| //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// This file implements a pass that removes irreducible control flow. | 
 | /// Irreducible control flow means multiple-entry loops, which this pass | 
 | /// transforms to have a single entry. | 
 | /// | 
 | /// Note that LLVM has a generic pass that lowers irreducible control flow, but | 
 | /// it linearizes control flow, turning diamonds into two triangles, which is | 
 | /// both unnecessary and undesirable for WebAssembly. | 
 | /// | 
 | /// The big picture: We recursively process each "region", defined as a group | 
 | /// of blocks with a single entry and no branches back to that entry. A region | 
 | /// may be the entire function body, or the inner part of a loop, i.e., the | 
 | /// loop's body without branches back to the loop entry. In each region we fix | 
 | /// up multi-entry loops by adding a new block that can dispatch to each of the | 
 | /// loop entries, based on the value of a label "helper" variable, and we | 
 | /// replace direct branches to the entries with assignments to the label | 
 | /// variable and a branch to the dispatch block. Then the dispatch block is the | 
 | /// single entry in the loop containing the previous multiple entries. After | 
 | /// ensuring all the loops in a region are reducible, we recurse into them. The | 
 | /// total time complexity of this pass is: | 
 | /// | 
 | ///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + | 
 | ///     NumLoops * NumLoops) | 
 | /// | 
 | /// This pass is similar to what the Relooper [1] does. Both identify looping | 
 | /// code that requires multiple entries, and resolve it in a similar way (in | 
 | /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note | 
 | /// also that like the Relooper, we implement a "minimal" intervention: we only | 
 | /// use the "label" helper for the blocks we absolutely must and no others. We | 
 | /// also prioritize code size and do not duplicate code in order to resolve | 
 | /// irreducibility. The graph algorithms for finding loops and entries and so | 
 | /// forth are also similar to the Relooper. The main differences between this | 
 | /// pass and the Relooper are: | 
 | /// | 
 | ///  * We just care about irreducibility, so we just look at loops. | 
 | ///  * The Relooper emits structured control flow (with ifs etc.), while we | 
 | ///    emit a CFG. | 
 | /// | 
 | /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In | 
 | /// Proceedings of the ACM international conference companion on Object oriented | 
 | /// programming systems languages and applications companion (SPLASH '11). ACM, | 
 | /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 | 
 | /// http://doi.acm.org/10.1145/2048147.2048224 | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" | 
 | #include "WebAssembly.h" | 
 | #include "WebAssemblySubtarget.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" | 
 |  | 
 | namespace { | 
 |  | 
 | using BlockVector = SmallVector<MachineBasicBlock *, 4>; | 
 | using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; | 
 |  | 
 | // Calculates reachability in a region. Ignores branches to blocks outside of | 
 | // the region, and ignores branches to the region entry (for the case where | 
 | // the region is the inner part of a loop). | 
 | class ReachabilityGraph { | 
 | public: | 
 |   ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) | 
 |       : Entry(Entry), Blocks(Blocks) { | 
 | #ifndef NDEBUG | 
 |     // The region must have a single entry. | 
 |     for (auto *MBB : Blocks) { | 
 |       if (MBB != Entry) { | 
 |         for (auto *Pred : MBB->predecessors()) { | 
 |           assert(inRegion(Pred)); | 
 |         } | 
 |       } | 
 |     } | 
 | #endif | 
 |     calculate(); | 
 |   } | 
 |  | 
 |   bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { | 
 |     assert(inRegion(From) && inRegion(To)); | 
 |     auto I = Reachable.find(From); | 
 |     if (I == Reachable.end()) | 
 |       return false; | 
 |     return I->second.count(To); | 
 |   } | 
 |  | 
 |   // "Loopers" are blocks that are in a loop. We detect these by finding blocks | 
 |   // that can reach themselves. | 
 |   const BlockSet &getLoopers() const { return Loopers; } | 
 |  | 
 |   // Get all blocks that are loop entries. | 
 |   const BlockSet &getLoopEntries() const { return LoopEntries; } | 
 |  | 
 |   // Get all blocks that enter a particular loop from outside. | 
 |   const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { | 
 |     assert(inRegion(LoopEntry)); | 
 |     auto I = LoopEnterers.find(LoopEntry); | 
 |     assert(I != LoopEnterers.end()); | 
 |     return I->second; | 
 |   } | 
 |  | 
 | private: | 
 |   MachineBasicBlock *Entry; | 
 |   const BlockSet &Blocks; | 
 |  | 
 |   BlockSet Loopers, LoopEntries; | 
 |   DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; | 
 |  | 
 |   bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); } | 
 |  | 
 |   // Maps a block to all the other blocks it can reach. | 
 |   DenseMap<MachineBasicBlock *, BlockSet> Reachable; | 
 |  | 
 |   void calculate() { | 
 |     // Reachability computation work list. Contains pairs of recent additions | 
 |     // (A, B) where we just added a link A => B. | 
 |     using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; | 
 |     SmallVector<BlockPair, 4> WorkList; | 
 |  | 
 |     // Add all relevant direct branches. | 
 |     for (auto *MBB : Blocks) { | 
 |       for (auto *Succ : MBB->successors()) { | 
 |         if (Succ != Entry && inRegion(Succ)) { | 
 |           Reachable[MBB].insert(Succ); | 
 |           WorkList.emplace_back(MBB, Succ); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     while (!WorkList.empty()) { | 
 |       MachineBasicBlock *MBB, *Succ; | 
 |       std::tie(MBB, Succ) = WorkList.pop_back_val(); | 
 |       assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); | 
 |       if (MBB != Entry) { | 
 |         // We recently added MBB => Succ, and that means we may have enabled | 
 |         // Pred => MBB => Succ. | 
 |         for (auto *Pred : MBB->predecessors()) { | 
 |           if (Reachable[Pred].insert(Succ).second) { | 
 |             WorkList.emplace_back(Pred, Succ); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Blocks that can return to themselves are in a loop. | 
 |     for (auto *MBB : Blocks) { | 
 |       if (canReach(MBB, MBB)) { | 
 |         Loopers.insert(MBB); | 
 |       } | 
 |     } | 
 |     assert(!Loopers.count(Entry)); | 
 |  | 
 |     // Find the loop entries - loopers reachable from blocks not in that loop - | 
 |     // and those outside blocks that reach them, the "loop enterers". | 
 |     for (auto *Looper : Loopers) { | 
 |       for (auto *Pred : Looper->predecessors()) { | 
 |         // Pred can reach Looper. If Looper can reach Pred, it is in the loop; | 
 |         // otherwise, it is a block that enters into the loop. | 
 |         if (!canReach(Looper, Pred)) { | 
 |           LoopEntries.insert(Looper); | 
 |           LoopEnterers[Looper].insert(Pred); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | // Finds the blocks in a single-entry loop, given the loop entry and the | 
 | // list of blocks that enter the loop. | 
 | class LoopBlocks { | 
 | public: | 
 |   LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) | 
 |       : Entry(Entry), Enterers(Enterers) { | 
 |     calculate(); | 
 |   } | 
 |  | 
 |   BlockSet &getBlocks() { return Blocks; } | 
 |  | 
 | private: | 
 |   MachineBasicBlock *Entry; | 
 |   const BlockSet &Enterers; | 
 |  | 
 |   BlockSet Blocks; | 
 |  | 
 |   void calculate() { | 
 |     // Going backwards from the loop entry, if we ignore the blocks entering | 
 |     // from outside, we will traverse all the blocks in the loop. | 
 |     BlockVector WorkList; | 
 |     BlockSet AddedToWorkList; | 
 |     Blocks.insert(Entry); | 
 |     for (auto *Pred : Entry->predecessors()) { | 
 |       if (!Enterers.count(Pred)) { | 
 |         WorkList.push_back(Pred); | 
 |         AddedToWorkList.insert(Pred); | 
 |       } | 
 |     } | 
 |  | 
 |     while (!WorkList.empty()) { | 
 |       auto *MBB = WorkList.pop_back_val(); | 
 |       assert(!Enterers.count(MBB)); | 
 |       if (Blocks.insert(MBB).second) { | 
 |         for (auto *Pred : MBB->predecessors()) { | 
 |           if (!AddedToWorkList.count(Pred)) { | 
 |             WorkList.push_back(Pred); | 
 |             AddedToWorkList.insert(Pred); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { | 
 |   StringRef getPassName() const override { | 
 |     return "WebAssembly Fix Irreducible Control Flow"; | 
 |   } | 
 |  | 
 |   bool runOnMachineFunction(MachineFunction &MF) override; | 
 |  | 
 |   bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, | 
 |                      MachineFunction &MF); | 
 |  | 
 |   void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, | 
 |                            MachineFunction &MF, const ReachabilityGraph &Graph); | 
 |  | 
 | public: | 
 |   static char ID; // Pass identification, replacement for typeid | 
 |   WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} | 
 | }; | 
 |  | 
 | bool WebAssemblyFixIrreducibleControlFlow::processRegion( | 
 |     MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { | 
 |   bool Changed = false; | 
 |  | 
 |   // Remove irreducibility before processing child loops, which may take | 
 |   // multiple iterations. | 
 |   while (true) { | 
 |     ReachabilityGraph Graph(Entry, Blocks); | 
 |  | 
 |     bool FoundIrreducibility = false; | 
 |  | 
 |     for (auto *LoopEntry : Graph.getLoopEntries()) { | 
 |       // Find mutual entries - all entries which can reach this one, and | 
 |       // are reached by it (that always includes LoopEntry itself). All mutual | 
 |       // entries must be in the same loop, so if we have more than one, then we | 
 |       // have irreducible control flow. | 
 |       // | 
 |       // Note that irreducibility may involve inner loops, e.g. imagine A | 
 |       // starts one loop, and it has B inside it which starts an inner loop. | 
 |       // If we add a branch from all the way on the outside to B, then in a | 
 |       // sense B is no longer an "inner" loop, semantically speaking. We will | 
 |       // fix that irreducibility by adding a block that dispatches to either | 
 |       // either A or B, so B will no longer be an inner loop in our output. | 
 |       // (A fancier approach might try to keep it as such.) | 
 |       // | 
 |       // Note that we still need to recurse into inner loops later, to handle | 
 |       // the case where the irreducibility is entirely nested - we would not | 
 |       // be able to identify that at this point, since the enclosing loop is | 
 |       // a group of blocks all of whom can reach each other. (We'll see the | 
 |       // irreducibility after removing branches to the top of that enclosing | 
 |       // loop.) | 
 |       BlockSet MutualLoopEntries; | 
 |       MutualLoopEntries.insert(LoopEntry); | 
 |       for (auto *OtherLoopEntry : Graph.getLoopEntries()) { | 
 |         if (OtherLoopEntry != LoopEntry && | 
 |             Graph.canReach(LoopEntry, OtherLoopEntry) && | 
 |             Graph.canReach(OtherLoopEntry, LoopEntry)) { | 
 |           MutualLoopEntries.insert(OtherLoopEntry); | 
 |         } | 
 |       } | 
 |  | 
 |       if (MutualLoopEntries.size() > 1) { | 
 |         makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph); | 
 |         FoundIrreducibility = true; | 
 |         Changed = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     // Only go on to actually process the inner loops when we are done | 
 |     // removing irreducible control flow and changing the graph. Modifying | 
 |     // the graph as we go is possible, and that might let us avoid looking at | 
 |     // the already-fixed loops again if we are careful, but all that is | 
 |     // complex and bug-prone. Since irreducible loops are rare, just starting | 
 |     // another iteration is best. | 
 |     if (FoundIrreducibility) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     for (auto *LoopEntry : Graph.getLoopEntries()) { | 
 |       LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); | 
 |       // Each of these calls to processRegion may change the graph, but are | 
 |       // guaranteed not to interfere with each other. The only changes we make | 
 |       // to the graph are to add blocks on the way to a loop entry. As the | 
 |       // loops are disjoint, that means we may only alter branches that exit | 
 |       // another loop, which are ignored when recursing into that other loop | 
 |       // anyhow. | 
 |       if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) { | 
 |         Changed = true; | 
 |       } | 
 |     } | 
 |  | 
 |     return Changed; | 
 |   } | 
 | } | 
 |  | 
 | // Given a set of entries to a single loop, create a single entry for that | 
 | // loop by creating a dispatch block for them, routing control flow using | 
 | // a helper variable. Also updates Blocks with any new blocks created, so | 
 | // that we properly track all the blocks in the region. But this does not update | 
 | // ReachabilityGraph; this will be updated in the caller of this function as | 
 | // needed. | 
 | void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( | 
 |     BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, | 
 |     const ReachabilityGraph &Graph) { | 
 |   assert(Entries.size() >= 2); | 
 |  | 
 |   // Sort the entries to ensure a deterministic build. | 
 |   BlockVector SortedEntries(Entries.begin(), Entries.end()); | 
 |   llvm::sort(SortedEntries, | 
 |              [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { | 
 |                auto ANum = A->getNumber(); | 
 |                auto BNum = B->getNumber(); | 
 |                return ANum < BNum; | 
 |              }); | 
 |  | 
 | #ifndef NDEBUG | 
 |   for (auto Block : SortedEntries) | 
 |     assert(Block->getNumber() != -1); | 
 |   if (SortedEntries.size() > 1) { | 
 |     for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; | 
 |          ++I) { | 
 |       auto ANum = (*I)->getNumber(); | 
 |       auto BNum = (*(std::next(I)))->getNumber(); | 
 |       assert(ANum != BNum); | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   // Create a dispatch block which will contain a jump table to the entries. | 
 |   MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); | 
 |   MF.insert(MF.end(), Dispatch); | 
 |   Blocks.insert(Dispatch); | 
 |  | 
 |   // Add the jump table. | 
 |   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); | 
 |   MachineInstrBuilder MIB = | 
 |       BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32)); | 
 |  | 
 |   // Add the register which will be used to tell the jump table which block to | 
 |   // jump to. | 
 |   MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   unsigned Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); | 
 |   MIB.addReg(Reg); | 
 |  | 
 |   // Compute the indices in the superheader, one for each bad block, and | 
 |   // add them as successors. | 
 |   DenseMap<MachineBasicBlock *, unsigned> Indices; | 
 |   for (auto *Entry : SortedEntries) { | 
 |     auto Pair = Indices.insert(std::make_pair(Entry, 0)); | 
 |     assert(Pair.second); | 
 |  | 
 |     unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; | 
 |     Pair.first->second = Index; | 
 |  | 
 |     MIB.addMBB(Entry); | 
 |     Dispatch->addSuccessor(Entry); | 
 |   } | 
 |  | 
 |   // Rewrite the problematic successors for every block that wants to reach | 
 |   // the bad blocks. For simplicity, we just introduce a new block for every | 
 |   // edge we need to rewrite. (Fancier things are possible.) | 
 |  | 
 |   BlockVector AllPreds; | 
 |   for (auto *Entry : SortedEntries) { | 
 |     for (auto *Pred : Entry->predecessors()) { | 
 |       if (Pred != Dispatch) { | 
 |         AllPreds.push_back(Pred); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // This set stores predecessors within this loop. | 
 |   DenseSet<MachineBasicBlock *> InLoop; | 
 |   for (auto *Pred : AllPreds) { | 
 |     for (auto *Entry : Pred->successors()) { | 
 |       if (!Entries.count(Entry)) | 
 |         continue; | 
 |       if (Graph.canReach(Entry, Pred)) { | 
 |         InLoop.insert(Pred); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Record if each entry has a layout predecessor. This map stores | 
 |   // <<Predecessor is within the loop?, loop entry>, layout predecessor> | 
 |   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> | 
 |       EntryToLayoutPred; | 
 |   for (auto *Pred : AllPreds) | 
 |     for (auto *Entry : Pred->successors()) | 
 |       if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry)) | 
 |         EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred; | 
 |  | 
 |   // We need to create at most two routing blocks per entry: one for | 
 |   // predecessors outside the loop and one for predecessors inside the loop. | 
 |   // This map stores | 
 |   // <<Predecessor is within the loop?, loop entry>, routing block> | 
 |   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map; | 
 |   for (auto *Pred : AllPreds) { | 
 |     bool PredInLoop = InLoop.count(Pred); | 
 |     for (auto *Entry : Pred->successors()) { | 
 |       if (!Entries.count(Entry) || | 
 |           Map.count(std::make_pair(InLoop.count(Pred), Entry))) | 
 |         continue; | 
 |       // If there exists a layout predecessor of this entry and this predecessor | 
 |       // is not that, we rather create a routing block after that layout | 
 |       // predecessor to save a branch. | 
 |       if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) && | 
 |           EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred) | 
 |         continue; | 
 |  | 
 |       // This is a successor we need to rewrite. | 
 |       MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); | 
 |       MF.insert(Pred->isLayoutSuccessor(Entry) | 
 |                     ? MachineFunction::iterator(Entry) | 
 |                     : MF.end(), | 
 |                 Routing); | 
 |       Blocks.insert(Routing); | 
 |  | 
 |       // Set the jump table's register of the index of the block we wish to | 
 |       // jump to, and jump to the jump table. | 
 |       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg) | 
 |           .addImm(Indices[Entry]); | 
 |       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch); | 
 |       Routing->addSuccessor(Dispatch); | 
 |       Map[std::make_pair(PredInLoop, Entry)] = Routing; | 
 |     } | 
 |   } | 
 |  | 
 |   for (auto *Pred : AllPreds) { | 
 |     bool PredInLoop = InLoop.count(Pred); | 
 |     // Remap the terminator operands and the successor list. | 
 |     for (MachineInstr &Term : Pred->terminators()) | 
 |       for (auto &Op : Term.explicit_uses()) | 
 |         if (Op.isMBB() && Indices.count(Op.getMBB())) | 
 |           Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]); | 
 |  | 
 |     for (auto *Succ : Pred->successors()) { | 
 |       if (!Entries.count(Succ)) | 
 |         continue; | 
 |       auto *Routing = Map[std::make_pair(PredInLoop, Succ)]; | 
 |       Pred->replaceSuccessor(Succ, Routing); | 
 |     } | 
 |   } | 
 |  | 
 |   // Create a fake default label, because br_table requires one. | 
 |   MIB.addMBB(MIB.getInstr() | 
 |                  ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1) | 
 |                  .getMBB()); | 
 | } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char WebAssemblyFixIrreducibleControlFlow::ID = 0; | 
 | INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, | 
 |                 "Removes irreducible control flow", false, false) | 
 |  | 
 | FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { | 
 |   return new WebAssemblyFixIrreducibleControlFlow(); | 
 | } | 
 |  | 
 | bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( | 
 |     MachineFunction &MF) { | 
 |   LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" | 
 |                        "********** Function: " | 
 |                     << MF.getName() << '\n'); | 
 |  | 
 |   // Start the recursive process on the entire function body. | 
 |   BlockSet AllBlocks; | 
 |   for (auto &MBB : MF) { | 
 |     AllBlocks.insert(&MBB); | 
 |   } | 
 |  | 
 |   if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { | 
 |     // We rewrote part of the function; recompute relevant things. | 
 |     MF.getRegInfo().invalidateLiveness(); | 
 |     MF.RenumberBlocks(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } |