| commit | 018d26972e523b8d28f9579056185a1713949dfd | [log] [tgz] |
|---|---|---|
| author | bors <bors@rust-lang.org> | Tue Dec 09 05:10:32 2025 +0000 |
| committer | bors <bors@rust-lang.org> | Tue Dec 09 05:10:32 2025 +0000 |
| tree | 10bd4e8f30c0d0e82f5ecce8c3f1c109e325e6e9 | |
| parent | a371038013f4f3e3f1d4fdcacfaa02c3252a518b [diff] | |
| parent | ba462864f1175690d1925cb5b1c6bf0a0c3cb579 [diff] |
Auto merge of #147572 - alexcrichton:wasi-use-libc, r=Mark-Simulacrum
std: Use more `unix.rs` code on WASI targets
This commit is a large change to the implementation of filesystem and
other system-related operations on WASI targets. Previously the standard
library explicitly used the `wasi` crate at the 0.11.x version track
which means that it used WASIp1 APIs directly. This meant that `std` was
hard-coded to use WASIp1 syscalls and there was no separate
implementation for the WASIp{2,3} targets, for example. The high-level
goal of this commit is to decouple this interaction and avoid the use of
the `wasi` crate on the WASIp2 target.
Historically when WASIp1 was originally added to Rust the wasi-libc
library was in a much different position than it is today. Nowadays Rust
already depends on wasi-libc on WASI targets for things like memory
allocation and environment variable management. As a libc library it
also has all the functions necessary to implement all filesystem
operations Rust wants. Recently wasi-libc additionally was updated to
use WASIp2 APIs directly on the `wasm32-wasip2` target instead of using
`wasm32-wasip1` APIs. This commit is leveraging this work by enabling
Rust to completely sever the dependence on WASIp1 APIs when compiling
for `wasm32-wasip2`. This is also intended to make it easier to migrate
to `wasm32-wasip3` internally in the future where now only libc need be
updated and Rust doesn't need to explicitly change as well.
The overall premise of this commit is that there's no need for
WASI-specific implementation modules throughout the standard library.
Instead the libc-style bindings already implemented for Unix-like
targets are sufficient. This means that Rust will now be using
libc-style interfaces to interact with the filesystem, for example, and
wasi-libc is the one responsible for translating these POSIX-ish
functions into WASIp{1,2} calls.
Concrete changes here are:
* `std` for `wasm32-wasip2` no longer depends on `wasi 0.11.x`
* The implementation of `std::os::wasi::fs`, which was previously
unstable and still is, now has portions gated to only work on the
WASIp1 target which use the `wasi` crate directly. Traits have been
trimmed down in some cases, updated in others, or now present a
different API on WASIp1 and WASIp2. It's expected this'll get further
cleanup in the future.
* The `std::sys::fd::wasi` module is deleted and `unix` is used instead.
* The `std::sys::fs::wasi` module is deleted and `unix` is used instead.
* The `std::sys::io::io_slice::wasi` module is deleted and `unix` is used
instead.
* The `std::sys::pal::{wasip1,wasip2}` modules are now merged together
as their difference is much smaller than before.
* The `std::sys::pal::wasi::time` is deleted and the `unix` variant is
used directly instead.
* The `std::sys::stdio::wasip{1,2}` modules are deleted and the `unix`
variant is used instead.
* The `std::sys::thread::wasip{1,2}` modules are deleted and the `unix`
variant is used instead.
Overall Rust's libstd is effectively more tightly bound to libc when
compiled to WASI targets. This is intended to mirror how it's expected
all other languages will also bind to WASI. This additionally has the
nice goal of drastically reducing the WASI-specific maintenance burden
in libstd (in theory) and the only real changes required here are extra
definitions being added to `libc` (done in separate PRs). This might be
required for more symbols in the future but for now everything should be
mostly complete.
Website | Getting started | Learn | Documentation | Contributing
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Performance: Fast and memory-efficient, suitable for critical services, embedded devices, and easily integrated with other languages.
Reliability: Our rich type system and ownership model ensure memory and thread safety, reducing bugs at compile-time.
Productivity: Comprehensive documentation, a compiler committed to providing great diagnostics, and advanced tooling including package manager and build tool (Cargo), auto-formatter (rustfmt), linter (Clippy) and editor support (rust-analyzer).
Read “Installation” from The Book.
If you really want to install from source (though this is not recommended), see INSTALL.md.
See https://www.rust-lang.org/community for a list of chat platforms and forums.
See CONTRIBUTING.md.
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).
If you want to use these names or brands, please read the Rust language trademark policy.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.