| //===- Matrix.cpp - MLIR Matrix Class -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/Presburger/Matrix.h" |
| #include "mlir/Analysis/Presburger/Fraction.h" |
| #include "mlir/Analysis/Presburger/MPInt.h" |
| #include "mlir/Analysis/Presburger/Utils.h" |
| #include "mlir/Support/LLVM.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <utility> |
| |
| using namespace mlir; |
| using namespace presburger; |
| |
| template <typename T> |
| Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows, |
| unsigned reservedColumns) |
| : nRows(rows), nColumns(columns), |
| nReservedColumns(std::max(nColumns, reservedColumns)), |
| data(nRows * nReservedColumns) { |
| data.reserve(std::max(nRows, reservedRows) * nReservedColumns); |
| } |
| |
| template <typename T> |
| Matrix<T> Matrix<T>::identity(unsigned dimension) { |
| Matrix matrix(dimension, dimension); |
| for (unsigned i = 0; i < dimension; ++i) |
| matrix(i, i) = 1; |
| return matrix; |
| } |
| |
| template <typename T> |
| unsigned Matrix<T>::getNumReservedRows() const { |
| return data.capacity() / nReservedColumns; |
| } |
| |
| template <typename T> |
| void Matrix<T>::reserveRows(unsigned rows) { |
| data.reserve(rows * nReservedColumns); |
| } |
| |
| template <typename T> |
| unsigned Matrix<T>::appendExtraRow() { |
| resizeVertically(nRows + 1); |
| return nRows - 1; |
| } |
| |
| template <typename T> |
| unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) { |
| assert(elems.size() == nColumns && "elems must match row length!"); |
| unsigned row = appendExtraRow(); |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) = elems[col]; |
| return row; |
| } |
| |
| template <typename T> |
| Matrix<T> Matrix<T>::transpose() const { |
| Matrix<T> transp(nColumns, nRows); |
| for (unsigned row = 0; row < nRows; ++row) |
| for (unsigned col = 0; col < nColumns; ++col) |
| transp(col, row) = at(row, col); |
| |
| return transp; |
| } |
| |
| template <typename T> |
| void Matrix<T>::resizeHorizontally(unsigned newNColumns) { |
| if (newNColumns < nColumns) |
| removeColumns(newNColumns, nColumns - newNColumns); |
| if (newNColumns > nColumns) |
| insertColumns(nColumns, newNColumns - nColumns); |
| } |
| |
| template <typename T> |
| void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) { |
| resizeHorizontally(newNColumns); |
| resizeVertically(newNRows); |
| } |
| |
| template <typename T> |
| void Matrix<T>::resizeVertically(unsigned newNRows) { |
| nRows = newNRows; |
| data.resize(nRows * nReservedColumns); |
| } |
| |
| template <typename T> |
| void Matrix<T>::swapRows(unsigned row, unsigned otherRow) { |
| assert((row < getNumRows() && otherRow < getNumRows()) && |
| "Given row out of bounds"); |
| if (row == otherRow) |
| return; |
| for (unsigned col = 0; col < nColumns; col++) |
| std::swap(at(row, col), at(otherRow, col)); |
| } |
| |
| template <typename T> |
| void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) { |
| assert((column < getNumColumns() && otherColumn < getNumColumns()) && |
| "Given column out of bounds"); |
| if (column == otherColumn) |
| return; |
| for (unsigned row = 0; row < nRows; row++) |
| std::swap(at(row, column), at(row, otherColumn)); |
| } |
| |
| template <typename T> |
| MutableArrayRef<T> Matrix<T>::getRow(unsigned row) { |
| return {&data[row * nReservedColumns], nColumns}; |
| } |
| |
| template <typename T> |
| ArrayRef<T> Matrix<T>::getRow(unsigned row) const { |
| return {&data[row * nReservedColumns], nColumns}; |
| } |
| |
| template <typename T> |
| void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) { |
| assert(elems.size() == getNumColumns() && |
| "elems size must match row length!"); |
| for (unsigned i = 0, e = getNumColumns(); i < e; ++i) |
| at(row, i) = elems[i]; |
| } |
| |
| template <typename T> |
| void Matrix<T>::insertColumn(unsigned pos) { |
| insertColumns(pos, 1); |
| } |
| template <typename T> |
| void Matrix<T>::insertColumns(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos <= nColumns); |
| unsigned oldNReservedColumns = nReservedColumns; |
| if (nColumns + count > nReservedColumns) { |
| nReservedColumns = llvm::NextPowerOf2(nColumns + count); |
| data.resize(nRows * nReservedColumns); |
| } |
| nColumns += count; |
| |
| for (int ri = nRows - 1; ri >= 0; --ri) { |
| for (int ci = nReservedColumns - 1; ci >= 0; --ci) { |
| unsigned r = ri; |
| unsigned c = ci; |
| T &dest = data[r * nReservedColumns + c]; |
| if (c >= nColumns) { // NOLINT |
| // Out of bounds columns are zero-initialized. NOLINT because clang-tidy |
| // complains about this branch being the same as the c >= pos one. |
| // |
| // TODO: this case can be skipped if the number of reserved columns |
| // didn't change. |
| dest = 0; |
| } else if (c >= pos + count) { |
| // Shift the data occuring after the inserted columns. |
| dest = data[r * oldNReservedColumns + c - count]; |
| } else if (c >= pos) { |
| // The inserted columns are also zero-initialized. |
| dest = 0; |
| } else { |
| // The columns before the inserted columns stay at the same (row, col) |
| // but this corresponds to a different location in the linearized array |
| // if the number of reserved columns changed. |
| if (nReservedColumns == oldNReservedColumns) |
| break; |
| dest = data[r * oldNReservedColumns + c]; |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| void Matrix<T>::removeColumn(unsigned pos) { |
| removeColumns(pos, 1); |
| } |
| template <typename T> |
| void Matrix<T>::removeColumns(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos + count - 1 < nColumns); |
| for (unsigned r = 0; r < nRows; ++r) { |
| for (unsigned c = pos; c < nColumns - count; ++c) |
| at(r, c) = at(r, c + count); |
| for (unsigned c = nColumns - count; c < nColumns; ++c) |
| at(r, c) = 0; |
| } |
| nColumns -= count; |
| } |
| |
| template <typename T> |
| void Matrix<T>::insertRow(unsigned pos) { |
| insertRows(pos, 1); |
| } |
| template <typename T> |
| void Matrix<T>::insertRows(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| |
| assert(pos <= nRows); |
| resizeVertically(nRows + count); |
| for (int r = nRows - 1; r >= int(pos + count); --r) |
| copyRow(r - count, r); |
| for (int r = pos + count - 1; r >= int(pos); --r) |
| for (unsigned c = 0; c < nColumns; ++c) |
| at(r, c) = 0; |
| } |
| |
| template <typename T> |
| void Matrix<T>::removeRow(unsigned pos) { |
| removeRows(pos, 1); |
| } |
| template <typename T> |
| void Matrix<T>::removeRows(unsigned pos, unsigned count) { |
| if (count == 0) |
| return; |
| assert(pos + count - 1 <= nRows); |
| for (unsigned r = pos; r + count < nRows; ++r) |
| copyRow(r + count, r); |
| resizeVertically(nRows - count); |
| } |
| |
| template <typename T> |
| void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) { |
| if (sourceRow == targetRow) |
| return; |
| for (unsigned c = 0; c < nColumns; ++c) |
| at(targetRow, c) = at(sourceRow, c); |
| } |
| |
| template <typename T> |
| void Matrix<T>::fillRow(unsigned row, const T &value) { |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) = value; |
| } |
| |
| // moveColumns is implemented by moving the columns adjacent to the source range |
| // to their final position. When moving right (i.e. dstPos > srcPos), the range |
| // of the adjacent columns is [srcPos + num, dstPos + num). When moving left |
| // (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos). |
| // First, zeroed out columns are inserted in the final positions of the adjacent |
| // columns. Then, the adjacent columns are moved to their final positions by |
| // swapping them with the zeroed columns. Finally, the now zeroed adjacent |
| // columns are deleted. |
| template <typename T> |
| void Matrix<T>::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) { |
| if (num == 0) |
| return; |
| |
| int offset = dstPos - srcPos; |
| if (offset == 0) |
| return; |
| |
| assert(srcPos + num <= getNumColumns() && |
| "move source range exceeds matrix columns"); |
| assert(dstPos + num <= getNumColumns() && |
| "move destination range exceeds matrix columns"); |
| |
| unsigned insertCount = offset > 0 ? offset : -offset; |
| unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num; |
| unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos; |
| // TODO: This can be done using std::rotate. |
| // Insert new zero columns in the positions where the adjacent columns are to |
| // be moved. |
| insertColumns(finalAdjStart, insertCount); |
| // Update curAdjStart if insertion of new columns invalidates it. |
| if (finalAdjStart < curAdjStart) |
| curAdjStart += insertCount; |
| |
| // Swap the adjacent columns with inserted zero columns. |
| for (unsigned i = 0; i < insertCount; ++i) |
| swapColumns(finalAdjStart + i, curAdjStart + i); |
| |
| // Delete the now redundant zero columns. |
| removeColumns(curAdjStart, insertCount); |
| } |
| |
| template <typename T> |
| void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow, |
| const T &scale) { |
| addToRow(targetRow, getRow(sourceRow), scale); |
| } |
| |
| template <typename T> |
| void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale) { |
| if (scale == 0) |
| return; |
| for (unsigned col = 0; col < nColumns; ++col) |
| at(row, col) += scale * rowVec[col]; |
| } |
| |
| template <typename T> |
| void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn, |
| const T &scale) { |
| if (scale == 0) |
| return; |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| at(row, targetColumn) += scale * at(row, sourceColumn); |
| } |
| |
| template <typename T> |
| void Matrix<T>::negateColumn(unsigned column) { |
| for (unsigned row = 0, e = getNumRows(); row < e; ++row) |
| at(row, column) = -at(row, column); |
| } |
| |
| template <typename T> |
| void Matrix<T>::negateRow(unsigned row) { |
| for (unsigned column = 0, e = getNumColumns(); column < e; ++column) |
| at(row, column) = -at(row, column); |
| } |
| |
| template <typename T> |
| SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const { |
| assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!"); |
| |
| SmallVector<T, 8> result(getNumColumns(), T(0)); |
| for (unsigned col = 0, e = getNumColumns(); col < e; ++col) |
| for (unsigned i = 0, e = getNumRows(); i < e; ++i) |
| result[col] += rowVec[i] * at(i, col); |
| return result; |
| } |
| |
| template <typename T> |
| SmallVector<T, 8> Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const { |
| assert(getNumColumns() == colVec.size() && |
| "Invalid column vector dimension!"); |
| |
| SmallVector<T, 8> result(getNumRows(), T(0)); |
| for (unsigned row = 0, e = getNumRows(); row < e; row++) |
| for (unsigned i = 0, e = getNumColumns(); i < e; i++) |
| result[row] += at(row, i) * colVec[i]; |
| return result; |
| } |
| |
| /// Set M(row, targetCol) to its remainder on division by M(row, sourceCol) |
| /// by subtracting from column targetCol an appropriate integer multiple of |
| /// sourceCol. This brings M(row, targetCol) to the range [0, M(row, |
| /// sourceCol)). Apply the same column operation to otherMatrix, with the same |
| /// integer multiple. |
| static void modEntryColumnOperation(Matrix<MPInt> &m, unsigned row, |
| unsigned sourceCol, unsigned targetCol, |
| Matrix<MPInt> &otherMatrix) { |
| assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); |
| assert(m(row, sourceCol) > 0 && "Source must be positive!"); |
| MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol)); |
| m.addToColumn(sourceCol, targetCol, ratio); |
| otherMatrix.addToColumn(sourceCol, targetCol, ratio); |
| } |
| |
| template <typename T> |
| void Matrix<T>::print(raw_ostream &os) const { |
| for (unsigned row = 0; row < nRows; ++row) { |
| for (unsigned column = 0; column < nColumns; ++column) |
| os << at(row, column) << ' '; |
| os << '\n'; |
| } |
| } |
| |
| template <typename T> |
| void Matrix<T>::dump() const { |
| print(llvm::errs()); |
| } |
| |
| template <typename T> |
| bool Matrix<T>::hasConsistentState() const { |
| if (data.size() != nRows * nReservedColumns) |
| return false; |
| if (nColumns > nReservedColumns) |
| return false; |
| #ifdef EXPENSIVE_CHECKS |
| for (unsigned r = 0; r < nRows; ++r) |
| for (unsigned c = nColumns; c < nReservedColumns; ++c) |
| if (data[r * nReservedColumns + c] != 0) |
| return false; |
| #endif |
| return true; |
| } |
| |
| namespace mlir { |
| namespace presburger { |
| template class Matrix<MPInt>; |
| template class Matrix<Fraction>; |
| } // namespace presburger |
| } // namespace mlir |
| |
| IntMatrix IntMatrix::identity(unsigned dimension) { |
| IntMatrix matrix(dimension, dimension); |
| for (unsigned i = 0; i < dimension; ++i) |
| matrix(i, i) = 1; |
| return matrix; |
| } |
| |
| std::pair<IntMatrix, IntMatrix> IntMatrix::computeHermiteNormalForm() const { |
| // We start with u as an identity matrix and perform operations on h until h |
| // is in hermite normal form. We apply the same sequence of operations on u to |
| // obtain a transform that takes h to hermite normal form. |
| IntMatrix h = *this; |
| IntMatrix u = IntMatrix::identity(h.getNumColumns()); |
| |
| unsigned echelonCol = 0; |
| // Invariant: in all rows above row, all columns from echelonCol onwards |
| // are all zero elements. In an iteration, if the curent row has any non-zero |
| // elements echelonCol onwards, we bring one to echelonCol and use it to |
| // make all elements echelonCol + 1 onwards zero. |
| for (unsigned row = 0; row < h.getNumRows(); ++row) { |
| // Search row for a non-empty entry, starting at echelonCol. |
| unsigned nonZeroCol = echelonCol; |
| for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { |
| if (h(row, nonZeroCol) == 0) |
| continue; |
| break; |
| } |
| |
| // Continue to the next row with the same echelonCol if this row is all |
| // zeros from echelonCol onwards. |
| if (nonZeroCol == h.getNumColumns()) |
| continue; |
| |
| // Bring the non-zero column to echelonCol. This doesn't affect rows |
| // above since they are all zero at these columns. |
| if (nonZeroCol != echelonCol) { |
| h.swapColumns(nonZeroCol, echelonCol); |
| u.swapColumns(nonZeroCol, echelonCol); |
| } |
| |
| // Make h(row, echelonCol) non-negative. |
| if (h(row, echelonCol) < 0) { |
| h.negateColumn(echelonCol); |
| u.negateColumn(echelonCol); |
| } |
| |
| // Make all the entries in row after echelonCol zero. |
| for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) { |
| // We make h(row, i) non-negative, and then apply the Euclidean GCD |
| // algorithm to (row, i) and (row, echelonCol). At the end, one of them |
| // has value equal to the gcd of the two entries, and the other is zero. |
| |
| if (h(row, i) < 0) { |
| h.negateColumn(i); |
| u.negateColumn(i); |
| } |
| |
| unsigned targetCol = i, sourceCol = echelonCol; |
| // At every step, we set h(row, targetCol) %= h(row, sourceCol), and |
| // swap the indices sourceCol and targetCol. (not the columns themselves) |
| // This modulo is implemented as a subtraction |
| // h(row, targetCol) -= quotient * h(row, sourceCol), |
| // where quotient = floor(h(row, targetCol) / h(row, sourceCol)), |
| // which brings h(row, targetCol) to the range [0, h(row, sourceCol)). |
| // |
| // We are only allowed column operations; we perform the above |
| // for every row, i.e., the above subtraction is done as a column |
| // operation. This does not affect any rows above us since they are |
| // guaranteed to be zero at these columns. |
| while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) { |
| modEntryColumnOperation(h, row, sourceCol, targetCol, u); |
| std::swap(targetCol, sourceCol); |
| } |
| |
| // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. |
| // Make it so that (row, echelonCol) holds the non-zero value. |
| if (h(row, echelonCol) == 0) { |
| h.swapColumns(i, echelonCol); |
| u.swapColumns(i, echelonCol); |
| } |
| } |
| |
| // Make all entries before echelonCol non-negative and strictly smaller |
| // than the pivot entry. |
| for (unsigned i = 0; i < echelonCol; ++i) |
| modEntryColumnOperation(h, row, echelonCol, i, u); |
| |
| ++echelonCol; |
| } |
| |
| return {h, u}; |
| } |
| |
| MPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) { |
| return normalizeRange(getRow(row).slice(0, cols)); |
| } |
| |
| MPInt IntMatrix::normalizeRow(unsigned row) { |
| return normalizeRow(row, getNumColumns()); |
| } |
| |
| MPInt IntMatrix::determinant(IntMatrix *inverse) const { |
| assert(nRows == nColumns && |
| "determinant can only be calculated for square matrices!"); |
| |
| FracMatrix m(*this); |
| |
| FracMatrix fracInverse(nRows, nColumns); |
| MPInt detM = m.determinant(&fracInverse).getAsInteger(); |
| |
| if (detM == 0) |
| return MPInt(0); |
| |
| if (!inverse) |
| return detM; |
| |
| *inverse = IntMatrix(nRows, nColumns); |
| for (unsigned i = 0; i < nRows; i++) |
| for (unsigned j = 0; j < nColumns; j++) |
| inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger(); |
| |
| return detM; |
| } |
| |
| FracMatrix FracMatrix::identity(unsigned dimension) { |
| return Matrix::identity(dimension); |
| } |
| |
| FracMatrix::FracMatrix(IntMatrix m) |
| : FracMatrix(m.getNumRows(), m.getNumColumns()) { |
| for (unsigned i = 0, r = m.getNumRows(); i < r; i++) |
| for (unsigned j = 0, c = m.getNumColumns(); j < c; j++) |
| this->at(i, j) = m.at(i, j); |
| } |
| |
| Fraction FracMatrix::determinant(FracMatrix *inverse) const { |
| assert(nRows == nColumns && |
| "determinant can only be calculated for square matrices!"); |
| |
| FracMatrix m(*this); |
| FracMatrix tempInv(nRows, nColumns); |
| if (inverse) |
| tempInv = FracMatrix::identity(nRows); |
| |
| Fraction a, b; |
| // Make the matrix into upper triangular form using |
| // gaussian elimination with row operations. |
| // If inverse is required, we apply more operations |
| // to turn the matrix into diagonal form. We apply |
| // the same operations to the inverse matrix, |
| // which is initially identity. |
| // Either way, the product of the diagonal elements |
| // is then the determinant. |
| for (unsigned i = 0; i < nRows; i++) { |
| if (m(i, i) == 0) |
| // First ensure that the diagonal |
| // element is nonzero, by swapping |
| // it with a nonzero row. |
| for (unsigned j = i + 1; j < nRows; j++) { |
| if (m(j, i) != 0) { |
| m.swapRows(j, i); |
| if (inverse) |
| tempInv.swapRows(j, i); |
| break; |
| } |
| } |
| |
| b = m.at(i, i); |
| if (b == 0) |
| return 0; |
| |
| // Set all elements above the |
| // diagonal to zero. |
| if (inverse) { |
| for (unsigned j = 0; j < i; j++) { |
| if (m.at(j, i) == 0) |
| continue; |
| a = m.at(j, i); |
| // Set element (j, i) to zero |
| // by subtracting the ith row, |
| // appropriately scaled. |
| m.addToRow(i, j, -a / b); |
| tempInv.addToRow(i, j, -a / b); |
| } |
| } |
| |
| // Set all elements below the |
| // diagonal to zero. |
| for (unsigned j = i + 1; j < nRows; j++) { |
| if (m.at(j, i) == 0) |
| continue; |
| a = m.at(j, i); |
| // Set element (j, i) to zero |
| // by subtracting the ith row, |
| // appropriately scaled. |
| m.addToRow(i, j, -a / b); |
| if (inverse) |
| tempInv.addToRow(i, j, -a / b); |
| } |
| } |
| |
| // Now only diagonal elements of m are nonzero, but they are |
| // not necessarily 1. To get the true inverse, we should |
| // normalize them and apply the same scale to the inverse matrix. |
| // For efficiency we skip scaling m and just scale tempInv appropriately. |
| if (inverse) { |
| for (unsigned i = 0; i < nRows; i++) |
| for (unsigned j = 0; j < nRows; j++) |
| tempInv.at(i, j) = tempInv.at(i, j) / m(i, i); |
| |
| *inverse = std::move(tempInv); |
| } |
| |
| Fraction determinant = 1; |
| for (unsigned i = 0; i < nRows; i++) |
| determinant *= m.at(i, i); |
| |
| return determinant; |
| } |
| |
| FracMatrix FracMatrix::gramSchmidt() const { |
| // Create a copy of the argument to store |
| // the orthogonalised version. |
| FracMatrix orth(*this); |
| |
| // For each vector (row) in the matrix, subtract its unit |
| // projection along each of the previous vectors. |
| // This ensures that it has no component in the direction |
| // of any of the previous vectors. |
| for (unsigned i = 1, e = getNumRows(); i < e; i++) { |
| for (unsigned j = 0; j < i; j++) { |
| Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j)); |
| assert(jNormSquared != 0 && "some row became zero! Inputs to this " |
| "function must be linearly independent."); |
| Fraction projectionScale = |
| dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared; |
| orth.addToRow(j, i, -projectionScale); |
| } |
| } |
| return orth; |
| } |
| |
| // Convert the matrix, interpreted (row-wise) as a basis |
| // to an LLL-reduced basis. |
| // |
| // This is an implementation of the algorithm described in |
| // "Factoring polynomials with rational coefficients" by |
| // A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz. |
| // |
| // Let {b_1, ..., b_n} be the current basis and |
| // {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised |
| // basis (unnormalized). |
| // Define the Gram-Schmidt coefficients μ_ij as |
| // (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product. |
| // |
| // We iterate starting from the second row to the last row. |
| // |
| // For the kth row, we first check μ_kj for all rows j < k. |
| // We subtract b_j (scaled by the integer nearest to μ_kj) |
| // from b_k. |
| // |
| // Now, we update k. |
| // If b_k and b_{k-1} satisfy the Lovasz condition |
| // |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2, |
| // we are done and we increment k. |
| // Otherwise, we swap b_k and b_{k-1} and decrement k. |
| // |
| // We repeat this until k = n and return. |
| void FracMatrix::LLL(Fraction delta) { |
| MPInt nearest; |
| Fraction mu; |
| |
| // `gsOrth` holds the Gram-Schmidt orthogonalisation |
| // of the matrix at all times. It is recomputed every |
| // time the matrix is modified during the algorithm. |
| // This is naive and can be optimised. |
| FracMatrix gsOrth = gramSchmidt(); |
| |
| // We start from the second row. |
| unsigned k = 1; |
| while (k < getNumRows()) { |
| for (unsigned j = k - 1; j < k; j--) { |
| // Compute the Gram-Schmidt coefficient μ_jk. |
| mu = dotProduct(getRow(k), gsOrth.getRow(j)) / |
| dotProduct(gsOrth.getRow(j), gsOrth.getRow(j)); |
| nearest = round(mu); |
| // Subtract b_j scaled by the integer nearest to μ_jk from b_k. |
| addToRow(k, getRow(j), -Fraction(nearest, 1)); |
| gsOrth = gramSchmidt(); // Update orthogonalization. |
| } |
| mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) / |
| dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1)); |
| // Check the Lovasz condition for b_k and b_{k-1}. |
| if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) > |
| (delta - mu * mu) * |
| dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) { |
| // If it is satisfied, proceed to the next k. |
| k += 1; |
| } else { |
| // If it is not satisfied, decrement k (without |
| // going beyond the second row). |
| swapRows(k, k - 1); |
| gsOrth = gramSchmidt(); // Update orthogonalization. |
| k = k > 1 ? k - 1 : 1; |
| } |
| } |
| } |