| use std::num::FpCategory as Fp; |
| use std::ops::{Add, Div, Mul, Rem, Sub}; |
| |
| trait TestableFloat: Sized { |
| /// Unsigned int with the same size, for converting to/from bits. |
| type Int; |
| /// Set the default tolerance for float comparison based on the type. |
| const APPROX: Self; |
| /// Allow looser tolerance for f32 on miri |
| const POWI_APPROX: Self = Self::APPROX; |
| /// Allow looser tolerance for f16 |
| const _180_TO_RADIANS_APPROX: Self = Self::APPROX; |
| /// Allow for looser tolerance for f16 |
| const PI_TO_DEGREES_APPROX: Self = Self::APPROX; |
| const ZERO: Self; |
| const ONE: Self; |
| const PI: Self; |
| const MIN_POSITIVE_NORMAL: Self; |
| const MAX_SUBNORMAL: Self; |
| /// Smallest number |
| const TINY: Self; |
| /// Next smallest number |
| const TINY_UP: Self; |
| /// Exponent = 0b11...10, Significand 0b1111..10. Min val > 0 |
| const MAX_DOWN: Self; |
| /// First pattern over the mantissa |
| const NAN_MASK1: Self::Int; |
| /// Second pattern over the mantissa |
| const NAN_MASK2: Self::Int; |
| const EPS_ADD: Self; |
| const EPS_MUL: Self; |
| const EPS_DIV: Self; |
| const RAW_1: Self; |
| const RAW_12_DOT_5: Self; |
| const RAW_1337: Self; |
| const RAW_MINUS_14_DOT_25: Self; |
| /// The result of 12.3.mul_add(4.5, 6.7) |
| const MUL_ADD_RESULT: Self; |
| /// The result of (-12.3).mul_add(-4.5, -6.7) |
| const NEG_MUL_ADD_RESULT: Self; |
| /// Reciprocal of the maximum val |
| const MAX_RECIP: Self; |
| } |
| |
| impl TestableFloat for f16 { |
| type Int = u16; |
| const APPROX: Self = 1e-3; |
| const _180_TO_RADIANS_APPROX: Self = 1e-2; |
| const PI_TO_DEGREES_APPROX: Self = 0.125; |
| const ZERO: Self = 0.0; |
| const ONE: Self = 1.0; |
| const PI: Self = std::f16::consts::PI; |
| const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; |
| const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); |
| const TINY: Self = Self::from_bits(0x1); |
| const TINY_UP: Self = Self::from_bits(0x2); |
| const MAX_DOWN: Self = Self::from_bits(0x7bfe); |
| const NAN_MASK1: Self::Int = 0x02aa; |
| const NAN_MASK2: Self::Int = 0x0155; |
| const EPS_ADD: Self = if cfg!(miri) { 1e1 } else { 0.0 }; |
| const EPS_MUL: Self = if cfg!(miri) { 1e3 } else { 0.0 }; |
| const EPS_DIV: Self = if cfg!(miri) { 1e0 } else { 0.0 }; |
| const RAW_1: Self = Self::from_bits(0x3c00); |
| const RAW_12_DOT_5: Self = Self::from_bits(0x4a40); |
| const RAW_1337: Self = Self::from_bits(0x6539); |
| const RAW_MINUS_14_DOT_25: Self = Self::from_bits(0xcb20); |
| const MUL_ADD_RESULT: Self = 62.031; |
| const NEG_MUL_ADD_RESULT: Self = 48.625; |
| const MAX_RECIP: Self = 1.526624e-5; |
| } |
| |
| impl TestableFloat for f32 { |
| type Int = u32; |
| const APPROX: Self = 1e-6; |
| /// Miri adds some extra errors to float functions; make sure the tests still pass. |
| /// These values are purely used as a canary to test against and are thus not a stable guarantee Rust provides. |
| /// They serve as a way to get an idea of the real precision of floating point operations on different platforms. |
| const POWI_APPROX: Self = if cfg!(miri) { 1e-4 } else { Self::APPROX }; |
| const ZERO: Self = 0.0; |
| const ONE: Self = 1.0; |
| const PI: Self = std::f32::consts::PI; |
| const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; |
| const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); |
| const TINY: Self = Self::from_bits(0x1); |
| const TINY_UP: Self = Self::from_bits(0x2); |
| const MAX_DOWN: Self = Self::from_bits(0x7f7f_fffe); |
| const NAN_MASK1: Self::Int = 0x002a_aaaa; |
| const NAN_MASK2: Self::Int = 0x0055_5555; |
| const EPS_ADD: Self = if cfg!(miri) { 1e-3 } else { 0.0 }; |
| const EPS_MUL: Self = if cfg!(miri) { 1e-1 } else { 0.0 }; |
| const EPS_DIV: Self = if cfg!(miri) { 1e-4 } else { 0.0 }; |
| const RAW_1: Self = Self::from_bits(0x3f800000); |
| const RAW_12_DOT_5: Self = Self::from_bits(0x41480000); |
| const RAW_1337: Self = Self::from_bits(0x44a72000); |
| const RAW_MINUS_14_DOT_25: Self = Self::from_bits(0xc1640000); |
| const MUL_ADD_RESULT: Self = 62.05; |
| const NEG_MUL_ADD_RESULT: Self = 48.65; |
| const MAX_RECIP: Self = 2.938736e-39; |
| } |
| |
| impl TestableFloat for f64 { |
| type Int = u64; |
| const APPROX: Self = 1e-6; |
| const ZERO: Self = 0.0; |
| const ONE: Self = 1.0; |
| const PI: Self = std::f64::consts::PI; |
| const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; |
| const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); |
| const TINY: Self = Self::from_bits(0x1); |
| const TINY_UP: Self = Self::from_bits(0x2); |
| const MAX_DOWN: Self = Self::from_bits(0x7fef_ffff_ffff_fffe); |
| const NAN_MASK1: Self::Int = 0x000a_aaaa_aaaa_aaaa; |
| const NAN_MASK2: Self::Int = 0x0005_5555_5555_5555; |
| const EPS_ADD: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const EPS_MUL: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const EPS_DIV: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const RAW_1: Self = Self::from_bits(0x3ff0000000000000); |
| const RAW_12_DOT_5: Self = Self::from_bits(0x4029000000000000); |
| const RAW_1337: Self = Self::from_bits(0x4094e40000000000); |
| const RAW_MINUS_14_DOT_25: Self = Self::from_bits(0xc02c800000000000); |
| const MUL_ADD_RESULT: Self = 62.050000000000004; |
| const NEG_MUL_ADD_RESULT: Self = 48.650000000000006; |
| const MAX_RECIP: Self = 5.562684646268003e-309; |
| } |
| |
| impl TestableFloat for f128 { |
| type Int = u128; |
| const APPROX: Self = 1e-9; |
| const ZERO: Self = 0.0; |
| const ONE: Self = 1.0; |
| const PI: Self = std::f128::consts::PI; |
| const MIN_POSITIVE_NORMAL: Self = Self::MIN_POSITIVE; |
| const MAX_SUBNORMAL: Self = Self::MIN_POSITIVE.next_down(); |
| const TINY: Self = Self::from_bits(0x1); |
| const TINY_UP: Self = Self::from_bits(0x2); |
| const MAX_DOWN: Self = Self::from_bits(0x7ffefffffffffffffffffffffffffffe); |
| const NAN_MASK1: Self::Int = 0x0000aaaaaaaaaaaaaaaaaaaaaaaaaaaa; |
| const NAN_MASK2: Self::Int = 0x00005555555555555555555555555555; |
| const EPS_ADD: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const EPS_MUL: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const EPS_DIV: Self = if cfg!(miri) { 1e-6 } else { 0.0 }; |
| const RAW_1: Self = Self::from_bits(0x3fff0000000000000000000000000000); |
| const RAW_12_DOT_5: Self = Self::from_bits(0x40029000000000000000000000000000); |
| const RAW_1337: Self = Self::from_bits(0x40094e40000000000000000000000000); |
| const RAW_MINUS_14_DOT_25: Self = Self::from_bits(0xc002c800000000000000000000000000); |
| const MUL_ADD_RESULT: Self = 62.0500000000000000000000000000000037; |
| const NEG_MUL_ADD_RESULT: Self = 48.6500000000000000000000000000000049; |
| const MAX_RECIP: Self = 8.40525785778023376565669454330438228902076605e-4933; |
| } |
| |
| /// Determine the tolerance for values of the argument type. |
| const fn lim_for_ty<T: TestableFloat + Copy>(_x: T) -> T { |
| T::APPROX |
| } |
| |
| // We have runtime ("rt") and const versions of these macros. |
| |
| /// Verify that floats are within a tolerance of each other. |
| macro_rules! assert_approx_eq_rt { |
| ($a:expr, $b:expr) => {{ assert_approx_eq_rt!($a, $b, $crate::floats::lim_for_ty($a)) }}; |
| ($a:expr, $b:expr, $lim:expr) => {{ |
| let (a, b) = (&$a, &$b); |
| let diff = (*a - *b).abs(); |
| assert!( |
| diff <= $lim, |
| "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})", |
| lim = $lim |
| ); |
| }}; |
| } |
| macro_rules! assert_approx_eq_const { |
| ($a:expr, $b:expr) => {{ assert_approx_eq_const!($a, $b, $crate::floats::lim_for_ty($a)) }}; |
| ($a:expr, $b:expr, $lim:expr) => {{ |
| let (a, b) = (&$a, &$b); |
| let diff = (*a - *b).abs(); |
| assert!(diff <= $lim); |
| }}; |
| } |
| |
| /// Verify that floats have the same bitwise representation. Used to avoid the default `0.0 == -0.0` |
| /// behavior, as well as to ensure exact NaN bitpatterns. |
| macro_rules! assert_biteq_rt { |
| (@inner $left:expr, $right:expr, $msg_sep:literal, $($tt:tt)*) => {{ |
| let l = $left; |
| let r = $right; |
| |
| // Hack to coerce left and right to the same type |
| let mut _eq_ty = l; |
| _eq_ty = r; |
| |
| // Hack to get the width from a value |
| let bits = (l.to_bits() - l.to_bits()).leading_zeros(); |
| assert!( |
| l.to_bits() == r.to_bits(), |
| "{msg}{nl}l: {l:?} ({lb:#0width$x})\nr: {r:?} ({rb:#0width$x})", |
| msg = format_args!($($tt)*), |
| nl = $msg_sep, |
| lb = l.to_bits(), |
| rb = r.to_bits(), |
| width = ((bits / 4) + 2) as usize, |
| ); |
| |
| if !l.is_nan() && !r.is_nan() { |
| // Also check that standard equality holds, since most tests use `assert_biteq` rather |
| // than `assert_eq`. |
| assert_eq!(l, r); |
| } |
| }}; |
| ($left:expr, $right:expr , $($tt:tt)*) => { |
| assert_biteq_rt!(@inner $left, $right, "\n", $($tt)*) |
| }; |
| ($left:expr, $right:expr $(,)?) => { |
| assert_biteq_rt!(@inner $left, $right, "", "") |
| }; |
| } |
| macro_rules! assert_biteq_const { |
| (@inner $left:expr, $right:expr, $msg_sep:literal, $($tt:tt)*) => {{ |
| let l = $left; |
| let r = $right; |
| |
| // Hack to coerce left and right to the same type |
| let mut _eq_ty = l; |
| _eq_ty = r; |
| |
| assert!(l.to_bits() == r.to_bits()); |
| |
| if !l.is_nan() && !r.is_nan() { |
| // Also check that standard equality holds, since most tests use `assert_biteq` rather |
| // than `assert_eq`. |
| assert!(l == r); |
| } |
| }}; |
| ($left:expr, $right:expr , $($tt:tt)*) => { |
| assert_biteq_const!(@inner $left, $right, "\n", $($tt)*) |
| }; |
| ($left:expr, $right:expr $(,)?) => { |
| assert_biteq_const!(@inner $left, $right, "", "") |
| }; |
| } |
| |
| // Use the runtime version by default. |
| // This way, they can be shadowed by the const versions. |
| pub(crate) use {assert_approx_eq_rt as assert_approx_eq, assert_biteq_rt as assert_biteq}; |
| |
| // Also make the const version available for re-exports. |
| #[rustfmt::skip] |
| pub(crate) use assert_biteq_const; |
| pub(crate) use assert_approx_eq_const; |
| |
| /// Generate float tests for all our float types, for compile-time and run-time behavior. |
| /// |
| /// By default all tests run for all float types. Configuration can be applied via `attrs`. |
| /// |
| /// ```ignore (this is only a sketch) |
| /// float_test! { |
| /// name: fn_name, /* function under test */ |
| /// attrs: { |
| /// // Apply a configuration to the test for a single type |
| /// f16: #[cfg(target_has_reliable_f16_math)], |
| /// // Types can be excluded with `cfg(false)` |
| /// f64: #[cfg(false)], |
| /// }, |
| /// test<Float> { |
| /// /* write tests here, using `Float` as the type */ |
| /// } |
| /// } |
| /// ``` |
| macro_rules! float_test { |
| ( |
| name: $name:ident, |
| attrs: { |
| $(const: #[ $($const_meta:meta),+ ] ,)? |
| $(f16: #[ $($f16_meta:meta),+ ] ,)? |
| $(const f16: #[ $($f16_const_meta:meta),+ ] ,)? |
| $(f32: #[ $($f32_meta:meta),+ ] ,)? |
| $(const f32: #[ $($f32_const_meta:meta),+ ] ,)? |
| $(f64: #[ $($f64_meta:meta),+ ] ,)? |
| $(const f64: #[ $($f64_const_meta:meta),+ ] ,)? |
| $(f128: #[ $($f128_meta:meta),+ ] ,)? |
| $(const f128: #[ $($f128_const_meta:meta),+ ] ,)? |
| }, |
| test<$fty:ident> $test:block |
| ) => { |
| mod $name { |
| use super::*; |
| |
| #[test] |
| $( $( #[$f16_meta] )+ )? |
| fn test_f16() { |
| type $fty = f16; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| $test |
| } |
| |
| #[test] |
| $( $( #[$f32_meta] )+ )? |
| fn test_f32() { |
| type $fty = f32; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| $test |
| } |
| |
| #[test] |
| $( $( #[$f64_meta] )+ )? |
| fn test_f64() { |
| type $fty = f64; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| $test |
| } |
| |
| #[test] |
| $( $( #[$f128_meta] )+ )? |
| fn test_f128() { |
| type $fty = f128; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| $test |
| } |
| |
| $( $( #[$const_meta] )+ )? |
| mod const_ { |
| #[allow(unused)] |
| use super::TestableFloat; |
| #[allow(unused)] |
| use std::num::FpCategory as Fp; |
| #[allow(unused)] |
| use std::ops::{Add, Div, Mul, Rem, Sub}; |
| // Shadow the runtime versions of the macro with const-compatible versions. |
| #[allow(unused)] |
| use $crate::floats::{ |
| assert_approx_eq_const as assert_approx_eq, |
| assert_biteq_const as assert_biteq, |
| }; |
| |
| #[test] |
| $( $( #[$f16_const_meta] )+ )? |
| fn test_f16() { |
| type $fty = f16; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| const { $test } |
| } |
| |
| #[test] |
| $( $( #[$f32_const_meta] )+ )? |
| fn test_f32() { |
| type $fty = f32; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| const { $test } |
| } |
| |
| #[test] |
| $( $( #[$f64_const_meta] )+ )? |
| fn test_f64() { |
| type $fty = f64; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| const { $test } |
| } |
| |
| #[test] |
| $( $( #[$f128_const_meta] )+ )? |
| fn test_f128() { |
| type $fty = f128; |
| #[allow(unused)] |
| const fn flt (x: $fty) -> $fty { x } |
| const { $test } |
| } |
| } |
| } |
| }; |
| } |
| |
| mod f128; |
| mod f16; |
| |
| float_test! { |
| name: num, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let two: Float = 2.0; |
| let ten: Float = 10.0; |
| assert_biteq!(ten.add(two), ten + two); |
| assert_biteq!(ten.sub(two), ten - two); |
| assert_biteq!(ten.mul(two), ten * two); |
| assert_biteq!(ten.div(two), ten / two); |
| } |
| } |
| |
| // FIXME(f16_f128): merge into `num` once the required `fmodl`/`fmodf128` function is available on |
| // all platforms. |
| float_test! { |
| name: num_rem, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| let two: Float = 2.0; |
| let ten: Float = 10.0; |
| assert_biteq!(ten.rem(two), ten % two); |
| } |
| } |
| |
| float_test! { |
| name: nan, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| assert!(nan.is_nan()); |
| assert!(!nan.is_infinite()); |
| assert!(!nan.is_finite()); |
| assert!(!nan.is_normal()); |
| assert!(nan.is_sign_positive()); |
| assert!(!nan.is_sign_negative()); |
| assert!(matches!(nan.classify(), Fp::Nan)); |
| // Ensure the quiet bit is set. |
| assert!(nan.to_bits() & (1 << (Float::MANTISSA_DIGITS - 2)) != 0); |
| } |
| } |
| |
| float_test! { |
| name: infinity, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let inf: Float = Float::INFINITY; |
| assert!(inf.is_infinite()); |
| assert!(!inf.is_finite()); |
| assert!(inf.is_sign_positive()); |
| assert!(!inf.is_sign_negative()); |
| assert!(!inf.is_nan()); |
| assert!(!inf.is_normal()); |
| assert!(matches!(inf.classify(), Fp::Infinite)); |
| } |
| } |
| |
| float_test! { |
| name: neg_infinity, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let neg_inf: Float = Float::NEG_INFINITY; |
| assert!(neg_inf.is_infinite()); |
| assert!(!neg_inf.is_finite()); |
| assert!(!neg_inf.is_sign_positive()); |
| assert!(neg_inf.is_sign_negative()); |
| assert!(!neg_inf.is_nan()); |
| assert!(!neg_inf.is_normal()); |
| assert!(matches!(neg_inf.classify(), Fp::Infinite)); |
| } |
| } |
| |
| float_test! { |
| name: zero, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert_biteq!(0.0, Float::ZERO); |
| assert!(!Float::ZERO.is_infinite()); |
| assert!(Float::ZERO.is_finite()); |
| assert!(Float::ZERO.is_sign_positive()); |
| assert!(!Float::ZERO.is_sign_negative()); |
| assert!(!Float::ZERO.is_nan()); |
| assert!(!Float::ZERO.is_normal()); |
| assert!(matches!(Float::ZERO.classify(), Fp::Zero)); |
| } |
| } |
| |
| float_test! { |
| name: neg_zero, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let neg_zero: Float = -0.0; |
| assert!(0.0 == neg_zero); |
| assert_biteq!(-0.0, neg_zero); |
| assert!(!neg_zero.is_infinite()); |
| assert!(neg_zero.is_finite()); |
| assert!(!neg_zero.is_sign_positive()); |
| assert!(neg_zero.is_sign_negative()); |
| assert!(!neg_zero.is_nan()); |
| assert!(!neg_zero.is_normal()); |
| assert!(matches!(neg_zero.classify(), Fp::Zero)); |
| } |
| } |
| |
| float_test! { |
| name: one, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert_biteq!(1.0, Float::ONE); |
| assert!(!Float::ONE.is_infinite()); |
| assert!(Float::ONE.is_finite()); |
| assert!(Float::ONE.is_sign_positive()); |
| assert!(!Float::ONE.is_sign_negative()); |
| assert!(!Float::ONE.is_nan()); |
| assert!(Float::ONE.is_normal()); |
| assert!(matches!(Float::ONE.classify(), Fp::Normal)); |
| } |
| } |
| |
| float_test! { |
| name: is_nan, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let pos: Float = 5.3; |
| let neg: Float = -10.732; |
| assert!(nan.is_nan()); |
| assert!(!Float::ZERO.is_nan()); |
| assert!(!pos.is_nan()); |
| assert!(!neg.is_nan()); |
| assert!(!inf.is_nan()); |
| assert!(!neg_inf.is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: is_infinite, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let pos: Float = 42.8; |
| let neg: Float = -109.2; |
| assert!(!nan.is_infinite()); |
| assert!(inf.is_infinite()); |
| assert!(neg_inf.is_infinite()); |
| assert!(!Float::ZERO.is_infinite()); |
| assert!(!pos.is_infinite()); |
| assert!(!neg.is_infinite()); |
| } |
| } |
| |
| float_test! { |
| name: is_finite, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let pos: Float = 42.8; |
| let neg: Float = -109.2; |
| assert!(!nan.is_finite()); |
| assert!(!inf.is_finite()); |
| assert!(!neg_inf.is_finite()); |
| assert!(Float::ZERO.is_finite()); |
| assert!(pos.is_finite()); |
| assert!(neg.is_finite()); |
| } |
| } |
| |
| float_test! { |
| name: is_normal, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let neg_zero: Float = -0.0; |
| assert!(!nan.is_normal()); |
| assert!(!inf.is_normal()); |
| assert!(!neg_inf.is_normal()); |
| assert!(!Float::ZERO.is_normal()); |
| assert!(!neg_zero.is_normal()); |
| assert!(Float::ONE.is_normal()); |
| assert!(Float::MIN_POSITIVE_NORMAL.is_normal()); |
| assert!(!Float::MAX_SUBNORMAL.is_normal()); |
| } |
| } |
| |
| float_test! { |
| name: classify, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let neg_zero: Float = -0.0; |
| assert!(matches!(nan.classify(), Fp::Nan)); |
| assert!(matches!(inf.classify(), Fp::Infinite)); |
| assert!(matches!(neg_inf.classify(), Fp::Infinite)); |
| assert!(matches!(Float::ZERO.classify(), Fp::Zero)); |
| assert!(matches!(neg_zero.classify(), Fp::Zero)); |
| assert!(matches!(Float::ONE.classify(), Fp::Normal)); |
| assert!(matches!(Float::MIN_POSITIVE_NORMAL.classify(), Fp::Normal)); |
| assert!(matches!(Float::MAX_SUBNORMAL.classify(), Fp::Subnormal)); |
| } |
| } |
| |
| float_test! { |
| name: min, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((0.0 as Float).min(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).min(-0.0), -0.0); |
| assert_biteq!((9.0 as Float).min(9.0), 9.0); |
| assert_biteq!((-9.0 as Float).min(0.0), -9.0); |
| assert_biteq!((0.0 as Float).min(9.0), 0.0); |
| assert_biteq!((-0.0 as Float).min(9.0), -0.0); |
| assert_biteq!((-0.0 as Float).min(-9.0), -9.0); |
| assert_biteq!(Float::INFINITY.min(9.0), 9.0); |
| assert_biteq!((9.0 as Float).min(Float::INFINITY), 9.0); |
| assert_biteq!(Float::INFINITY.min(-9.0), -9.0); |
| assert_biteq!((-9.0 as Float).min(Float::INFINITY), -9.0); |
| assert_biteq!(Float::NEG_INFINITY.min(9.0), Float::NEG_INFINITY); |
| assert_biteq!((9.0 as Float).min(Float::NEG_INFINITY), Float::NEG_INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.min(-9.0), Float::NEG_INFINITY); |
| assert_biteq!((-9.0 as Float).min(Float::NEG_INFINITY), Float::NEG_INFINITY); |
| assert_biteq!(Float::NAN.min(9.0), 9.0); |
| assert_biteq!(Float::NAN.min(-9.0), -9.0); |
| assert_biteq!((9.0 as Float).min(Float::NAN), 9.0); |
| assert_biteq!((-9.0 as Float).min(Float::NAN), -9.0); |
| assert!(Float::NAN.min(Float::NAN).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: max, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((0.0 as Float).max(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).max(-0.0), -0.0); |
| assert_biteq!((9.0 as Float).max(9.0), 9.0); |
| assert_biteq!((-9.0 as Float).max(0.0), 0.0); |
| assert_biteq!((-9.0 as Float).max(-0.0), -0.0); |
| assert_biteq!((0.0 as Float).max(9.0), 9.0); |
| assert_biteq!((0.0 as Float).max(-9.0), 0.0); |
| assert_biteq!((-0.0 as Float).max(-9.0), -0.0); |
| assert_biteq!(Float::INFINITY.max(9.0), Float::INFINITY); |
| assert_biteq!((9.0 as Float).max(Float::INFINITY), Float::INFINITY); |
| assert_biteq!(Float::INFINITY.max(-9.0), Float::INFINITY); |
| assert_biteq!((-9.0 as Float).max(Float::INFINITY), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.max(9.0), 9.0); |
| assert_biteq!((9.0 as Float).max(Float::NEG_INFINITY), 9.0); |
| assert_biteq!(Float::NEG_INFINITY.max(-9.0), -9.0); |
| assert_biteq!((-9.0 as Float).max(Float::NEG_INFINITY), -9.0); |
| assert_biteq!(Float::NAN.max(9.0), 9.0); |
| assert_biteq!(Float::NAN.max(-9.0), -9.0); |
| assert_biteq!((9.0 as Float).max(Float::NAN), 9.0); |
| assert_biteq!((-9.0 as Float).max(Float::NAN), -9.0); |
| assert!(Float::NAN.max(Float::NAN).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: minimum, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((0.0 as Float).minimum(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).minimum(0.0), -0.0); |
| assert_biteq!((-0.0 as Float).minimum(-0.0), -0.0); |
| assert_biteq!((9.0 as Float).minimum(9.0), 9.0); |
| assert_biteq!((-9.0 as Float).minimum(0.0), -9.0); |
| assert_biteq!((0.0 as Float).minimum(9.0), 0.0); |
| assert_biteq!((-0.0 as Float).minimum(9.0), -0.0); |
| assert_biteq!((-0.0 as Float).minimum(-9.0), -9.0); |
| assert_biteq!(Float::INFINITY.minimum(9.0), 9.0); |
| assert_biteq!((9.0 as Float).minimum(Float::INFINITY), 9.0); |
| assert_biteq!(Float::INFINITY.minimum(-9.0), -9.0); |
| assert_biteq!((-9.0 as Float).minimum(Float::INFINITY), -9.0); |
| assert_biteq!(Float::NEG_INFINITY.minimum(9.0), Float::NEG_INFINITY); |
| assert_biteq!((9.0 as Float).minimum(Float::NEG_INFINITY), Float::NEG_INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.minimum(-9.0), Float::NEG_INFINITY); |
| assert_biteq!((-9.0 as Float).minimum(Float::NEG_INFINITY), Float::NEG_INFINITY); |
| assert!(Float::NAN.minimum(9.0).is_nan()); |
| assert!(Float::NAN.minimum(-9.0).is_nan()); |
| assert!((9.0 as Float).minimum(Float::NAN).is_nan()); |
| assert!((-9.0 as Float).minimum(Float::NAN).is_nan()); |
| assert!(Float::NAN.minimum(Float::NAN).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: maximum, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((0.0 as Float).maximum(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).maximum(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).maximum(-0.0), -0.0); |
| assert_biteq!((9.0 as Float).maximum(9.0), 9.0); |
| assert_biteq!((-9.0 as Float).maximum(0.0), 0.0); |
| assert_biteq!((-9.0 as Float).maximum(-0.0), -0.0); |
| assert_biteq!((0.0 as Float).maximum(9.0), 9.0); |
| assert_biteq!((0.0 as Float).maximum(-9.0), 0.0); |
| assert_biteq!((-0.0 as Float).maximum(-9.0), -0.0); |
| assert_biteq!(Float::INFINITY.maximum(9.0), Float::INFINITY); |
| assert_biteq!((9.0 as Float).maximum(Float::INFINITY), Float::INFINITY); |
| assert_biteq!(Float::INFINITY.maximum(-9.0), Float::INFINITY); |
| assert_biteq!((-9.0 as Float).maximum(Float::INFINITY), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.maximum(9.0), 9.0); |
| assert_biteq!((9.0 as Float).maximum(Float::NEG_INFINITY), 9.0); |
| assert_biteq!(Float::NEG_INFINITY.maximum(-9.0), -9.0); |
| assert_biteq!((-9.0 as Float).maximum(Float::NEG_INFINITY), -9.0); |
| assert!(Float::NAN.maximum(9.0).is_nan()); |
| assert!(Float::NAN.maximum(-9.0).is_nan()); |
| assert!((9.0 as Float).maximum(Float::NAN).is_nan()); |
| assert!((-9.0 as Float).maximum(Float::NAN).is_nan()); |
| assert!(Float::NAN.maximum(Float::NAN).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: midpoint, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((0.5 as Float).midpoint(0.5), 0.5); |
| assert_biteq!((0.5 as Float).midpoint(2.5), 1.5); |
| assert_biteq!((3.0 as Float).midpoint(4.0), 3.5); |
| assert_biteq!((-3.0 as Float).midpoint(4.0), 0.5); |
| assert_biteq!((3.0 as Float).midpoint(-4.0), -0.5); |
| assert_biteq!((-3.0 as Float).midpoint(-4.0), -3.5); |
| assert_biteq!((0.0 as Float).midpoint(0.0), 0.0); |
| assert_biteq!((-0.0 as Float).midpoint(-0.0), -0.0); |
| assert_biteq!((-5.0 as Float).midpoint(5.0), 0.0); |
| assert_biteq!(Float::MAX.midpoint(Float::MIN), 0.0); |
| assert_biteq!(Float::MIN.midpoint(Float::MAX), 0.0); |
| assert_biteq!(Float::MAX.midpoint(Float::MIN_POSITIVE), Float::MAX / 2.); |
| assert_biteq!((-Float::MAX).midpoint(Float::MIN_POSITIVE), -Float::MAX / 2.); |
| assert_biteq!(Float::MAX.midpoint(-Float::MIN_POSITIVE), Float::MAX / 2.); |
| assert_biteq!((-Float::MAX).midpoint(-Float::MIN_POSITIVE), -Float::MAX / 2.); |
| assert_biteq!((Float::MIN_POSITIVE).midpoint(Float::MAX), Float::MAX / 2.); |
| assert_biteq!((Float::MIN_POSITIVE).midpoint(-Float::MAX), -Float::MAX / 2.); |
| assert_biteq!((-Float::MIN_POSITIVE).midpoint(Float::MAX), Float::MAX / 2.); |
| assert_biteq!((-Float::MIN_POSITIVE).midpoint(-Float::MAX), -Float::MAX / 2.); |
| assert_biteq!(Float::MAX.midpoint(Float::MAX), Float::MAX); |
| assert_biteq!( |
| (Float::MIN_POSITIVE).midpoint(Float::MIN_POSITIVE), |
| Float::MIN_POSITIVE |
| ); |
| assert_biteq!( |
| (-Float::MIN_POSITIVE).midpoint(-Float::MIN_POSITIVE), |
| -Float::MIN_POSITIVE |
| ); |
| assert_biteq!(Float::MAX.midpoint(5.0), Float::MAX / 2.0 + 2.5); |
| assert_biteq!(Float::MAX.midpoint(-5.0), Float::MAX / 2.0 - 2.5); |
| assert_biteq!(Float::INFINITY.midpoint(Float::INFINITY), Float::INFINITY); |
| assert_biteq!( |
| Float::NEG_INFINITY.midpoint(Float::NEG_INFINITY), |
| Float::NEG_INFINITY |
| ); |
| assert!(Float::NEG_INFINITY.midpoint(Float::INFINITY).is_nan()); |
| assert!(Float::INFINITY.midpoint(Float::NEG_INFINITY).is_nan()); |
| assert!(Float::NAN.midpoint(1.0).is_nan()); |
| assert!((1.0 as Float).midpoint(Float::NAN).is_nan()); |
| assert!(Float::NAN.midpoint(Float::NAN).is_nan()); |
| } |
| } |
| |
| // Separate test since the `for` loops cannot be run in `const`. |
| float_test! { |
| name: midpoint_large_magnitude, |
| attrs: { |
| const: #[cfg(false)], |
| // FIXME(f16_f128): `powi` does not work in Miri for these types |
| f16: #[cfg(all(not(miri), target_has_reliable_f16_math))], |
| f128: #[cfg(all(not(miri), target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| // test if large differences in magnitude are still correctly computed. |
| // NOTE: that because of how small x and y are, x + y can never overflow |
| // so (x + y) / 2.0 is always correct |
| // in particular, `2.pow(i)` will never be at the max exponent, so it could |
| // be safely doubled, while j is significantly smaller. |
| for i in Float::MAX_EXP.saturating_sub(64)..Float::MAX_EXP { |
| for j in 0..64u8 { |
| let large = (2.0 as Float).powi(i); |
| // a much smaller number, such that there is no chance of overflow to test |
| // potential double rounding in midpoint's implementation. |
| let small = (2.0 as Float).powi(Float::MAX_EXP - 1) |
| * Float::EPSILON |
| * Float::from(j); |
| |
| let naive = (large + small) / 2.0; |
| let midpoint = large.midpoint(small); |
| |
| assert_biteq!(naive, midpoint); |
| } |
| } |
| } |
| } |
| |
| float_test! { |
| name: abs, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!(Float::INFINITY.abs(), Float::INFINITY); |
| assert_biteq!(Float::ONE.abs(), Float::ONE); |
| assert_biteq!(Float::ZERO.abs(), Float::ZERO); |
| assert_biteq!((-Float::ZERO).abs(), Float::ZERO); |
| assert_biteq!((-Float::ONE).abs(), Float::ONE); |
| assert_biteq!(Float::NEG_INFINITY.abs(), Float::INFINITY); |
| assert_biteq!((Float::ONE / Float::NEG_INFINITY).abs(), Float::ZERO); |
| assert!(Float::NAN.abs().is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: copysign, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((1.0 as Float).copysign(-2.0), -1.0); |
| assert_biteq!((-1.0 as Float).copysign(2.0), 1.0); |
| assert_biteq!(Float::INFINITY.copysign(-0.0), Float::NEG_INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.copysign(0.0), Float::INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: rem_euclid, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert!(Float::INFINITY.rem_euclid(42.0 as Float).is_nan()); |
| assert_biteq!((42.0 as Float).rem_euclid(Float::INFINITY), 42.0 as Float); |
| assert!((42.0 as Float).rem_euclid(Float::NAN).is_nan()); |
| assert!(Float::INFINITY.rem_euclid(Float::INFINITY).is_nan()); |
| assert!(Float::INFINITY.rem_euclid(Float::NAN).is_nan()); |
| assert!(Float::NAN.rem_euclid(Float::INFINITY).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: div_euclid, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((42.0 as Float).div_euclid(Float::INFINITY), 0.0); |
| assert!((42.0 as Float).div_euclid(Float::NAN).is_nan()); |
| assert!(Float::INFINITY.div_euclid(Float::INFINITY).is_nan()); |
| assert!(Float::INFINITY.div_euclid(Float::NAN).is_nan()); |
| assert!(Float::NAN.div_euclid(Float::INFINITY).is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: floor, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((1.0 as Float).floor(), 1.0); |
| assert_biteq!((1.3 as Float).floor(), 1.0); |
| assert_biteq!((1.5 as Float).floor(), 1.0); |
| assert_biteq!((1.7 as Float).floor(), 1.0); |
| assert_biteq!((0.5 as Float).floor(), 0.0); |
| assert_biteq!((0.0 as Float).floor(), 0.0); |
| assert_biteq!((-0.0 as Float).floor(), -0.0); |
| assert_biteq!((-0.5 as Float).floor(), -1.0); |
| assert_biteq!((-1.0 as Float).floor(), -1.0); |
| assert_biteq!((-1.3 as Float).floor(), -2.0); |
| assert_biteq!((-1.5 as Float).floor(), -2.0); |
| assert_biteq!((-1.7 as Float).floor(), -2.0); |
| assert_biteq!(Float::MAX.floor(), Float::MAX); |
| assert_biteq!(Float::MIN.floor(), Float::MIN); |
| assert_biteq!(Float::MIN_POSITIVE.floor(), 0.0); |
| assert_biteq!((-Float::MIN_POSITIVE).floor(), -1.0); |
| assert!(Float::NAN.floor().is_nan()); |
| assert_biteq!(Float::INFINITY.floor(), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.floor(), Float::NEG_INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: ceil, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((1.0 as Float).ceil(), 1.0); |
| assert_biteq!((1.3 as Float).ceil(), 2.0); |
| assert_biteq!((1.5 as Float).ceil(), 2.0); |
| assert_biteq!((1.7 as Float).ceil(), 2.0); |
| assert_biteq!((0.5 as Float).ceil(), 1.0); |
| assert_biteq!((0.0 as Float).ceil(), 0.0); |
| assert_biteq!((-0.0 as Float).ceil(), -0.0); |
| assert_biteq!((-0.5 as Float).ceil(), -0.0); |
| assert_biteq!((-1.0 as Float).ceil(), -1.0); |
| assert_biteq!((-1.3 as Float).ceil(), -1.0); |
| assert_biteq!((-1.5 as Float).ceil(), -1.0); |
| assert_biteq!((-1.7 as Float).ceil(), -1.0); |
| assert_biteq!(Float::MAX.ceil(), Float::MAX); |
| assert_biteq!(Float::MIN.ceil(), Float::MIN); |
| assert_biteq!(Float::MIN_POSITIVE.ceil(), 1.0); |
| assert_biteq!((-Float::MIN_POSITIVE).ceil(), -0.0); |
| assert!(Float::NAN.ceil().is_nan()); |
| assert_biteq!(Float::INFINITY.ceil(), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.ceil(), Float::NEG_INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: round, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((2.5 as Float).round(), 3.0); |
| assert_biteq!((1.0 as Float).round(), 1.0); |
| assert_biteq!((1.3 as Float).round(), 1.0); |
| assert_biteq!((1.5 as Float).round(), 2.0); |
| assert_biteq!((1.7 as Float).round(), 2.0); |
| assert_biteq!((0.5 as Float).round(), 1.0); |
| assert_biteq!((0.0 as Float).round(), 0.0); |
| assert_biteq!((-0.0 as Float).round(), -0.0); |
| assert_biteq!((-0.5 as Float).round(), -1.0); |
| assert_biteq!((-1.0 as Float).round(), -1.0); |
| assert_biteq!((-1.3 as Float).round(), -1.0); |
| assert_biteq!((-1.5 as Float).round(), -2.0); |
| assert_biteq!((-1.7 as Float).round(), -2.0); |
| assert_biteq!(Float::MAX.round(), Float::MAX); |
| assert_biteq!(Float::MIN.round(), Float::MIN); |
| assert_biteq!(Float::MIN_POSITIVE.round(), 0.0); |
| assert_biteq!((-Float::MIN_POSITIVE).round(), -0.0); |
| assert!(Float::NAN.round().is_nan()); |
| assert_biteq!(Float::INFINITY.round(), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.round(), Float::NEG_INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: round_ties_even, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((2.5 as Float).round_ties_even(), 2.0); |
| assert_biteq!((1.0 as Float).round_ties_even(), 1.0); |
| assert_biteq!((1.3 as Float).round_ties_even(), 1.0); |
| assert_biteq!((1.5 as Float).round_ties_even(), 2.0); |
| assert_biteq!((1.7 as Float).round_ties_even(), 2.0); |
| assert_biteq!((0.5 as Float).round_ties_even(), 0.0); |
| assert_biteq!((0.0 as Float).round_ties_even(), 0.0); |
| assert_biteq!((-0.0 as Float).round_ties_even(), -0.0); |
| assert_biteq!((-0.5 as Float).round_ties_even(), -0.0); |
| assert_biteq!((-1.0 as Float).round_ties_even(), -1.0); |
| assert_biteq!((-1.3 as Float).round_ties_even(), -1.0); |
| assert_biteq!((-1.5 as Float).round_ties_even(), -2.0); |
| assert_biteq!((-1.7 as Float).round_ties_even(), -2.0); |
| assert_biteq!(Float::MAX.round_ties_even(), Float::MAX); |
| assert_biteq!(Float::MIN.round_ties_even(), Float::MIN); |
| assert_biteq!(Float::MIN_POSITIVE.round_ties_even(), 0.0); |
| assert_biteq!((-Float::MIN_POSITIVE).round_ties_even(), -0.0); |
| assert!(Float::NAN.round_ties_even().is_nan()); |
| assert_biteq!(Float::INFINITY.round_ties_even(), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.round_ties_even(), Float::NEG_INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: trunc, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((1.0 as Float).trunc(), 1.0); |
| assert_biteq!((1.3 as Float).trunc(), 1.0); |
| assert_biteq!((1.5 as Float).trunc(), 1.0); |
| assert_biteq!((1.7 as Float).trunc(), 1.0); |
| assert_biteq!((0.5 as Float).trunc(), 0.0); |
| assert_biteq!((0.0 as Float).trunc(), 0.0); |
| assert_biteq!((-0.0 as Float).trunc(), -0.0); |
| assert_biteq!((-0.5 as Float).trunc(), -0.0); |
| assert_biteq!((-1.0 as Float).trunc(), -1.0); |
| assert_biteq!((-1.3 as Float).trunc(), -1.0); |
| assert_biteq!((-1.5 as Float).trunc(), -1.0); |
| assert_biteq!((-1.7 as Float).trunc(), -1.0); |
| assert_biteq!(Float::MAX.trunc(), Float::MAX); |
| assert_biteq!(Float::MIN.trunc(), Float::MIN); |
| assert_biteq!(Float::MIN_POSITIVE.trunc(), 0.0); |
| assert_biteq!((-Float::MIN_POSITIVE).trunc(), -0.0); |
| assert!(Float::NAN.trunc().is_nan()); |
| assert_biteq!(Float::INFINITY.trunc(), Float::INFINITY); |
| assert_biteq!(Float::NEG_INFINITY.trunc(), Float::NEG_INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: fract, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!((1.0 as Float).fract(), 0.0); |
| assert_approx_eq!((1.3 as Float).fract(), 0.3); // rounding differs between float types |
| assert_biteq!((1.5 as Float).fract(), 0.5); |
| assert_approx_eq!((1.7 as Float).fract(), 0.7); |
| assert_biteq!((0.5 as Float).fract(), 0.5); |
| assert_biteq!((0.0 as Float).fract(), 0.0); |
| assert_biteq!((-0.0 as Float).fract(), 0.0); |
| assert_biteq!((-0.5 as Float).fract(), -0.5); |
| assert_biteq!((-1.0 as Float).fract(), 0.0); |
| assert_approx_eq!((-1.3 as Float).fract(), -0.3); // rounding differs between float types |
| assert_biteq!((-1.5 as Float).fract(), -0.5); |
| assert_approx_eq!((-1.7 as Float).fract(), -0.7); |
| assert_biteq!(Float::MAX.fract(), 0.0); |
| assert_biteq!(Float::MIN.fract(), 0.0); |
| assert_biteq!(Float::MIN_POSITIVE.fract(), Float::MIN_POSITIVE); |
| assert!(Float::MIN_POSITIVE.fract().is_sign_positive()); |
| assert_biteq!((-Float::MIN_POSITIVE).fract(), -Float::MIN_POSITIVE); |
| assert!((-Float::MIN_POSITIVE).fract().is_sign_negative()); |
| assert!(Float::NAN.fract().is_nan()); |
| assert!(Float::INFINITY.fract().is_nan()); |
| assert!(Float::NEG_INFINITY.fract().is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: signum, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert_biteq!(Float::INFINITY.signum(), Float::ONE); |
| assert_biteq!(Float::ONE.signum(), Float::ONE); |
| assert_biteq!(Float::ZERO.signum(), Float::ONE); |
| assert_biteq!((-Float::ZERO).signum(), -Float::ONE); |
| assert_biteq!((-Float::ONE).signum(), -Float::ONE); |
| assert_biteq!(Float::NEG_INFINITY.signum(), -Float::ONE); |
| assert_biteq!((Float::ONE / Float::NEG_INFINITY).signum(), -Float::ONE); |
| assert!(Float::NAN.signum().is_nan()); |
| } |
| } |
| |
| float_test! { |
| name: is_sign_positive, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert!(Float::INFINITY.is_sign_positive()); |
| assert!(Float::ONE.is_sign_positive()); |
| assert!(Float::ZERO.is_sign_positive()); |
| assert!(!(-Float::ZERO).is_sign_positive()); |
| assert!(!(-Float::ONE).is_sign_positive()); |
| assert!(!Float::NEG_INFINITY.is_sign_positive()); |
| assert!(!(Float::ONE / Float::NEG_INFINITY).is_sign_positive()); |
| assert!(Float::NAN.is_sign_positive()); |
| assert!(!(-Float::NAN).is_sign_positive()); |
| } |
| } |
| |
| float_test! { |
| name: is_sign_negative, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert!(!Float::INFINITY.is_sign_negative()); |
| assert!(!Float::ONE.is_sign_negative()); |
| assert!(!Float::ZERO.is_sign_negative()); |
| assert!((-Float::ZERO).is_sign_negative()); |
| assert!((-Float::ONE).is_sign_negative()); |
| assert!(Float::NEG_INFINITY.is_sign_negative()); |
| assert!((Float::ONE / Float::NEG_INFINITY).is_sign_negative()); |
| assert!(!Float::NAN.is_sign_negative()); |
| assert!((-Float::NAN).is_sign_negative()); |
| } |
| } |
| |
| float_test! { |
| name: next_up, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert_biteq!(Float::NEG_INFINITY.next_up(), Float::MIN); |
| assert_biteq!(Float::MIN.next_up(), -Float::MAX_DOWN); |
| assert_biteq!((-Float::ONE - Float::EPSILON).next_up(), -Float::ONE); |
| assert_biteq!((-Float::MIN_POSITIVE_NORMAL).next_up(), -Float::MAX_SUBNORMAL); |
| assert_biteq!((-Float::TINY_UP).next_up(), -Float::TINY); |
| assert_biteq!((-Float::TINY).next_up(), -Float::ZERO); |
| assert_biteq!((-Float::ZERO).next_up(), Float::TINY); |
| assert_biteq!(Float::ZERO.next_up(), Float::TINY); |
| assert_biteq!(Float::TINY.next_up(), Float::TINY_UP); |
| assert_biteq!(Float::MAX_SUBNORMAL.next_up(), Float::MIN_POSITIVE_NORMAL); |
| assert_biteq!(Float::ONE.next_up(), 1.0 + Float::EPSILON); |
| assert_biteq!(Float::MAX.next_up(), Float::INFINITY); |
| assert_biteq!(Float::INFINITY.next_up(), Float::INFINITY); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = Float::NAN; |
| let nan1 = Float::from_bits(Float::NAN.to_bits() ^ Float::NAN_MASK1); |
| let nan2 = Float::from_bits(Float::NAN.to_bits() ^ Float::NAN_MASK2); |
| assert_biteq!(nan0.next_up(), nan0); |
| assert_biteq!(nan1.next_up(), nan1); |
| assert_biteq!(nan2.next_up(), nan2); |
| } |
| } |
| |
| float_test! { |
| name: next_down, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert_biteq!(Float::NEG_INFINITY.next_down(), Float::NEG_INFINITY); |
| assert_biteq!(Float::MIN.next_down(), Float::NEG_INFINITY); |
| assert_biteq!((-Float::MAX_DOWN).next_down(), Float::MIN); |
| assert_biteq!((-Float::ONE).next_down(), -1.0 - Float::EPSILON); |
| assert_biteq!((-Float::MAX_SUBNORMAL).next_down(), -Float::MIN_POSITIVE_NORMAL); |
| assert_biteq!((-Float::TINY).next_down(), -Float::TINY_UP); |
| assert_biteq!((-Float::ZERO).next_down(), -Float::TINY); |
| assert_biteq!((Float::ZERO).next_down(), -Float::TINY); |
| assert_biteq!(Float::TINY.next_down(), Float::ZERO); |
| assert_biteq!(Float::TINY_UP.next_down(), Float::TINY); |
| assert_biteq!(Float::MIN_POSITIVE_NORMAL.next_down(), Float::MAX_SUBNORMAL); |
| assert_biteq!((1.0 + Float::EPSILON).next_down(), Float::ONE); |
| assert_biteq!(Float::MAX.next_down(), Float::MAX_DOWN); |
| assert_biteq!(Float::INFINITY.next_down(), Float::MAX); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = Float::NAN; |
| let nan1 = Float::from_bits(Float::NAN.to_bits() ^ Float::NAN_MASK1); |
| let nan2 = Float::from_bits(Float::NAN.to_bits() ^ Float::NAN_MASK2); |
| assert_biteq!(nan0.next_down(), nan0); |
| assert_biteq!(nan1.next_down(), nan1); |
| assert_biteq!(nan2.next_down(), nan2); |
| } |
| } |
| |
| float_test! { |
| name: sqrt_domain, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| assert!(Float::NAN.sqrt().is_nan()); |
| assert!(Float::NEG_INFINITY.sqrt().is_nan()); |
| assert!((-Float::ONE).sqrt().is_nan()); |
| assert_biteq!((-Float::ZERO).sqrt(), -Float::ZERO); |
| assert_biteq!(Float::ZERO.sqrt(), Float::ZERO); |
| assert_biteq!(Float::ONE.sqrt(), Float::ONE); |
| assert_biteq!(Float::INFINITY.sqrt(), Float::INFINITY); |
| } |
| } |
| |
| float_test! { |
| name: clamp_min_greater_than_max, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[should_panic, cfg(any(miri, target_has_reliable_f16))], |
| f32: #[should_panic], |
| f64: #[should_panic], |
| f128: #[should_panic, cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let _ = Float::ONE.clamp(3.0, 1.0); |
| } |
| } |
| |
| float_test! { |
| name: clamp_min_is_nan, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[should_panic, cfg(any(miri, target_has_reliable_f16))], |
| f32: #[should_panic], |
| f64: #[should_panic], |
| f128: #[should_panic, cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let _ = Float::ONE.clamp(Float::NAN, 1.0); |
| } |
| } |
| |
| float_test! { |
| name: clamp_max_is_nan, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[should_panic, cfg(any(miri, target_has_reliable_f16))], |
| f32: #[should_panic], |
| f64: #[should_panic], |
| f128: #[should_panic, cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let _ = Float::ONE.clamp(3.0, Float::NAN); |
| } |
| } |
| |
| float_test! { |
| name: total_cmp, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| use core::cmp::Ordering; |
| |
| const fn quiet_bit_mask() -> <Float as TestableFloat>::Int { |
| 1 << (Float::MANTISSA_DIGITS - 2) |
| } |
| |
| const fn q_nan() -> Float { |
| Float::from_bits(Float::NAN.to_bits() | quiet_bit_mask()) |
| } |
| |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-q_nan()), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-Float::INFINITY, &-Float::INFINITY), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-Float::MAX, &-Float::MAX), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-2.5, &-2.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-1.0, &-1.0), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-1.5, &-1.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-0.5, &-0.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-Float::MIN_POSITIVE, &-Float::MIN_POSITIVE), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-Float::MAX_SUBNORMAL, &-Float::MAX_SUBNORMAL), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-Float::TINY, &-Float::TINY), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&-0.0, &-0.0), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&0.0, &0.0), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&Float::TINY, &Float::TINY), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&Float::MAX_SUBNORMAL, &Float::MAX_SUBNORMAL), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&Float::MIN_POSITIVE, &Float::MIN_POSITIVE), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&0.5, &0.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&1.0, &1.0), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&1.5, &1.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&2.5, &2.5), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&Float::MAX, &Float::MAX), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&Float::INFINITY, &Float::INFINITY), Ordering::Equal)); |
| assert!(matches!(Float::total_cmp(&q_nan(), &q_nan()), Ordering::Equal)); |
| |
| assert!(matches!(Float::total_cmp(&-Float::INFINITY, &-Float::MAX), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-Float::MAX, &-2.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-2.5, &-1.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-1.5, &-1.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-1.0, &-0.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-0.5, &-Float::MIN_POSITIVE), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-Float::MIN_POSITIVE, &-Float::MAX_SUBNORMAL), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-Float::MAX_SUBNORMAL, &-Float::TINY), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-Float::TINY, &-0.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-0.0, &0.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&0.0, &Float::TINY), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&Float::TINY, &Float::MAX_SUBNORMAL), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&Float::MAX_SUBNORMAL, &Float::MIN_POSITIVE), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&Float::MIN_POSITIVE, &0.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&0.5, &1.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&1.0, &1.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&1.5, &2.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&2.5, &Float::MAX), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&Float::MAX, &Float::INFINITY), Ordering::Less)); |
| |
| assert!(matches!(Float::total_cmp(&-Float::MAX, &-Float::INFINITY), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-2.5, &-Float::MAX), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-1.5, &-2.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-1.0, &-1.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-0.5, &-1.0), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-Float::MIN_POSITIVE, &-0.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-Float::MAX_SUBNORMAL, &-Float::MIN_POSITIVE), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-Float::TINY, &-Float::MAX_SUBNORMAL), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&-0.0, &-Float::TINY), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&0.0, &-0.0), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&Float::TINY, &0.0), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&Float::MAX_SUBNORMAL, &Float::TINY), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&Float::MIN_POSITIVE, &Float::MAX_SUBNORMAL), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&0.5, &Float::MIN_POSITIVE), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&1.0, &0.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&1.5, &1.0), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&2.5, &1.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&Float::MAX, &2.5), Ordering::Greater)); |
| assert!(matches!(Float::total_cmp(&Float::INFINITY, &Float::MAX), Ordering::Greater)); |
| |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-Float::INFINITY), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-Float::MAX), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-2.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-1.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-1.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-0.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-Float::MIN_POSITIVE), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-Float::MAX_SUBNORMAL), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-Float::TINY), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &-0.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &0.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &Float::TINY), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &Float::MAX_SUBNORMAL), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &Float::MIN_POSITIVE), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &0.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &1.0), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &1.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &2.5), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &Float::MAX), Ordering::Less)); |
| assert!(matches!(Float::total_cmp(&-q_nan(), &Float::INFINITY), Ordering::Less)); |
| |
| } |
| } |
| |
| // FIXME(f16): Tests involving sNaN are disabled because without optimizations, `total_cmp` is |
| // getting incorrectly lowered to code that includes a `extend`/`trunc` round trip, which quiets |
| // sNaNs. See: https://github.com/llvm/llvm-project/issues/104915 |
| |
| float_test! { |
| name: total_cmp_s_nan, |
| attrs: { |
| const: #[cfg(false)], |
| f16: #[cfg(miri)], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| use core::cmp::Ordering; |
| |
| fn quiet_bit_mask() -> <Float as TestableFloat>::Int { |
| 1 << (Float::MANTISSA_DIGITS - 2) |
| } |
| |
| fn q_nan() -> Float { |
| Float::from_bits(Float::NAN.to_bits() | quiet_bit_mask()) |
| } |
| |
| fn s_nan() -> Float { |
| Float::from_bits((Float::NAN.to_bits() & !quiet_bit_mask()) + 42) |
| } |
| assert_eq!(Ordering::Equal, Float::total_cmp(&-s_nan(), &-s_nan())); |
| assert_eq!(Ordering::Equal, Float::total_cmp(&s_nan(), &s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-q_nan(), &-s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::INFINITY)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&Float::INFINITY, &s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&s_nan(), &q_nan())); |
| assert_eq!(Ordering::Greater, Float::total_cmp(&-s_nan(), &-q_nan())); |
| assert_eq!(Ordering::Greater, Float::total_cmp(&-Float::INFINITY, &-s_nan())); |
| assert_eq!(Ordering::Greater, Float::total_cmp(&s_nan(), &Float::INFINITY)); |
| assert_eq!(Ordering::Greater, Float::total_cmp(&q_nan(), &s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-q_nan(), &-s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-q_nan(), &s_nan())); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::INFINITY)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::MAX)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-2.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-1.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-1.0)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-0.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::MAX_SUBNORMAL)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-Float::TINY)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &-0.0)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &0.0)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &Float::TINY)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &Float::MAX_SUBNORMAL)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &Float::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &0.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &1.0)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &1.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &2.5)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &Float::MAX)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &Float::INFINITY)); |
| assert_eq!(Ordering::Less, Float::total_cmp(&-s_nan(), &s_nan())); |
| } |
| } |
| |
| float_test! { |
| name: recip, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16_math))], |
| f128: #[cfg(any(miri, target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| let max: Float = Float::MAX; |
| assert_biteq!((1.0 as Float).recip(), 1.0); |
| assert_biteq!((2.0 as Float).recip(), 0.5); |
| assert_biteq!((-0.4 as Float).recip(), -2.5); |
| assert_biteq!((0.0 as Float).recip(), inf); |
| assert!(nan.recip().is_nan()); |
| assert_biteq!(inf.recip(), 0.0); |
| assert_biteq!(neg_inf.recip(), -0.0); |
| assert_biteq!(max.recip(), Float::MAX_RECIP); |
| } |
| } |
| |
| float_test! { |
| name: powi, |
| attrs: { |
| const: #[cfg(false)], |
| // FIXME(f16_f128): `powi` does not work in Miri for these types |
| f16: #[cfg(all(not(miri), target_has_reliable_f16_math))], |
| f128: #[cfg(all(not(miri), target_has_reliable_f128_math))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| assert_approx_eq!(Float::ONE.powi(1), Float::ONE); |
| assert_approx_eq!((-3.1 as Float).powi(2), 9.6100000000000005506706202140776519387, Float::POWI_APPROX); |
| assert_approx_eq!((5.9 as Float).powi(-2), 0.028727377190462507313100483690639638451); |
| assert_biteq!((8.3 as Float).powi(0), Float::ONE); |
| assert!(nan.powi(2).is_nan()); |
| assert_biteq!(inf.powi(3), inf); |
| assert_biteq!(neg_inf.powi(2), inf); |
| } |
| } |
| |
| float_test! { |
| name: to_degrees, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let pi: Float = Float::PI; |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| assert_biteq!((0.0 as Float).to_degrees(), 0.0); |
| assert_approx_eq!((-5.8 as Float).to_degrees(), -332.31552117587745090765431723855668471); |
| assert_approx_eq!(pi.to_degrees(), 180.0, Float::PI_TO_DEGREES_APPROX); |
| assert!(nan.to_degrees().is_nan()); |
| assert_biteq!(inf.to_degrees(), inf); |
| assert_biteq!(neg_inf.to_degrees(), neg_inf); |
| assert_biteq!((1.0 as Float).to_degrees(), 57.2957795130823208767981548141051703); |
| } |
| } |
| |
| float_test! { |
| name: to_radians, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let pi: Float = Float::PI; |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| assert_biteq!((0.0 as Float).to_radians(), 0.0); |
| assert_approx_eq!((154.6 as Float).to_radians(), 2.6982790235832334267135442069489767804); |
| assert_approx_eq!((-332.31 as Float).to_radians(), -5.7999036373023566567593094812182763013); |
| assert_approx_eq!((180.0 as Float).to_radians(), pi, Float::_180_TO_RADIANS_APPROX); |
| assert!(nan.to_radians().is_nan()); |
| assert_biteq!(inf.to_radians(), inf); |
| assert_biteq!(neg_inf.to_radians(), neg_inf); |
| } |
| } |
| |
| float_test! { |
| name: to_algebraic, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let a: Float = 123.0; |
| let b: Float = 456.0; |
| |
| // Check that individual operations match their primitive counterparts. |
| // |
| // This is a check of current implementations and does NOT imply any form of |
| // guarantee about future behavior. The compiler reserves the right to make |
| // these operations inexact matches in the future. |
| |
| assert_approx_eq!(a.algebraic_add(b), a + b, Float::EPS_ADD); |
| assert_approx_eq!(a.algebraic_sub(b), a - b, Float::EPS_ADD); |
| assert_approx_eq!(a.algebraic_mul(b), a * b, Float::EPS_MUL); |
| assert_approx_eq!(a.algebraic_div(b), a / b, Float::EPS_DIV); |
| assert_approx_eq!(a.algebraic_rem(b), a % b, Float::EPS_DIV); |
| } |
| } |
| |
| float_test! { |
| name: to_bits_conv, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| assert_biteq!(flt(1.0), Float::RAW_1); |
| assert_biteq!(flt(12.5), Float::RAW_12_DOT_5); |
| assert_biteq!(flt(1337.0), Float::RAW_1337); |
| assert_biteq!(flt(-14.25), Float::RAW_MINUS_14_DOT_25); |
| assert_biteq!(Float::RAW_1, 1.0); |
| assert_biteq!(Float::RAW_12_DOT_5, 12.5); |
| assert_biteq!(Float::RAW_1337, 1337.0); |
| assert_biteq!(Float::RAW_MINUS_14_DOT_25, -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signaling-ness |
| let masked_nan1 = Float::NAN.to_bits() ^ Float::NAN_MASK1; |
| let masked_nan2 = Float::NAN.to_bits() ^ Float::NAN_MASK2; |
| assert!(Float::from_bits(masked_nan1).is_nan()); |
| assert!(Float::from_bits(masked_nan2).is_nan()); |
| |
| assert_biteq!(Float::from_bits(masked_nan1), Float::from_bits(masked_nan1)); |
| assert_biteq!(Float::from_bits(masked_nan2), Float::from_bits(masked_nan2)); |
| } |
| } |
| |
| float_test! { |
| name: mul_add, |
| attrs: { |
| f16: #[cfg(any(miri, target_has_reliable_f16))], |
| // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ |
| f32: #[cfg_attr(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")), ignore)], |
| f64: #[cfg_attr(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")), ignore)], |
| f128: #[cfg(any(miri, target_has_reliable_f128))], |
| }, |
| test<Float> { |
| let nan: Float = Float::NAN; |
| let inf: Float = Float::INFINITY; |
| let neg_inf: Float = Float::NEG_INFINITY; |
| assert_biteq!(flt(12.3).mul_add(4.5, 6.7), Float::MUL_ADD_RESULT); |
| assert_biteq!((flt(-12.3)).mul_add(-4.5, -6.7), Float::NEG_MUL_ADD_RESULT); |
| assert_biteq!(flt(0.0).mul_add(8.9, 1.2), 1.2); |
| assert_biteq!(flt(3.4).mul_add(-0.0, 5.6), 5.6); |
| assert!(nan.mul_add(7.8, 9.0).is_nan()); |
| assert_biteq!(inf.mul_add(7.8, 9.0), inf); |
| assert_biteq!(neg_inf.mul_add(7.8, 9.0), neg_inf); |
| assert_biteq!(flt(8.9).mul_add(inf, 3.2), inf); |
| assert_biteq!((flt(-3.2)).mul_add(2.4, neg_inf), neg_inf); |
| } |
| } |