 |   // For EH funclets, only allocate enough space for outgoing calls. Save the | 
 |   // NumBytes value that we would've used for the parent frame. | 
 |   unsigned ParentFrameNumBytes = NumBytes; | 
 |   if (IsFunclet) | 
 |     NumBytes = getWinEHFuncletFrameSize(MF); | 
 |  | 
 |   // Skip the callee-saved push instructions. | 
 |   bool PushedRegs = false; | 
 |   int StackOffset = 2 * stackGrowth; | 
 |  | 
 |   while (MBBI != MBB.end() && | 
 |          MBBI->getFlag(MachineInstr::FrameSetup) && | 
 |          (MBBI->getOpcode() == X86::PUSH32r || | 
 |           MBBI->getOpcode() == X86::PUSH64r)) { | 
 |     PushedRegs = true; | 
 |     Register Reg = MBBI->getOperand(0).getReg(); | 
 |     ++MBBI; | 
 |  | 
 |     if (!HasFP && NeedsDwarfCFI) { | 
 |       // Mark callee-saved push instruction. | 
 |       // Define the current CFA rule to use the provided offset. | 
 |       assert(StackSize); | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), | 
 |                MachineInstr::FrameSetup); | 
 |       StackOffset += stackGrowth; | 
 |     } | 
 |  | 
 |     if (NeedsWinCFI) { | 
 |       HasWinCFI = true; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) | 
 |           .addImm(Reg) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |   } | 
 |  | 
 |   // Realign stack after we pushed callee-saved registers (so that we'll be | 
 |   // able to calculate their offsets from the frame pointer). | 
 |   // Don't do this for Win64, it needs to realign the stack after the prologue. | 
 |   if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { | 
 |     assert(HasFP && "There should be a frame pointer if stack is realigned."); | 
 |     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); | 
 |  | 
 |     if (NeedsWinCFI) { | 
 |       HasWinCFI = true; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) | 
 |           .addImm(MaxAlign) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |   } | 
 |  | 
 |   // If there is an SUB32ri of ESP immediately before this instruction, merge | 
 |   // the two. This can be the case when tail call elimination is enabled and | 
 |   // the callee has more arguments then the caller. | 
 |   NumBytes -= mergeSPUpdates(MBB, MBBI, true); | 
 |  | 
 |   // Adjust stack pointer: ESP -= numbytes. | 
 |  | 
 |   // Windows and cygwin/mingw require a prologue helper routine when allocating | 
 |   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw | 
 |   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the | 
 |   // stack and adjust the stack pointer in one go.  The 64-bit version of | 
 |   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is | 
 |   // responsible for adjusting the stack pointer.  Touching the stack at 4K | 
 |   // increments is necessary to ensure that the guard pages used by the OS | 
 |   // virtual memory manager are allocated in correct sequence. | 
 |   uint64_t AlignedNumBytes = NumBytes; | 
 |   if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) | 
 |     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); | 
 |   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { | 
 |     assert(!X86FI->getUsesRedZone() && | 
 |            "The Red Zone is not accounted for in stack probes"); | 
 |  | 
 |     // Check whether EAX is livein for this block. | 
 |     bool isEAXAlive = isEAXLiveIn(MBB); | 
 |  | 
 |     if (isEAXAlive) { | 
 |       if (Is64Bit) { | 
 |         // Save RAX | 
 |         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) | 
 |           .addReg(X86::RAX, RegState::Kill) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       } else { | 
 |         // Save EAX | 
 |         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) | 
 |           .addReg(X86::EAX, RegState::Kill) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       } | 
 |     } | 
 |  | 
 |     if (Is64Bit) { | 
 |       // Handle the 64-bit Windows ABI case where we need to call __chkstk. | 
 |       // Function prologue is responsible for adjusting the stack pointer. | 
 |       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) | 
 |           .addImm(Alloc) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } else { | 
 |       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. | 
 |       // We'll also use 4 already allocated bytes for EAX. | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) | 
 |           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |  | 
 |     // Call __chkstk, __chkstk_ms, or __alloca. | 
 |     emitStackProbe(MF, MBB, MBBI, DL, true); | 
 |  | 
 |     if (isEAXAlive) { | 
 |       // Restore RAX/EAX | 
 |       MachineInstr *MI; | 
 |       if (Is64Bit) | 
 |         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), | 
 |                           StackPtr, false, NumBytes - 8); | 
 |       else | 
 |         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), | 
 |                           StackPtr, false, NumBytes - 4); | 
 |       MI->setFlag(MachineInstr::FrameSetup); | 
 |       MBB.insert(MBBI, MI); | 
 |     } | 
 |   } else if (NumBytes) { | 
 |     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); | 
 |   } | 
 |  | 
 |   if (NeedsWinCFI && NumBytes) { | 
 |     HasWinCFI = true; | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) | 
 |         .addImm(NumBytes) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |  | 
 |   int SEHFrameOffset = 0; | 
 |   unsigned SPOrEstablisher; | 
 |   if (IsFunclet) { | 
 |     if (IsClrFunclet) { | 
 |       // The establisher parameter passed to a CLR funclet is actually a pointer | 
 |       // to the (mostly empty) frame of its nearest enclosing funclet; we have | 
 |       // to find the root function establisher frame by loading the PSPSym from | 
 |       // the intermediate frame. | 
 |       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); | 
 |       MachinePointerInfo NoInfo; | 
 |       MBB.addLiveIn(Establisher); | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), | 
 |                    Establisher, false, PSPSlotOffset) | 
 |           .addMemOperand(MF.getMachineMemOperand( | 
 |               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); | 
 |       ; | 
 |       // Save the root establisher back into the current funclet's (mostly | 
 |       // empty) frame, in case a sub-funclet or the GC needs it. | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, | 
 |                    false, PSPSlotOffset) | 
 |           .addReg(Establisher) | 
 |           .addMemOperand(MF.getMachineMemOperand( | 
 |               NoInfo, | 
 |               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, | 
 |               SlotSize, Align(SlotSize))); | 
 |     } | 
 |     SPOrEstablisher = Establisher; | 
 |   } else { | 
 |     SPOrEstablisher = StackPtr; | 
 |   } | 
 |  | 
 |   if (IsWin64Prologue && HasFP) { | 
 |     // Set RBP to a small fixed offset from RSP. In the funclet case, we base | 
 |     // this calculation on the incoming establisher, which holds the value of | 
 |     // RSP from the parent frame at the end of the prologue. | 
 |     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); | 
 |     if (SEHFrameOffset) | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), | 
 |                    SPOrEstablisher, false, SEHFrameOffset); | 
 |     else | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) | 
 |           .addReg(SPOrEstablisher); | 
 |  | 
 |     // If this is not a funclet, emit the CFI describing our frame pointer. | 
 |     if (NeedsWinCFI && !IsFunclet) { | 
 |       assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); | 
 |       HasWinCFI = true; | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) | 
 |           .addImm(FramePtr) | 
 |           .addImm(SEHFrameOffset) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       if (isAsynchronousEHPersonality(Personality)) | 
 |         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; | 
 |     } | 
 |   } else if (IsFunclet && STI.is32Bit()) { | 
 |     // Reset EBP / ESI to something good for funclets. | 
 |     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); | 
 |     // If we're a catch funclet, we can be returned to via catchret. Save ESP | 
 |     // into the registration node so that the runtime will restore it for us. | 
 |     if (!MBB.isCleanupFuncletEntry()) { | 
 |       assert(Personality == EHPersonality::MSVC_CXX); | 
 |       Register FrameReg; | 
 |       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; | 
 |       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); | 
 |       // ESP is the first field, so no extra displacement is needed. | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, | 
 |                    false, EHRegOffset) | 
 |           .addReg(X86::ESP); | 
 |     } | 
 |   } | 
 |  | 
 |   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { | 
 |     const MachineInstr &FrameInstr = *MBBI; | 
 |     ++MBBI; | 
 |  | 
 |     if (NeedsWinCFI) { | 
 |       int FI; | 
 |       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { | 
 |         if (X86::FR64RegClass.contains(Reg)) { | 
 |           int Offset; | 
 |           Register IgnoredFrameReg; | 
 |           if (IsWin64Prologue && IsFunclet) | 
 |             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); | 
 |           else | 
 |             Offset = | 
 |                 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + | 
 |                 SEHFrameOffset; | 
 |  | 
 |           HasWinCFI = true; | 
 |           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); | 
 |           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) | 
 |               .addImm(Reg) | 
 |               .addImm(Offset) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (NeedsWinCFI && HasWinCFI) | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   if (FnHasClrFunclet && !IsFunclet) { | 
 |     // Save the so-called Initial-SP (i.e. the value of the stack pointer | 
 |     // immediately after the prolog)  into the PSPSlot so that funclets | 
 |     // and the GC can recover it. | 
 |     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); | 
 |     auto PSPInfo = MachinePointerInfo::getFixedStack( | 
 |         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, | 
 |                  PSPSlotOffset) | 
 |         .addReg(StackPtr) | 
 |         .addMemOperand(MF.getMachineMemOperand( | 
 |             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, | 
 |             SlotSize, Align(SlotSize))); | 
 |   } | 
 |  | 
 |   // Realign stack after we spilled callee-saved registers (so that we'll be | 
 |   // able to calculate their offsets from the frame pointer). | 
 |   // Win64 requires aligning the stack after the prologue. | 
 |   if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { | 
 |     assert(HasFP && "There should be a frame pointer if stack is realigned."); | 
 |     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); | 
 |   } | 
 |  | 
 |   // We already dealt with stack realignment and funclets above. | 
 |   if (IsFunclet && STI.is32Bit()) | 
 |     return; | 
 |  | 
 |   // If we need a base pointer, set it up here. It's whatever the value | 
 |   // of the stack pointer is at this point. Any variable size objects | 
 |   // will be allocated after this, so we can still use the base pointer | 
 |   // to reference locals. | 
 |   if (TRI->hasBasePointer(MF)) { | 
 |     // Update the base pointer with the current stack pointer. | 
 |     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; | 
 |     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) | 
 |       .addReg(SPOrEstablisher) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |     if (X86FI->getRestoreBasePointer()) { | 
 |       // Stash value of base pointer.  Saving RSP instead of EBP shortens | 
 |       // dependence chain. Used by SjLj EH. | 
 |       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), | 
 |                    FramePtr, true, X86FI->getRestoreBasePointerOffset()) | 
 |         .addReg(SPOrEstablisher) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |  | 
 |     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { | 
 |       // Stash the value of the frame pointer relative to the base pointer for | 
 |       // Win32 EH. This supports Win32 EH, which does the inverse of the above: | 
 |       // it recovers the frame pointer from the base pointer rather than the | 
 |       // other way around. | 
 |       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; | 
 |       Register UsedReg; | 
 |       int Offset = | 
 |           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) | 
 |               .getFixed(); | 
 |       assert(UsedReg == BasePtr); | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) | 
 |           .addReg(FramePtr) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |     } | 
 |   } | 
 |  | 
 |   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { | 
 |     // Mark end of stack pointer adjustment. | 
 |     if (!HasFP && NumBytes) { | 
 |       // Define the current CFA rule to use the provided offset. | 
 |       assert(StackSize); | 
 |       BuildCFI( | 
 |           MBB, MBBI, DL, | 
 |           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), | 
 |           MachineInstr::FrameSetup); | 
 |     } | 
 |  | 
 |     // Emit DWARF info specifying the offsets of the callee-saved registers. | 
 |     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); | 
 |   } | 
 |  | 
 |   // X86 Interrupt handling function cannot assume anything about the direction | 
 |   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction | 
 |   // in each prologue of interrupt handler function. | 
 |   // | 
 |   // FIXME: Create "cld" instruction only in these cases: | 
 |   // 1. The interrupt handling function uses any of the "rep" instructions. | 
 |   // 2. Interrupt handling function calls another function. | 
 |   // | 
 |   if (Fn.getCallingConv() == CallingConv::X86_INTR) | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |   // At this point we know if the function has WinCFI or not. | 
 |   MF.setHasWinCFI(HasWinCFI); | 
 | } | 
 |  | 
 | bool X86FrameLowering::canUseLEAForSPInEpilogue( | 
 |     const MachineFunction &MF) const { | 
 |   // We can't use LEA instructions for adjusting the stack pointer if we don't | 
 |   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used | 
 |   // to deallocate the stack. | 
 |   // This means that we can use LEA for SP in two situations: | 
 |   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. | 
 |   // 2. We *have* a frame pointer which means we are permitted to use LEA. | 
 |   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); | 
 | } | 
 |  | 
 | static bool isFuncletReturnInstr(MachineInstr &MI) { | 
 |   switch (MI.getOpcode()) { | 
 |   case X86::CATCHRET: | 
 |   case X86::CLEANUPRET: | 
 |     return true; | 
 |   default: | 
 |     return false; | 
 |   } | 
 |   llvm_unreachable("impossible"); | 
 | } | 
 |  | 
 | // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the | 
 | // stack. It holds a pointer to the bottom of the root function frame.  The | 
 | // establisher frame pointer passed to a nested funclet may point to the | 
 | // (mostly empty) frame of its parent funclet, but it will need to find | 
 | // the frame of the root function to access locals.  To facilitate this, | 
 | // every funclet copies the pointer to the bottom of the root function | 
 | // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the | 
 | // same offset for the PSPSym in the root function frame that's used in the | 
 | // funclets' frames allows each funclet to dynamically accept any ancestor | 
 | // frame as its establisher argument (the runtime doesn't guarantee the | 
 | // immediate parent for some reason lost to history), and also allows the GC, | 
 | // which uses the PSPSym for some bookkeeping, to find it in any funclet's | 
 | // frame with only a single offset reported for the entire method. | 
 | unsigned | 
 | X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { | 
 |   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); | 
 |   Register SPReg; | 
 |   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, | 
 |                                               /*IgnoreSPUpdates*/ true) | 
 |                    .getFixed(); | 
 |   assert(Offset >= 0 && SPReg == TRI->getStackRegister()); | 
 |   return static_cast<unsigned>(Offset); | 
 | } | 
 |  | 
 | unsigned | 
 | X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { | 
 |   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   // This is the size of the pushed CSRs. | 
 |   unsigned CSSize = X86FI->getCalleeSavedFrameSize(); | 
 |   // This is the size of callee saved XMMs. | 
 |   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); | 
 |   unsigned XMMSize = WinEHXMMSlotInfo.size() * | 
 |                      TRI->getSpillSize(X86::VR128RegClass); | 
 |   // This is the amount of stack a funclet needs to allocate. | 
 |   unsigned UsedSize; | 
 |   EHPersonality Personality = | 
 |       classifyEHPersonality(MF.getFunction().getPersonalityFn()); | 
 |   if (Personality == EHPersonality::CoreCLR) { | 
 |     // CLR funclets need to hold enough space to include the PSPSym, at the | 
 |     // same offset from the stack pointer (immediately after the prolog) as it | 
 |     // resides at in the main function. | 
 |     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; | 
 |   } else { | 
 |     // Other funclets just need enough stack for outgoing call arguments. | 
 |     UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); | 
 |   } | 
 |   // RBP is not included in the callee saved register block. After pushing RBP, | 
 |   // everything is 16 byte aligned. Everything we allocate before an outgoing | 
 |   // call must also be 16 byte aligned. | 
 |   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); | 
 |   // Subtract out the size of the callee saved registers. This is how much stack | 
 |   // each funclet will allocate. | 
 |   return FrameSizeMinusRBP + XMMSize - CSSize; | 
 | } | 
 |  | 
 | static bool isTailCallOpcode(unsigned Opc) { | 
 |     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || | 
 |         Opc == X86::TCRETURNmi || | 
 |         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || | 
 |         Opc == X86::TCRETURNmi64; | 
 | } | 
 |  | 
 | void X86FrameLowering::emitEpilogue(MachineFunction &MF, | 
 |                                     MachineBasicBlock &MBB) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); | 
 |   MachineBasicBlock::iterator MBBI = Terminator; | 
 |   DebugLoc DL; | 
 |   if (MBBI != MBB.end()) | 
 |     DL = MBBI->getDebugLoc(); | 
 |   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. | 
 |   const bool Is64BitILP32 = STI.isTarget64BitILP32(); | 
 |   Register FramePtr = TRI->getFrameRegister(MF); | 
 |   Register MachineFramePtr = | 
 |       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; | 
 |  | 
 |   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
 |   bool NeedsWin64CFI = | 
 |       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); | 
 |   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); | 
 |  | 
 |   // Get the number of bytes to allocate from the FrameInfo. | 
 |   uint64_t StackSize = MFI.getStackSize(); | 
 |   uint64_t MaxAlign = calculateMaxStackAlign(MF); | 
 |   unsigned CSSize = X86FI->getCalleeSavedFrameSize(); | 
 |   unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); | 
 |   bool HasFP = hasFP(MF); | 
 |   uint64_t NumBytes = 0; | 
 |  | 
 |   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && | 
 |                         !MF.getTarget().getTargetTriple().isOSWindows()) && | 
 |                        MF.needsFrameMoves(); | 
 |  | 
 |   if (IsFunclet) { | 
 |     assert(HasFP && "EH funclets without FP not yet implemented"); | 
 |     NumBytes = getWinEHFuncletFrameSize(MF); | 
 |   } else if (HasFP) { | 
 |     // Calculate required stack adjustment. | 
 |     uint64_t FrameSize = StackSize - SlotSize; | 
 |     NumBytes = FrameSize - CSSize - TailCallArgReserveSize; | 
 |  | 
 |     // Callee-saved registers were pushed on stack before the stack was | 
 |     // realigned. | 
 |     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) | 
 |       NumBytes = alignTo(FrameSize, MaxAlign); | 
 |   } else { | 
 |     NumBytes = StackSize - CSSize - TailCallArgReserveSize; | 
 |   } | 
 |   uint64_t SEHStackAllocAmt = NumBytes; | 
 |  | 
 |   // AfterPop is the position to insert .cfi_restore. | 
 |   MachineBasicBlock::iterator AfterPop = MBBI; | 
 |   if (HasFP) { | 
 |     if (X86FI->hasSwiftAsyncContext()) { | 
 |       // Discard the context. | 
 |       int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); | 
 |       emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); | 
 |     } | 
 |     // Pop EBP. | 
 |     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), | 
 |             MachineFramePtr) | 
 |         .setMIFlag(MachineInstr::FrameDestroy); | 
 |  | 
 |     // We need to reset FP to its untagged state on return. Bit 60 is currently | 
 |     // used to show the presence of an extended frame. | 
 |     if (X86FI->hasSwiftAsyncContext()) { | 
 |       BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), | 
 |               MachineFramePtr) | 
 |           .addUse(MachineFramePtr) | 
 |           .addImm(60) | 
 |           .setMIFlag(MachineInstr::FrameDestroy); | 
 |     } | 
 |  | 
 |     if (NeedsDwarfCFI) { | 
 |       unsigned DwarfStackPtr = | 
 |           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), | 
 |                MachineInstr::FrameDestroy); | 
 |       if (!MBB.succ_empty() && !MBB.isReturnBlock()) { | 
 |         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); | 
 |         BuildCFI(MBB, AfterPop, DL, | 
 |                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), | 
 |                  MachineInstr::FrameDestroy); | 
 |         --MBBI; | 
 |         --AfterPop; | 
 |       } | 
 |       --MBBI; | 
 |     } | 
 |   } | 
 |  | 
 |   MachineBasicBlock::iterator FirstCSPop = MBBI; | 
 |   // Skip the callee-saved pop instructions. | 
 |   while (MBBI != MBB.begin()) { | 
 |     MachineBasicBlock::iterator PI = std::prev(MBBI); | 
 |     unsigned Opc = PI->getOpcode(); | 
 |  | 
 |     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { | 
 |       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && | 
 |           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && | 
 |           (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && | 
 |           (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) | 
 |         break; | 
 |       FirstCSPop = PI; | 
 |     } | 
 |  | 
 |     --MBBI; | 
 |   } | 
 |   MBBI = FirstCSPop; | 
 |  | 
 |   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) | 
 |     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); | 
 |  | 
 |   if (MBBI != MBB.end()) | 
 |     DL = MBBI->getDebugLoc(); | 
 |   // If there is an ADD32ri or SUB32ri of ESP immediately before this | 
 |   // instruction, merge the two instructions. | 
 |   if (NumBytes || MFI.hasVarSizedObjects()) | 
 |     NumBytes += mergeSPUpdates(MBB, MBBI, true); | 
 |  | 
 |   // If dynamic alloca is used, then reset esp to point to the last callee-saved | 
 |   // slot before popping them off! Same applies for the case, when stack was | 
 |   // realigned. Don't do this if this was a funclet epilogue, since the funclets | 
 |   // will not do realignment or dynamic stack allocation. | 
 |   if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && | 
 |       !IsFunclet) { | 
 |     if (TRI->hasStackRealignment(MF)) | 
 |       MBBI = FirstCSPop; | 
 |     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); | 
 |     uint64_t LEAAmount = | 
 |         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; | 
 |  | 
 |     if (X86FI->hasSwiftAsyncContext()) | 
 |       LEAAmount -= 16; | 
 |  | 
 |     // There are only two legal forms of epilogue: | 
 |     // - add SEHAllocationSize, %rsp | 
 |     // - lea SEHAllocationSize(%FramePtr), %rsp | 
 |     // | 
 |     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. | 
 |     // However, we may use this sequence if we have a frame pointer because the | 
 |     // effects of the prologue can safely be undone. | 
 |     if (LEAAmount != 0) { | 
 |       unsigned Opc = getLEArOpcode(Uses64BitFramePtr); | 
 |       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), | 
 |                    FramePtr, false, LEAAmount); | 
 |       --MBBI; | 
 |     } else { | 
 |       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); | 
 |       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) | 
 |         .addReg(FramePtr); | 
 |       --MBBI; | 
 |     } | 
 |   } else if (NumBytes) { | 
 |     // Adjust stack pointer back: ESP += numbytes. | 
 |     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); | 
 |     if (!HasFP && NeedsDwarfCFI) { | 
 |       // Define the current CFA rule to use the provided offset. | 
 |       BuildCFI(MBB, MBBI, DL, | 
 |                MCCFIInstruction::cfiDefCfaOffset( | 
 |                    nullptr, CSSize + TailCallArgReserveSize + SlotSize), | 
 |                MachineInstr::FrameDestroy); | 
 |     } | 
 |     --MBBI; | 
 |   } | 
 |  | 
 |   // Windows unwinder will not invoke function's exception handler if IP is | 
 |   // either in prologue or in epilogue.  This behavior causes a problem when a | 
 |   // call immediately precedes an epilogue, because the return address points | 
 |   // into the epilogue.  To cope with that, we insert an epilogue marker here, | 
 |   // then replace it with a 'nop' if it ends up immediately after a CALL in the | 
 |   // final emitted code. | 
 |   if (NeedsWin64CFI && MF.hasWinCFI()) | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); | 
 |  | 
 |   if (!HasFP && NeedsDwarfCFI) { | 
 |     MBBI = FirstCSPop; | 
 |     int64_t Offset = -CSSize - SlotSize; | 
 |     // Mark callee-saved pop instruction. | 
 |     // Define the current CFA rule to use the provided offset. | 
 |     while (MBBI != MBB.end()) { | 
 |       MachineBasicBlock::iterator PI = MBBI; | 
 |       unsigned Opc = PI->getOpcode(); | 
 |       ++MBBI; | 
 |       if (Opc == X86::POP32r || Opc == X86::POP64r) { | 
 |         Offset += SlotSize; | 
 |         BuildCFI(MBB, MBBI, DL, | 
 |                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), | 
 |                  MachineInstr::FrameDestroy); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit DWARF info specifying the restores of the callee-saved registers. | 
 |   // For epilogue with return inside or being other block without successor, | 
 |   // no need to generate .cfi_restore for callee-saved registers. | 
 |   if (NeedsDwarfCFI && !MBB.succ_empty()) | 
 |     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); | 
 |  | 
 |   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { | 
 |     // Add the return addr area delta back since we are not tail calling. | 
 |     int Offset = -1 * X86FI->getTCReturnAddrDelta(); | 
 |     assert(Offset >= 0 && "TCDelta should never be positive"); | 
 |     if (Offset) { | 
 |       // Check for possible merge with preceding ADD instruction. | 
 |       Offset += mergeSPUpdates(MBB, Terminator, true); | 
 |       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit tilerelease for AMX kernel. | 
 |   if (X86FI->hasVirtualTileReg()) | 
 |     BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); | 
 | } | 
 |  | 
 | StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, | 
 |                                                      int FI, | 
 |                                                      Register &FrameReg) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |  | 
 |   bool IsFixed = MFI.isFixedObjectIndex(FI); | 
 |   // We can't calculate offset from frame pointer if the stack is realigned, | 
 |   // so enforce usage of stack/base pointer.  The base pointer is used when we | 
 |   // have dynamic allocas in addition to dynamic realignment. | 
 |   if (TRI->hasBasePointer(MF)) | 
 |     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); | 
 |   else if (TRI->hasStackRealignment(MF)) | 
 |     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); | 
 |   else | 
 |     FrameReg = TRI->getFrameRegister(MF); | 
 |  | 
 |   // Offset will hold the offset from the stack pointer at function entry to the | 
 |   // object. | 
 |   // We need to factor in additional offsets applied during the prologue to the | 
 |   // frame, base, and stack pointer depending on which is used. | 
 |   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); | 
 |   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   unsigned CSSize = X86FI->getCalleeSavedFrameSize(); | 
 |   uint64_t StackSize = MFI.getStackSize(); | 
 |   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
 |   int64_t FPDelta = 0; | 
 |  | 
 |   // In an x86 interrupt, remove the offset we added to account for the return | 
 |   // address from any stack object allocated in the caller's frame. Interrupts | 
 |   // do not have a standard return address. Fixed objects in the current frame, | 
 |   // such as SSE register spills, should not get this treatment. | 
 |   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && | 
 |       Offset >= 0) { | 
 |     Offset += getOffsetOfLocalArea(); | 
 |   } | 
 |  | 
 |   if (IsWin64Prologue) { | 
 |     assert(!MFI.hasCalls() || (StackSize % 16) == 8); | 
 |  | 
 |     // Calculate required stack adjustment. | 
 |     uint64_t FrameSize = StackSize - SlotSize; | 
 |     // If required, include space for extra hidden slot for stashing base pointer. | 
 |     if (X86FI->getRestoreBasePointer()) | 
 |       FrameSize += SlotSize; | 
 |     uint64_t NumBytes = FrameSize - CSSize; | 
 |  | 
 |     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); | 
 |     if (FI && FI == X86FI->getFAIndex()) | 
 |       return StackOffset::getFixed(-SEHFrameOffset); | 
 |  | 
 |     // FPDelta is the offset from the "traditional" FP location of the old base | 
 |     // pointer followed by return address and the location required by the | 
 |     // restricted Win64 prologue. | 
 |     // Add FPDelta to all offsets below that go through the frame pointer. | 
 |     FPDelta = FrameSize - SEHFrameOffset; | 
 |     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && | 
 |            "FPDelta isn't aligned per the Win64 ABI!"); | 
 |   } | 
 |  | 
 |   if (FrameReg == TRI->getFramePtr()) { | 
 |     // Skip saved EBP/RBP | 
 |     Offset += SlotSize; | 
 |  | 
 |     // Account for restricted Windows prologue. | 
 |     Offset += FPDelta; | 
 |  | 
 |     // Skip the RETADDR move area | 
 |     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); | 
 |     if (TailCallReturnAddrDelta < 0) | 
 |       Offset -= TailCallReturnAddrDelta; | 
 |  | 
 |     return StackOffset::getFixed(Offset); | 
 |   } | 
 |  | 
 |   // FrameReg is either the stack pointer or a base pointer. But the base is | 
 |   // located at the end of the statically known StackSize so the distinction | 
 |   // doesn't really matter. | 
 |   if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) | 
 |     assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); | 
 |   return StackOffset::getFixed(Offset + StackSize); | 
 | } | 
 |  | 
 | int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, | 
 |                                               Register &FrameReg) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); | 
 |   const auto it = WinEHXMMSlotInfo.find(FI); | 
 |  | 
 |   if (it == WinEHXMMSlotInfo.end()) | 
 |     return getFrameIndexReference(MF, FI, FrameReg).getFixed(); | 
 |  | 
 |   FrameReg = TRI->getStackRegister(); | 
 |   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + | 
 |          it->second; | 
 | } | 
 |  | 
 | StackOffset | 
 | X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, | 
 |                                            Register &FrameReg, | 
 |                                            int Adjustment) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   FrameReg = TRI->getStackRegister(); | 
 |   return StackOffset::getFixed(MFI.getObjectOffset(FI) - | 
 |                                getOffsetOfLocalArea() + Adjustment); | 
 | } | 
 |  | 
 | StackOffset | 
 | X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, | 
 |                                                  int FI, Register &FrameReg, | 
 |                                                  bool IgnoreSPUpdates) const { | 
 |  | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   // Does not include any dynamic realign. | 
 |   const uint64_t StackSize = MFI.getStackSize(); | 
 |   // LLVM arranges the stack as follows: | 
 |   //   ... | 
 |   //   ARG2 | 
 |   //   ARG1 | 
 |   //   RETADDR | 
 |   //   PUSH RBP   <-- RBP points here | 
 |   //   PUSH CSRs | 
 |   //   ~~~~~~~    <-- possible stack realignment (non-win64) | 
 |   //   ... | 
 |   //   STACK OBJECTS | 
 |   //   ...        <-- RSP after prologue points here | 
 |   //   ~~~~~~~    <-- possible stack realignment (win64) | 
 |   // | 
 |   // if (hasVarSizedObjects()): | 
 |   //   ...        <-- "base pointer" (ESI/RBX) points here | 
 |   //   DYNAMIC ALLOCAS | 
 |   //   ...        <-- RSP points here | 
 |   // | 
 |   // Case 1: In the simple case of no stack realignment and no dynamic | 
 |   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable | 
 |   // with fixed offsets from RSP. | 
 |   // | 
 |   // Case 2: In the case of stack realignment with no dynamic allocas, fixed | 
 |   // stack objects are addressed with RBP and regular stack objects with RSP. | 
 |   // | 
 |   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used | 
 |   // to address stack arguments for outgoing calls and nothing else. The "base | 
 |   // pointer" points to local variables, and RBP points to fixed objects. | 
 |   // | 
 |   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the | 
 |   // answer we give is relative to the SP after the prologue, and not the | 
 |   // SP in the middle of the function. | 
 |  | 
 |   if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && | 
 |       !STI.isTargetWin64()) | 
 |     return getFrameIndexReference(MF, FI, FrameReg); | 
 |  | 
 |   // If !hasReservedCallFrame the function might have SP adjustement in the | 
 |   // body.  So, even though the offset is statically known, it depends on where | 
 |   // we are in the function. | 
 |   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) | 
 |     return getFrameIndexReference(MF, FI, FrameReg); | 
 |  | 
 |   // We don't handle tail calls, and shouldn't be seeing them either. | 
 |   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && | 
 |          "we don't handle this case!"); | 
 |  | 
 |   // This is how the math works out: | 
 |   // | 
 |   //  %rsp grows (i.e. gets lower) left to right. Each box below is | 
 |   //  one word (eight bytes).  Obj0 is the stack slot we're trying to | 
 |   //  get to. | 
 |   // | 
 |   //    ---------------------------------- | 
 |   //    | BP | Obj0 | Obj1 | ... | ObjN | | 
 |   //    ---------------------------------- | 
 |   //    ^    ^      ^                   ^ | 
 |   //    A    B      C                   E | 
 |   // | 
 |   // A is the incoming stack pointer. | 
 |   // (B - A) is the local area offset (-8 for x86-64) [1] | 
 |   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] | 
 |   // | 
 |   // |(E - B)| is the StackSize (absolute value, positive).  For a | 
 |   // stack that grown down, this works out to be (B - E). [3] | 
 |   // | 
 |   // E is also the value of %rsp after stack has been set up, and we | 
 |   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now | 
 |   // (C - E) == (C - A) - (B - A) + (B - E) | 
 |   //            { Using [1], [2] and [3] above } | 
 |   //         == getObjectOffset - LocalAreaOffset + StackSize | 
 |  | 
 |   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); | 
 | } | 
 |  | 
 | bool X86FrameLowering::assignCalleeSavedSpillSlots( | 
 |     MachineFunction &MF, const TargetRegisterInfo *TRI, | 
 |     std::vector<CalleeSavedInfo> &CSI) const { | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |  | 
 |   unsigned CalleeSavedFrameSize = 0; | 
 |   unsigned XMMCalleeSavedFrameSize = 0; | 
 |   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); | 
 |   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); | 
 |  | 
 |   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); | 
 |  | 
 |   if (TailCallReturnAddrDelta < 0) { | 
 |     // create RETURNADDR area | 
 |     //   arg | 
 |     //   arg | 
 |     //   RETADDR | 
 |     //   { ... | 
 |     //     RETADDR area | 
 |     //     ... | 
 |     //   } | 
 |     //   [EBP] | 
 |     MFI.CreateFixedObject(-TailCallReturnAddrDelta, | 
 |                            TailCallReturnAddrDelta - SlotSize, true); | 
 |   } | 
 |  | 
 |   // Spill the BasePtr if it's used. | 
 |   if (this->TRI->hasBasePointer(MF)) { | 
 |     // Allocate a spill slot for EBP if we have a base pointer and EH funclets. | 
 |     if (MF.hasEHFunclets()) { | 
 |       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); | 
 |       X86FI->setHasSEHFramePtrSave(true); | 
 |       X86FI->setSEHFramePtrSaveIndex(FI); | 
 |     } | 
 |   } | 
 |  | 
 |   if (hasFP(MF)) { | 
 |     // emitPrologue always spills frame register the first thing. | 
 |     SpillSlotOffset -= SlotSize; | 
 |     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); | 
 |  | 
 |     // The async context lives directly before the frame pointer, and we | 
 |     // allocate a second slot to preserve stack alignment. | 
 |     if (X86FI->hasSwiftAsyncContext()) { | 
 |       SpillSlotOffset -= SlotSize; | 
 |       MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); | 
 |       SpillSlotOffset -= SlotSize; | 
 |     } | 
 |  | 
 |     // Since emitPrologue and emitEpilogue will handle spilling and restoring of | 
 |     // the frame register, we can delete it from CSI list and not have to worry | 
 |     // about avoiding it later. | 
 |     Register FPReg = TRI->getFrameRegister(MF); | 
 |     for (unsigned i = 0; i < CSI.size(); ++i) { | 
 |       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { | 
 |         CSI.erase(CSI.begin() + i); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Assign slots for GPRs. It increases frame size. | 
 |   for (CalleeSavedInfo &I : llvm::reverse(CSI)) { | 
 |     Register Reg = I.getReg(); | 
 |  | 
 |     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     SpillSlotOffset -= SlotSize; | 
 |     CalleeSavedFrameSize += SlotSize; | 
 |  | 
 |     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); | 
 |     I.setFrameIdx(SlotIndex); | 
 |   } | 
 |  | 
 |   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); | 
 |   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); | 
 |  | 
 |   // Assign slots for XMMs. | 
 |   for (CalleeSavedInfo &I : llvm::reverse(CSI)) { | 
 |     Register Reg = I.getReg(); | 
 |     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     // If this is k-register make sure we lookup via the largest legal type. | 
 |     MVT VT = MVT::Other; | 
 |     if (X86::VK16RegClass.contains(Reg)) | 
 |       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
 |  | 
 |     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
 |     unsigned Size = TRI->getSpillSize(*RC); | 
 |     Align Alignment = TRI->getSpillAlign(*RC); | 
 |     // ensure alignment | 
 |     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); | 
 |     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); | 
 |  | 
 |     // spill into slot | 
 |     SpillSlotOffset -= Size; | 
 |     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); | 
 |     I.setFrameIdx(SlotIndex); | 
 |     MFI.ensureMaxAlignment(Alignment); | 
 |  | 
 |     // Save the start offset and size of XMM in stack frame for funclets. | 
 |     if (X86::VR128RegClass.contains(Reg)) { | 
 |       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; | 
 |       XMMCalleeSavedFrameSize += Size; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool X86FrameLowering::spillCalleeSavedRegisters( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
 |     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { | 
 |   DebugLoc DL = MBB.findDebugLoc(MI); | 
 |  | 
 |   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI | 
 |   // for us, and there are no XMM CSRs on Win32. | 
 |   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) | 
 |     return true; | 
 |  | 
 |   // Push GPRs. It increases frame size. | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; | 
 |   for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { | 
 |     Register Reg = I.getReg(); | 
 |  | 
 |     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |     bool isLiveIn = MRI.isLiveIn(Reg); | 
 |     if (!isLiveIn) | 
 |       MBB.addLiveIn(Reg); | 
 |  | 
 |     // Decide whether we can add a kill flag to the use. | 
 |     bool CanKill = !isLiveIn; | 
 |     // Check if any subregister is live-in | 
 |     if (CanKill) { | 
 |       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { | 
 |         if (MRI.isLiveIn(*AReg)) { | 
 |           CanKill = false; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Do not set a kill flag on values that are also marked as live-in. This | 
 |     // happens with the @llvm-returnaddress intrinsic and with arguments | 
 |     // passed in callee saved registers. | 
 |     // Omitting the kill flags is conservatively correct even if the live-in | 
 |     // is not used after all. | 
 |     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) | 
 |       .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |  | 
 |   // Make XMM regs spilled. X86 does not have ability of push/pop XMM. | 
 |   // It can be done by spilling XMMs to stack frame. | 
 |   for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { | 
 |     Register Reg = I.getReg(); | 
 |     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     // If this is k-register make sure we lookup via the largest legal type. | 
 |     MVT VT = MVT::Other; | 
 |     if (X86::VK16RegClass.contains(Reg)) | 
 |       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
 |  | 
 |     // Add the callee-saved register as live-in. It's killed at the spill. | 
 |     MBB.addLiveIn(Reg); | 
 |     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
 |  | 
 |     TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, | 
 |                             Register()); | 
 |     --MI; | 
 |     MI->setFlag(MachineInstr::FrameSetup); | 
 |     ++MI; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, | 
 |                                                MachineBasicBlock::iterator MBBI, | 
 |                                                MachineInstr *CatchRet) const { | 
 |   // SEH shouldn't use catchret. | 
 |   assert(!isAsynchronousEHPersonality(classifyEHPersonality( | 
 |              MBB.getParent()->getFunction().getPersonalityFn())) && | 
 |          "SEH should not use CATCHRET"); | 
 |   const DebugLoc &DL = CatchRet->getDebugLoc(); | 
 |   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); | 
 |  | 
 |   // Fill EAX/RAX with the address of the target block. | 
 |   if (STI.is64Bit()) { | 
 |     // LEA64r CatchRetTarget(%rip), %rax | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) | 
 |         .addReg(X86::RIP) | 
 |         .addImm(0) | 
 |         .addReg(0) | 
 |         .addMBB(CatchRetTarget) | 
 |         .addReg(0); | 
 |   } else { | 
 |     // MOV32ri $CatchRetTarget, %eax | 
 |     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) | 
 |         .addMBB(CatchRetTarget); | 
 |   } | 
 |  | 
 |   // Record that we've taken the address of CatchRetTarget and no longer just | 
 |   // reference it in a terminator. | 
 |   CatchRetTarget->setMachineBlockAddressTaken(); | 
 | } | 
 |  | 
 | bool X86FrameLowering::restoreCalleeSavedRegisters( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
 |     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { | 
 |   if (CSI.empty()) | 
 |     return false; | 
 |  | 
 |   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { | 
 |     // Don't restore CSRs in 32-bit EH funclets. Matches | 
 |     // spillCalleeSavedRegisters. | 
 |     if (STI.is32Bit()) | 
 |       return true; | 
 |     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form | 
 |     // funclets. emitEpilogue transforms these to normal jumps. | 
 |     if (MI->getOpcode() == X86::CATCHRET) { | 
 |       const Function &F = MBB.getParent()->getFunction(); | 
 |       bool IsSEH = isAsynchronousEHPersonality( | 
 |           classifyEHPersonality(F.getPersonalityFn())); | 
 |       if (IsSEH) | 
 |         return true; | 
 |     } | 
 |   } | 
 |  | 
 |   DebugLoc DL = MBB.findDebugLoc(MI); | 
 |  | 
 |   // Reload XMMs from stack frame. | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     Register Reg = I.getReg(); | 
 |     if (X86::GR64RegClass.contains(Reg) || | 
 |         X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     // If this is k-register make sure we lookup via the largest legal type. | 
 |     MVT VT = MVT::Other; | 
 |     if (X86::VK16RegClass.contains(Reg)) | 
 |       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; | 
 |  | 
 |     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
 |     TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, | 
 |                              Register()); | 
 |   } | 
 |  | 
 |   // POP GPRs. | 
 |   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     Register Reg = I.getReg(); | 
 |     if (!X86::GR64RegClass.contains(Reg) && | 
 |         !X86::GR32RegClass.contains(Reg)) | 
 |       continue; | 
 |  | 
 |     BuildMI(MBB, MI, DL, TII.get(Opc), Reg) | 
 |         .setMIFlag(MachineInstr::FrameDestroy); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, | 
 |                                             BitVector &SavedRegs, | 
 |                                             RegScavenger *RS) const { | 
 |   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); | 
 |  | 
 |   // Spill the BasePtr if it's used. | 
 |   if (TRI->hasBasePointer(MF)){ | 
 |     Register BasePtr = TRI->getBaseRegister(); | 
 |     if (STI.isTarget64BitILP32()) | 
 |       BasePtr = getX86SubSuperRegister(BasePtr, 64); | 
 |     SavedRegs.set(BasePtr); | 
 |   } | 
 | } | 
 |  | 
 | static bool | 
 | HasNestArgument(const MachineFunction *MF) { | 
 |   const Function &F = MF->getFunction(); | 
 |   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
 |        I != E; I++) { | 
 |     if (I->hasNestAttr() && !I->use_empty()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// GetScratchRegister - Get a temp register for performing work in the | 
 | /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform | 
 | /// and the properties of the function either one or two registers will be | 
 | /// needed. Set primary to true for the first register, false for the second. | 
 | static unsigned | 
 | GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { | 
 |   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); | 
 |  | 
 |   // Erlang stuff. | 
 |   if (CallingConvention == CallingConv::HiPE) { | 
 |     if (Is64Bit) | 
 |       return Primary ? X86::R14 : X86::R13; | 
 |     else | 
 |       return Primary ? X86::EBX : X86::EDI; | 
 |   } | 
 |  | 
 |   if (Is64Bit) { | 
 |     if (IsLP64) | 
 |       return Primary ? X86::R11 : X86::R12; | 
 |     else | 
 |       return Primary ? X86::R11D : X86::R12D; | 
 |   } | 
 |  | 
 |   bool IsNested = HasNestArgument(&MF); | 
 |  | 
 |   if (CallingConvention == CallingConv::X86_FastCall || | 
 |       CallingConvention == CallingConv::Fast || | 
 |       CallingConvention == CallingConv::Tail) { | 
 |     if (IsNested) | 
 |       report_fatal_error("Segmented stacks does not support fastcall with " | 
 |                          "nested function."); | 
 |     return Primary ? X86::EAX : X86::ECX; | 
 |   } | 
 |   if (IsNested) | 
 |     return Primary ? X86::EDX : X86::EAX; | 
 |   return Primary ? X86::ECX : X86::EAX; | 
 | } | 
 |  | 
 | // The stack limit in the TCB is set to this many bytes above the actual stack | 
 | // limit. | 
 | static const uint64_t kSplitStackAvailable = 256; | 
 |  | 
 | void X86FrameLowering::adjustForSegmentedStacks( | 
 |     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   uint64_t StackSize; | 
 |   unsigned TlsReg, TlsOffset; | 
 |   DebugLoc DL; | 
 |  | 
 |   // To support shrink-wrapping we would need to insert the new blocks | 
 |   // at the right place and update the branches to PrologueMBB. | 
 |   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); | 
 |  | 
 |   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
 |   assert(!MF.getRegInfo().isLiveIn(ScratchReg) && | 
 |          "Scratch register is live-in"); | 
 |  | 
 |   if (MF.getFunction().isVarArg()) | 
 |     report_fatal_error("Segmented stacks do not support vararg functions."); | 
 |   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && | 
 |       !STI.isTargetWin64() && !STI.isTargetFreeBSD() && | 
 |       !STI.isTargetDragonFly()) | 
 |     report_fatal_error("Segmented stacks not supported on this platform."); | 
 |  | 
 |   // Eventually StackSize will be calculated by a link-time pass; which will | 
 |   // also decide whether checking code needs to be injected into this particular | 
 |   // prologue. | 
 |   StackSize = MFI.getStackSize(); | 
 |  | 
 |   if (!MFI.needsSplitStackProlog()) | 
 |     return; | 
 |  | 
 |   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); | 
 |   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); | 
 |   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   bool IsNested = false; | 
 |  | 
 |   // We need to know if the function has a nest argument only in 64 bit mode. | 
 |   if (Is64Bit) | 
 |     IsNested = HasNestArgument(&MF); | 
 |  | 
 |   // The MOV R10, RAX needs to be in a different block, since the RET we emit in | 
 |   // allocMBB needs to be last (terminating) instruction. | 
 |  | 
 |   for (const auto &LI : PrologueMBB.liveins()) { | 
 |     allocMBB->addLiveIn(LI); | 
 |     checkMBB->addLiveIn(LI); | 
 |   } | 
 |  | 
 |   if (IsNested) | 
 |     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); | 
 |  | 
 |   MF.push_front(allocMBB); | 
 |   MF.push_front(checkMBB); | 
 |  | 
 |   // When the frame size is less than 256 we just compare the stack | 
 |   // boundary directly to the value of the stack pointer, per gcc. | 
 |   bool CompareStackPointer = StackSize < kSplitStackAvailable; | 
 |  | 
 |   // Read the limit off the current stacklet off the stack_guard location. | 
 |   if (Is64Bit) { | 
 |     if (STI.isTargetLinux()) { | 
 |       TlsReg = X86::FS; | 
 |       TlsOffset = IsLP64 ? 0x70 : 0x40; | 
 |     } else if (STI.isTargetDarwin()) { | 
 |       TlsReg = X86::GS; | 
 |       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. | 
 |     } else if (STI.isTargetWin64()) { | 
 |       TlsReg = X86::GS; | 
 |       TlsOffset = 0x28; // pvArbitrary, reserved for application use | 
 |     } else if (STI.isTargetFreeBSD()) { | 
 |       TlsReg = X86::FS; | 
 |       TlsOffset = 0x18; | 
 |     } else if (STI.isTargetDragonFly()) { | 
 |       TlsReg = X86::FS; | 
 |       TlsOffset = 0x20; // use tls_tcb.tcb_segstack | 
 |     } else { | 
 |       report_fatal_error("Segmented stacks not supported on this platform."); | 
 |     } | 
 |  | 
 |     if (CompareStackPointer) | 
 |       ScratchReg = IsLP64 ? X86::RSP : X86::ESP; | 
 |     else | 
 |       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) | 
 |         .addImm(1).addReg(0).addImm(-StackSize).addReg(0); | 
 |  | 
 |     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) | 
 |       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); | 
 |   } else { | 
 |     if (STI.isTargetLinux()) { | 
 |       TlsReg = X86::GS; | 
 |       TlsOffset = 0x30; | 
 |     } else if (STI.isTargetDarwin()) { | 
 |       TlsReg = X86::GS; | 
 |       TlsOffset = 0x48 + 90*4; | 
 |     } else if (STI.isTargetWin32()) { | 
 |       TlsReg = X86::FS; | 
 |       TlsOffset = 0x14; // pvArbitrary, reserved for application use | 
 |     } else if (STI.isTargetDragonFly()) { | 
 |       TlsReg = X86::FS; | 
 |       TlsOffset = 0x10; // use tls_tcb.tcb_segstack | 
 |     } else if (STI.isTargetFreeBSD()) { | 
 |       report_fatal_error("Segmented stacks not supported on FreeBSD i386."); | 
 |     } else { | 
 |       report_fatal_error("Segmented stacks not supported on this platform."); | 
 |     } | 
 |  | 
 |     if (CompareStackPointer) | 
 |       ScratchReg = X86::ESP; | 
 |     else | 
 |       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) | 
 |         .addImm(1).addReg(0).addImm(-StackSize).addReg(0); | 
 |  | 
 |     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || | 
 |         STI.isTargetDragonFly()) { | 
 |       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) | 
 |         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); | 
 |     } else if (STI.isTargetDarwin()) { | 
 |  | 
 |       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. | 
 |       unsigned ScratchReg2; | 
 |       bool SaveScratch2; | 
 |       if (CompareStackPointer) { | 
 |         // The primary scratch register is available for holding the TLS offset. | 
 |         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
 |         SaveScratch2 = false; | 
 |       } else { | 
 |         // Need to use a second register to hold the TLS offset | 
 |         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); | 
 |  | 
 |         // Unfortunately, with fastcc the second scratch register may hold an | 
 |         // argument. | 
 |         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); | 
 |       } | 
 |  | 
 |       // If Scratch2 is live-in then it needs to be saved. | 
 |       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && | 
 |              "Scratch register is live-in and not saved"); | 
 |  | 
 |       if (SaveScratch2) | 
 |         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) | 
 |           .addReg(ScratchReg2, RegState::Kill); | 
 |  | 
 |       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) | 
 |         .addImm(TlsOffset); | 
 |       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) | 
 |         .addReg(ScratchReg) | 
 |         .addReg(ScratchReg2).addImm(1).addReg(0) | 
 |         .addImm(0) | 
 |         .addReg(TlsReg); | 
 |  | 
 |       if (SaveScratch2) | 
 |         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); | 
 |     } | 
 |   } | 
 |  | 
 |   // This jump is taken if SP >= (Stacklet Limit + Stack Space required). | 
 |   // It jumps to normal execution of the function body. | 
 |   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); | 
 |  | 
 |   // On 32 bit we first push the arguments size and then the frame size. On 64 | 
 |   // bit, we pass the stack frame size in r10 and the argument size in r11. | 
 |   if (Is64Bit) { | 
 |     // Functions with nested arguments use R10, so it needs to be saved across | 
 |     // the call to _morestack | 
 |  | 
 |     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; | 
 |     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; | 
 |     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; | 
 |     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; | 
 |  | 
 |     if (IsNested) | 
 |       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); | 
 |  | 
 |     BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) | 
 |         .addImm(StackSize); | 
 |     BuildMI(allocMBB, DL, | 
 |             TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), | 
 |             Reg11) | 
 |         .addImm(X86FI->getArgumentStackSize()); | 
 |   } else { | 
 |     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) | 
 |       .addImm(X86FI->getArgumentStackSize()); | 
 |     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) | 
 |       .addImm(StackSize); | 
 |   } | 
 |  | 
 |   // __morestack is in libgcc | 
 |   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { | 
 |     // Under the large code model, we cannot assume that __morestack lives | 
 |     // within 2^31 bytes of the call site, so we cannot use pc-relative | 
 |     // addressing. We cannot perform the call via a temporary register, | 
 |     // as the rax register may be used to store the static chain, and all | 
 |     // other suitable registers may be either callee-save or used for | 
 |     // parameter passing. We cannot use the stack at this point either | 
 |     // because __morestack manipulates the stack directly. | 
 |     // | 
 |     // To avoid these issues, perform an indirect call via a read-only memory | 
 |     // location containing the address. | 
 |     // | 
 |     // This solution is not perfect, as it assumes that the .rodata section | 
 |     // is laid out within 2^31 bytes of each function body, but this seems | 
 |     // to be sufficient for JIT. | 
 |     // FIXME: Add retpoline support and remove the error here.. | 
 |     if (STI.useIndirectThunkCalls()) | 
 |       report_fatal_error("Emitting morestack calls on 64-bit with the large " | 
 |                          "code model and thunks not yet implemented."); | 
 |     BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) | 
 |         .addReg(X86::RIP) | 
 |         .addImm(0) | 
 |         .addReg(0) | 
 |         .addExternalSymbol("__morestack_addr") | 
 |         .addReg(0); | 
 |   } else { | 
 |     if (Is64Bit) | 
 |       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) | 
 |         .addExternalSymbol("__morestack"); | 
 |     else | 
 |       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) | 
 |         .addExternalSymbol("__morestack"); | 
 |   } | 
 |  | 
 |   if (IsNested) | 
 |     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); | 
 |   else | 
 |     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); | 
 |  | 
 |   allocMBB->addSuccessor(&PrologueMBB); | 
 |  | 
 |   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); | 
 |   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); | 
 |  | 
 | #ifdef EXPENSIVE_CHECKS | 
 |   MF.verify(); | 
 | #endif | 
 | } | 
 |  | 
 | /// Lookup an ERTS parameter in the !hipe.literals named metadata node. | 
 | /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets | 
 | /// to fields it needs, through a named metadata node "hipe.literals" containing | 
 | /// name-value pairs. | 
 | static unsigned getHiPELiteral( | 
 |     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { | 
 |   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { | 
 |     MDNode *Node = HiPELiteralsMD->getOperand(i); | 
 |     if (Node->getNumOperands() != 2) continue; | 
 |     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); | 
 |     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); | 
 |     if (!NodeName || !NodeVal) continue; | 
 |     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); | 
 |     if (ValConst && NodeName->getString() == LiteralName) { | 
 |       return ValConst->getZExtValue(); | 
 |     } | 
 |   } | 
 |  | 
 |   report_fatal_error("HiPE literal " + LiteralName | 
 |                      + " required but not provided"); | 
 | } | 
 |  | 
 | // Return true if there are no non-ehpad successors to MBB and there are no | 
 | // non-meta instructions between MBBI and MBB.end(). | 
 | static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, | 
 |                                   MachineBasicBlock::const_iterator MBBI) { | 
 |   return llvm::all_of( | 
 |              MBB.successors(), | 
 |              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && | 
 |          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { | 
 |            return MI.isMetaInstruction(); | 
 |          }); | 
 | } | 
 |  | 
 | /// Erlang programs may need a special prologue to handle the stack size they | 
 | /// might need at runtime. That is because Erlang/OTP does not implement a C | 
 | /// stack but uses a custom implementation of hybrid stack/heap architecture. | 
 | /// (for more information see Eric Stenman's Ph.D. thesis: | 
 | /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) | 
 | /// | 
 | /// CheckStack: | 
 | ///       temp0 = sp - MaxStack | 
 | ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart | 
 | /// OldStart: | 
 | ///       ... | 
 | /// IncStack: | 
 | ///       call inc_stack   # doubles the stack space | 
 | ///       temp0 = sp - MaxStack | 
 | ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart | 
 | void X86FrameLowering::adjustForHiPEPrologue( | 
 |     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   DebugLoc DL; | 
 |  | 
 |   // To support shrink-wrapping we would need to insert the new blocks | 
 |   // at the right place and update the branches to PrologueMBB. | 
 |   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); | 
 |  | 
 |   // HiPE-specific values | 
 |   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() | 
 |     ->getNamedMetadata("hipe.literals"); | 
 |   if (!HiPELiteralsMD) | 
 |     report_fatal_error( | 
 |         "Can't generate HiPE prologue without runtime parameters"); | 
 |   const unsigned HipeLeafWords | 
 |     = getHiPELiteral(HiPELiteralsMD, | 
 |                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); | 
 |   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; | 
 |   const unsigned Guaranteed = HipeLeafWords * SlotSize; | 
 |   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? | 
 |                             MF.getFunction().arg_size() - CCRegisteredArgs : 0; | 
 |   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; | 
 |  | 
 |   assert(STI.isTargetLinux() && | 
 |          "HiPE prologue is only supported on Linux operating systems."); | 
 |  | 
 |   // Compute the largest caller's frame that is needed to fit the callees' | 
 |   // frames. This 'MaxStack' is computed from: | 
 |   // | 
 |   // a) the fixed frame size, which is the space needed for all spilled temps, | 
 |   // b) outgoing on-stack parameter areas, and | 
 |   // c) the minimum stack space this function needs to make available for the | 
 |   //    functions it calls (a tunable ABI property). | 
 |   if (MFI.hasCalls()) { | 
 |     unsigned MoreStackForCalls = 0; | 
 |  | 
 |     for (auto &MBB : MF) { | 
 |       for (auto &MI : MBB) { | 
 |         if (!MI.isCall()) | 
 |           continue; | 
 |  | 
 |         // Get callee operand. | 
 |         const MachineOperand &MO = MI.getOperand(0); | 
 |  | 
 |         // Only take account of global function calls (no closures etc.). | 
 |         if (!MO.isGlobal()) | 
 |           continue; | 
 |  | 
 |         const Function *F = dyn_cast<Function>(MO.getGlobal()); | 
 |         if (!F) | 
 |           continue; | 
 |  | 
 |         // Do not update 'MaxStack' for primitive and built-in functions | 
 |         // (encoded with names either starting with "erlang."/"bif_" or not | 
 |         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an | 
 |         // "_", such as the BIF "suspend_0") as they are executed on another | 
 |         // stack. | 
 |         if (F->getName().contains("erlang.") || F->getName().contains("bif_") || | 
 |             F->getName().find_first_of("._") == StringRef::npos) | 
 |           continue; | 
 |  | 
 |         unsigned CalleeStkArity = | 
 |           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; | 
 |         if (HipeLeafWords - 1 > CalleeStkArity) | 
 |           MoreStackForCalls = std::max(MoreStackForCalls, | 
 |                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); | 
 |       } | 
 |     } | 
 |     MaxStack += MoreStackForCalls; | 
 |   } | 
 |  | 
 |   // If the stack frame needed is larger than the guaranteed then runtime checks | 
 |   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. | 
 |   if (MaxStack > Guaranteed) { | 
 |     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); | 
 |     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); | 
 |  | 
 |     for (const auto &LI : PrologueMBB.liveins()) { | 
 |       stackCheckMBB->addLiveIn(LI); | 
 |       incStackMBB->addLiveIn(LI); | 
 |     } | 
 |  | 
 |     MF.push_front(incStackMBB); | 
 |     MF.push_front(stackCheckMBB); | 
 |  | 
 |     unsigned ScratchReg, SPReg, PReg, SPLimitOffset; | 
 |     unsigned LEAop, CMPop, CALLop; | 
 |     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); | 
 |     if (Is64Bit) { | 
 |       SPReg = X86::RSP; | 
 |       PReg  = X86::RBP; | 
 |       LEAop = X86::LEA64r; | 
 |       CMPop = X86::CMP64rm; | 
 |       CALLop = X86::CALL64pcrel32; | 
 |     } else { | 
 |       SPReg = X86::ESP; | 
 |       PReg  = X86::EBP; | 
 |       LEAop = X86::LEA32r; | 
 |       CMPop = X86::CMP32rm; | 
 |       CALLop = X86::CALLpcrel32; | 
 |     } | 
 |  | 
 |     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); | 
 |     assert(!MF.getRegInfo().isLiveIn(ScratchReg) && | 
 |            "HiPE prologue scratch register is live-in"); | 
 |  | 
 |     // Create new MBB for StackCheck: | 
 |     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), | 
 |                  SPReg, false, -MaxStack); | 
 |     // SPLimitOffset is in a fixed heap location (pointed by BP). | 
 |     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) | 
 |                  .addReg(ScratchReg), PReg, false, SPLimitOffset); | 
 |     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); | 
 |  | 
 |     // Create new MBB for IncStack: | 
 |     BuildMI(incStackMBB, DL, TII.get(CALLop)). | 
 |       addExternalSymbol("inc_stack_0"); | 
 |     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), | 
 |                  SPReg, false, -MaxStack); | 
 |     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) | 
 |                  .addReg(ScratchReg), PReg, false, SPLimitOffset); | 
 |     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); | 
 |  | 
 |     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); | 
 |     stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); | 
 |     incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); | 
 |     incStackMBB->addSuccessor(incStackMBB, {1, 100}); | 
 |   } | 
 | #ifdef EXPENSIVE_CHECKS | 
 |   MF.verify(); | 
 | #endif | 
 | } | 
 |  | 
 | bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, | 
 |                                            MachineBasicBlock::iterator MBBI, | 
 |                                            const DebugLoc &DL, | 
 |                                            int Offset) const { | 
 |   if (Offset <= 0) | 
 |     return false; | 
 |  | 
 |   if (Offset % SlotSize) | 
 |     return false; | 
 |  | 
 |   int NumPops = Offset / SlotSize; | 
 |   // This is only worth it if we have at most 2 pops. | 
 |   if (NumPops != 1 && NumPops != 2) | 
 |     return false; | 
 |  | 
 |   // Handle only the trivial case where the adjustment directly follows | 
 |   // a call. This is the most common one, anyway. | 
 |   if (MBBI == MBB.begin()) | 
 |     return false; | 
 |   MachineBasicBlock::iterator Prev = std::prev(MBBI); | 
 |   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) | 
 |     return false; | 
 |  | 
 |   unsigned Regs[2]; | 
 |   unsigned FoundRegs = 0; | 
 |  | 
 |   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
 |   const MachineOperand &RegMask = Prev->getOperand(1); | 
 |  | 
 |   auto &RegClass = | 
 |       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; | 
 |   // Try to find up to NumPops free registers. | 
 |   for (auto Candidate : RegClass) { | 
 |     // Poor man's liveness: | 
 |     // Since we're immediately after a call, any register that is clobbered | 
 |     // by the call and not defined by it can be considered dead. | 
 |     if (!RegMask.clobbersPhysReg(Candidate)) | 
 |       continue; | 
 |  | 
 |     // Don't clobber reserved registers | 
 |     if (MRI.isReserved(Candidate)) | 
 |       continue; | 
 |  | 
 |     bool IsDef = false; | 
 |     for (const MachineOperand &MO : Prev->implicit_operands()) { | 
 |       if (MO.isReg() && MO.isDef() && | 
 |           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { | 
 |         IsDef = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (IsDef) | 
 |       continue; | 
 |  | 
 |     Regs[FoundRegs++] = Candidate; | 
 |     if (FoundRegs == (unsigned)NumPops) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (FoundRegs == 0) | 
 |     return false; | 
 |  | 
 |   // If we found only one free register, but need two, reuse the same one twice. | 
 |   while (FoundRegs < (unsigned)NumPops) | 
 |     Regs[FoundRegs++] = Regs[0]; | 
 |  | 
 |   for (int i = 0; i < NumPops; ++i) | 
 |     BuildMI(MBB, MBBI, DL, | 
 |             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | MachineBasicBlock::iterator X86FrameLowering:: | 
 | eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, | 
 |                               MachineBasicBlock::iterator I) const { | 
 |   bool reserveCallFrame = hasReservedCallFrame(MF); | 
 |   unsigned Opcode = I->getOpcode(); | 
 |   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); | 
 |   DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. | 
 |   uint64_t Amount = TII.getFrameSize(*I); | 
 |   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; | 
 |   I = MBB.erase(I); | 
 |   auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); | 
 |  | 
 |   // Try to avoid emitting dead SP adjustments if the block end is unreachable, | 
 |   // typically because the function is marked noreturn (abort, throw, | 
 |   // assert_fail, etc). | 
 |   if (isDestroy && blockEndIsUnreachable(MBB, I)) | 
 |     return I; | 
 |  | 
 |   if (!reserveCallFrame) { | 
 |     // If the stack pointer can be changed after prologue, turn the | 
 |     // adjcallstackup instruction into a 'sub ESP, <amt>' and the | 
 |     // adjcallstackdown instruction into 'add ESP, <amt>' | 
 |  | 
 |     // We need to keep the stack aligned properly.  To do this, we round the | 
 |     // amount of space needed for the outgoing arguments up to the next | 
 |     // alignment boundary. | 
 |     Amount = alignTo(Amount, getStackAlign()); | 
 |  | 
 |     const Function &F = MF.getFunction(); | 
 |     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
 |     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); | 
 |  | 
 |     // If we have any exception handlers in this function, and we adjust | 
 |     // the SP before calls, we may need to indicate this to the unwinder | 
 |     // using GNU_ARGS_SIZE. Note that this may be necessary even when | 
 |     // Amount == 0, because the preceding function may have set a non-0 | 
 |     // GNU_ARGS_SIZE. | 
 |     // TODO: We don't need to reset this between subsequent functions, | 
 |     // if it didn't change. | 
 |     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); | 
 |  | 
 |     if (HasDwarfEHHandlers && !isDestroy && | 
 |         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) | 
 |       BuildCFI(MBB, InsertPos, DL, | 
 |                MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); | 
 |  | 
 |     if (Amount == 0) | 
 |       return I; | 
 |  | 
 |     // Factor out the amount that gets handled inside the sequence | 
 |     // (Pushes of argument for frame setup, callee pops for frame destroy) | 
 |     Amount -= InternalAmt; | 
 |  | 
 |     // TODO: This is needed only if we require precise CFA. | 
 |     // If this is a callee-pop calling convention, emit a CFA adjust for | 
 |     // the amount the callee popped. | 
 |     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) | 
 |       BuildCFI(MBB, InsertPos, DL, | 
 |                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); | 
 |  | 
 |     // Add Amount to SP to destroy a frame, or subtract to setup. | 
 |     int64_t StackAdjustment = isDestroy ? Amount : -Amount; | 
 |  | 
 |     if (StackAdjustment) { | 
 |       // Merge with any previous or following adjustment instruction. Note: the | 
 |       // instructions merged with here do not have CFI, so their stack | 
 |       // adjustments do not feed into CfaAdjustment. | 
 |       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); | 
 |       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); | 
 |  | 
 |       if (StackAdjustment) { | 
 |         if (!(F.hasMinSize() && | 
 |               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) | 
 |           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, | 
 |                                /*InEpilogue=*/false); | 
 |       } | 
 |     } | 
 |  | 
 |     if (DwarfCFI && !hasFP(MF)) { | 
 |       // If we don't have FP, but need to generate unwind information, | 
 |       // we need to set the correct CFA offset after the stack adjustment. | 
 |       // How much we adjust the CFA offset depends on whether we're emitting | 
 |       // CFI only for EH purposes or for debugging. EH only requires the CFA | 
 |       // offset to be correct at each call site, while for debugging we want | 
 |       // it to be more precise. | 
 |  | 
 |       int64_t CfaAdjustment = -StackAdjustment; | 
 |       // TODO: When not using precise CFA, we also need to adjust for the | 
 |       // InternalAmt here. | 
 |       if (CfaAdjustment) { | 
 |         BuildCFI(MBB, InsertPos, DL, | 
 |                  MCCFIInstruction::createAdjustCfaOffset(nullptr, | 
 |                                                          CfaAdjustment)); | 
 |       } | 
 |     } | 
 |  | 
 |     return I; | 
 |   } | 
 |  | 
 |   if (InternalAmt) { | 
 |     MachineBasicBlock::iterator CI = I; | 
 |     MachineBasicBlock::iterator B = MBB.begin(); | 
 |     while (CI != B && !std::prev(CI)->isCall()) | 
 |       --CI; | 
 |     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); | 
 |   } | 
 |  | 
 |   return I; | 
 | } | 
 |  | 
 | bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { | 
 |   assert(MBB.getParent() && "Block is not attached to a function!"); | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |   if (!MBB.isLiveIn(X86::EFLAGS)) | 
 |     return true; | 
 |  | 
 |   // If stack probes have to loop inline or call, that will clobber EFLAGS. | 
 |   // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. | 
 |   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
 |   const X86TargetLowering &TLI = *STI.getTargetLowering(); | 
 |   if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) | 
 |     return false; | 
 |  | 
 |   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); | 
 | } | 
 |  | 
 | bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { | 
 |   assert(MBB.getParent() && "Block is not attached to a function!"); | 
 |  | 
 |   // Win64 has strict requirements in terms of epilogue and we are | 
 |   // not taking a chance at messing with them. | 
 |   // I.e., unless this block is already an exit block, we can't use | 
 |   // it as an epilogue. | 
 |   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) | 
 |     return false; | 
 |  | 
 |   // Swift async context epilogue has a BTR instruction that clobbers parts of | 
 |   // EFLAGS. | 
 |   const MachineFunction &MF = *MBB.getParent(); | 
 |   if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) | 
 |     return !flagsNeedToBePreservedBeforeTheTerminators(MBB); | 
 |  | 
 |   if (canUseLEAForSPInEpilogue(*MBB.getParent())) | 
 |     return true; | 
 |  | 
 |   // If we cannot use LEA to adjust SP, we may need to use ADD, which | 
 |   // clobbers the EFLAGS. Check that we do not need to preserve it, | 
 |   // otherwise, conservatively assume this is not | 
 |   // safe to insert the epilogue here. | 
 |   return !flagsNeedToBePreservedBeforeTheTerminators(MBB); | 
 | } | 
 |  | 
 | bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { | 
 |   // If we may need to emit frameless compact unwind information, give | 
 |   // up as this is currently broken: PR25614. | 
 |   bool CompactUnwind = | 
 |       MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != | 
 |       nullptr; | 
 |   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || | 
 |           !CompactUnwind) && | 
 |          // The lowering of segmented stack and HiPE only support entry | 
 |          // blocks as prologue blocks: PR26107. This limitation may be | 
 |          // lifted if we fix: | 
 |          // - adjustForSegmentedStacks | 
 |          // - adjustForHiPEPrologue | 
 |          MF.getFunction().getCallingConv() != CallingConv::HiPE && | 
 |          !MF.shouldSplitStack(); | 
 | } | 
 |  | 
 | MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( | 
 |     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, | 
 |     const DebugLoc &DL, bool RestoreSP) const { | 
 |   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); | 
 |   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); | 
 |   assert(STI.is32Bit() && !Uses64BitFramePtr && | 
 |          "restoring EBP/ESI on non-32-bit target"); | 
 |  | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   Register FramePtr = TRI->getFrameRegister(MF); | 
 |   Register BasePtr = TRI->getBaseRegister(); | 
 |   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); | 
 |   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |  | 
 |   // FIXME: Don't set FrameSetup flag in catchret case. | 
 |  | 
 |   int FI = FuncInfo.EHRegNodeFrameIndex; | 
 |   int EHRegSize = MFI.getObjectSize(FI); | 
 |  | 
 |   if (RestoreSP) { | 
 |     // MOV32rm -EHRegSize(%ebp), %esp | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), | 
 |                  X86::EBP, true, -EHRegSize) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 |  | 
 |   Register UsedReg; | 
 |   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); | 
 |   int EndOffset = -EHRegOffset - EHRegSize; | 
 |   FuncInfo.EHRegNodeEndOffset = EndOffset; | 
 |  | 
 |   if (UsedReg == FramePtr) { | 
 |     // ADD $offset, %ebp | 
 |     unsigned ADDri = getADDriOpcode(false, EndOffset); | 
 |     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) | 
 |         .addReg(FramePtr) | 
 |         .addImm(EndOffset) | 
 |         .setMIFlag(MachineInstr::FrameSetup) | 
 |         ->getOperand(3) | 
 |         .setIsDead(); | 
 |     assert(EndOffset >= 0 && | 
 |            "end of registration object above normal EBP position!"); | 
 |   } else if (UsedReg == BasePtr) { | 
 |     // LEA offset(%ebp), %esi | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), | 
 |                  FramePtr, false, EndOffset) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |     // MOV32rm SavedEBPOffset(%esi), %ebp | 
 |     assert(X86FI->getHasSEHFramePtrSave()); | 
 |     int Offset = | 
 |         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) | 
 |             .getFixed(); | 
 |     assert(UsedReg == BasePtr); | 
 |     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), | 
 |                  UsedReg, true, Offset) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } else { | 
 |     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); | 
 |   } | 
 |   return MBBI; | 
 | } | 
 |  | 
 | int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { | 
 |   return TRI->getSlotSize(); | 
 | } | 
 |  | 
 | Register | 
 | X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { | 
 |   return TRI->getDwarfRegNum(StackPtr, true); | 
 | } | 
 |  | 
 | namespace { | 
 | // Struct used by orderFrameObjects to help sort the stack objects. | 
 | struct X86FrameSortingObject { | 
 |   bool IsValid = false;         // true if we care about this Object. | 
 |   unsigned ObjectIndex = 0;     // Index of Object into MFI list. | 
 |   unsigned ObjectSize = 0;      // Size of Object in bytes. | 
 |   Align ObjectAlignment = Align(1); // Alignment of Object in bytes. | 
 |   unsigned ObjectNumUses = 0;   // Object static number of uses. | 
 | }; | 
 |  | 
 | // The comparison function we use for std::sort to order our local | 
 | // stack symbols. The current algorithm is to use an estimated | 
 | // "density". This takes into consideration the size and number of | 
 | // uses each object has in order to roughly minimize code size. | 
 | // So, for example, an object of size 16B that is referenced 5 times | 
 | // will get higher priority than 4 4B objects referenced 1 time each. | 
 | // It's not perfect and we may be able to squeeze a few more bytes out of | 
 | // it (for example : 0(esp) requires fewer bytes, symbols allocated at the | 
 | // fringe end can have special consideration, given their size is less | 
 | // important, etc.), but the algorithmic complexity grows too much to be | 
 | // worth the extra gains we get. This gets us pretty close. | 
 | // The final order leaves us with objects with highest priority going | 
 | // at the end of our list. | 
 | struct X86FrameSortingComparator { | 
 |   inline bool operator()(const X86FrameSortingObject &A, | 
 |                          const X86FrameSortingObject &B) const { | 
 |     uint64_t DensityAScaled, DensityBScaled; | 
 |  | 
 |     // For consistency in our comparison, all invalid objects are placed | 
 |     // at the end. This also allows us to stop walking when we hit the | 
 |     // first invalid item after it's all sorted. | 
 |     if (!A.IsValid) | 
 |       return false; | 
 |     if (!B.IsValid) | 
 |       return true; | 
 |  | 
 |     // The density is calculated by doing : | 
 |     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize | 
 |     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize | 
 |     // Since this approach may cause inconsistencies in | 
 |     // the floating point <, >, == comparisons, depending on the floating | 
 |     // point model with which the compiler was built, we're going | 
 |     // to scale both sides by multiplying with | 
 |     // A.ObjectSize * B.ObjectSize. This ends up factoring away | 
 |     // the division and, with it, the need for any floating point | 
 |     // arithmetic. | 
 |     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * | 
 |       static_cast<uint64_t>(B.ObjectSize); | 
 |     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * | 
 |       static_cast<uint64_t>(A.ObjectSize); | 
 |  | 
 |     // If the two densities are equal, prioritize highest alignment | 
 |     // objects. This allows for similar alignment objects | 
 |     // to be packed together (given the same density). | 
 |     // There's room for improvement here, also, since we can pack | 
 |     // similar alignment (different density) objects next to each | 
 |     // other to save padding. This will also require further | 
 |     // complexity/iterations, and the overall gain isn't worth it, | 
 |     // in general. Something to keep in mind, though. | 
 |     if (DensityAScaled == DensityBScaled) | 
 |       return A.ObjectAlignment < B.ObjectAlignment; | 
 |  | 
 |     return DensityAScaled < DensityBScaled; | 
 |   } | 
 | }; | 
 | } // namespace | 
 |  | 
 | // Order the symbols in the local stack. | 
 | // We want to place the local stack objects in some sort of sensible order. | 
 | // The heuristic we use is to try and pack them according to static number | 
 | // of uses and size of object in order to minimize code size. | 
 | void X86FrameLowering::orderFrameObjects( | 
 |     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |  | 
 |   // Don't waste time if there's nothing to do. | 
 |   if (ObjectsToAllocate.empty()) | 
 |     return; | 
 |  | 
 |   // Create an array of all MFI objects. We won't need all of these | 
 |   // objects, but we're going to create a full array of them to make | 
 |   // it easier to index into when we're counting "uses" down below. | 
 |   // We want to be able to easily/cheaply access an object by simply | 
 |   // indexing into it, instead of having to search for it every time. | 
 |   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); | 
 |  | 
 |   // Walk the objects we care about and mark them as such in our working | 
 |   // struct. | 
 |   for (auto &Obj : ObjectsToAllocate) { | 
 |     SortingObjects[Obj].IsValid = true; | 
 |     SortingObjects[Obj].ObjectIndex = Obj; | 
 |     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); | 
 |     // Set the size. | 
 |     int ObjectSize = MFI.getObjectSize(Obj); | 
 |     if (ObjectSize == 0) | 
 |       // Variable size. Just use 4. | 
 |       SortingObjects[Obj].ObjectSize = 4; | 
 |     else | 
 |       SortingObjects[Obj].ObjectSize = ObjectSize; | 
 |   } | 
 |  | 
 |   // Count the number of uses for each object. | 
 |   for (auto &MBB : MF) { | 
 |     for (auto &MI : MBB) { | 
 |       if (MI.isDebugInstr()) | 
 |         continue; | 
 |       for (const MachineOperand &MO : MI.operands()) { | 
 |         // Check to see if it's a local stack symbol. | 
 |         if (!MO.isFI()) | 
 |           continue; | 
 |         int Index = MO.getIndex(); | 
 |         // Check to see if it falls within our range, and is tagged | 
 |         // to require ordering. | 
 |         if (Index >= 0 && Index < MFI.getObjectIndexEnd() && | 
 |             SortingObjects[Index].IsValid) | 
 |           SortingObjects[Index].ObjectNumUses++; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort the objects using X86FrameSortingAlgorithm (see its comment for | 
 |   // info). | 
 |   llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); | 
 |  | 
 |   // Now modify the original list to represent the final order that | 
 |   // we want. The order will depend on whether we're going to access them | 
 |   // from the stack pointer or the frame pointer. For SP, the list should | 
 |   // end up with the END containing objects that we want with smaller offsets. | 
 |   // For FP, it should be flipped. | 
 |   int i = 0; | 
 |   for (auto &Obj : SortingObjects) { | 
 |     // All invalid items are sorted at the end, so it's safe to stop. | 
 |     if (!Obj.IsValid) | 
 |       break; | 
 |     ObjectsToAllocate[i++] = Obj.ObjectIndex; | 
 |   } | 
 |  | 
 |   // Flip it if we're accessing off of the FP. | 
 |   if (!TRI->hasStackRealignment(MF) && hasFP(MF)) | 
 |     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); | 
 | } | 
 |  | 
 |  | 
 | unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { | 
 |   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. | 
 |   unsigned Offset = 16; | 
 |   // RBP is immediately pushed. | 
 |   Offset += SlotSize; | 
 |   // All callee-saved registers are then pushed. | 
 |   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); | 
 |   // Every funclet allocates enough stack space for the largest outgoing call. | 
 |   Offset += getWinEHFuncletFrameSize(MF); | 
 |   return Offset; | 
 | } | 
 |  | 
 | void X86FrameLowering::processFunctionBeforeFrameFinalized( | 
 |     MachineFunction &MF, RegScavenger *RS) const { | 
 |   // Mark the function as not having WinCFI. We will set it back to true in | 
 |   // emitPrologue if it gets called and emits CFI. | 
 |   MF.setHasWinCFI(false); | 
 |  | 
 |   // If we are using Windows x64 CFI, ensure that the stack is always 8 byte | 
 |   // aligned. The format doesn't support misaligned stack adjustments. | 
 |   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) | 
 |     MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); | 
 |  | 
 |   // If this function isn't doing Win64-style C++ EH, we don't need to do | 
 |   // anything. | 
 |   if (STI.is64Bit() && MF.hasEHFunclets() && | 
 |       classifyEHPersonality(MF.getFunction().getPersonalityFn()) == | 
 |           EHPersonality::MSVC_CXX) { | 
 |     adjustFrameForMsvcCxxEh(MF); | 
 |   } | 
 | } | 
 |  | 
 | void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { | 
 |   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset | 
 |   // relative to RSP after the prologue.  Find the offset of the last fixed | 
 |   // object, so that we can allocate a slot immediately following it. If there | 
 |   // were no fixed objects, use offset -SlotSize, which is immediately after the | 
 |   // return address. Fixed objects have negative frame indices. | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); | 
 |   int64_t MinFixedObjOffset = -SlotSize; | 
 |   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) | 
 |     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); | 
 |  | 
 |   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { | 
 |     for (WinEHHandlerType &H : TBME.HandlerArray) { | 
 |       int FrameIndex = H.CatchObj.FrameIndex; | 
 |       if (FrameIndex != INT_MAX) { | 
 |         // Ensure alignment. | 
 |         unsigned Align = MFI.getObjectAlign(FrameIndex).value(); | 
 |         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; | 
 |         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); | 
 |         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Ensure alignment. | 
 |   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; | 
 |   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; | 
 |   int UnwindHelpFI = | 
 |       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); | 
 |   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; | 
 |  | 
 |   // Store -2 into UnwindHelp on function entry. We have to scan forwards past | 
 |   // other frame setup instructions. | 
 |   MachineBasicBlock &MBB = MF.front(); | 
 |   auto MBBI = MBB.begin(); | 
 |   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) | 
 |     ++MBBI; | 
 |  | 
 |   DebugLoc DL = MBB.findDebugLoc(MBBI); | 
 |   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), | 
 |                     UnwindHelpFI) | 
 |       .addImm(-2); | 
 | } | 
 |  | 
 | void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( | 
 |     MachineFunction &MF, RegScavenger *RS) const { | 
 |   if (STI.is32Bit() && MF.hasEHFunclets()) | 
 |     restoreWinEHStackPointersInParent(MF); | 
 | } | 
 |  | 
 | void X86FrameLowering::restoreWinEHStackPointersInParent( | 
 |     MachineFunction &MF) const { | 
 |   // 32-bit functions have to restore stack pointers when control is transferred | 
 |   // back to the parent function. These blocks are identified as eh pads that | 
 |   // are not funclet entries. | 
 |   bool IsSEH = isAsynchronousEHPersonality( | 
 |       classifyEHPersonality(MF.getFunction().getPersonalityFn())); | 
 |   for (MachineBasicBlock &MBB : MF) { | 
 |     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); | 
 |     if (NeedsRestore) | 
 |       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), | 
 |                                   /*RestoreSP=*/IsSEH); | 
 |   } | 
 | } |