| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/Arithmetic/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" |
| #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Interfaces/InferTypeOpInterface.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Interfaces/ViewLikeInterface.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| |
| using namespace mlir; |
| using namespace mlir::memref; |
| |
| namespace { |
| /// Idiomatic saturated operations on offsets, sizes and strides. |
| namespace saturated_arith { |
| struct Wrapper { |
| static Wrapper stride(int64_t v) { |
| return (ShapedType::isDynamicStrideOrOffset(v)) ? Wrapper{true, 0} |
| : Wrapper{false, v}; |
| } |
| static Wrapper offset(int64_t v) { |
| return (ShapedType::isDynamicStrideOrOffset(v)) ? Wrapper{true, 0} |
| : Wrapper{false, v}; |
| } |
| static Wrapper size(int64_t v) { |
| return (ShapedType::isDynamic(v)) ? Wrapper{true, 0} : Wrapper{false, v}; |
| } |
| int64_t asOffset() { |
| return saturated ? ShapedType::kDynamicStrideOrOffset : v; |
| } |
| int64_t asSize() { return saturated ? ShapedType::kDynamicSize : v; } |
| int64_t asStride() { |
| return saturated ? ShapedType::kDynamicStrideOrOffset : v; |
| } |
| bool operator==(Wrapper other) { |
| return (saturated && other.saturated) || |
| (!saturated && !other.saturated && v == other.v); |
| } |
| bool operator!=(Wrapper other) { return !(*this == other); } |
| Wrapper operator+(Wrapper other) { |
| if (saturated || other.saturated) |
| return Wrapper{true, 0}; |
| return Wrapper{false, other.v + v}; |
| } |
| Wrapper operator*(Wrapper other) { |
| if (saturated || other.saturated) |
| return Wrapper{true, 0}; |
| return Wrapper{false, other.v * v}; |
| } |
| bool saturated; |
| int64_t v; |
| }; |
| } // namespace saturated_arith |
| } // namespace |
| |
| /// Materialize a single constant operation from a given attribute value with |
| /// the desired resultant type. |
| Operation *MemRefDialect::materializeConstant(OpBuilder &builder, |
| Attribute value, Type type, |
| Location loc) { |
| if (arith::ConstantOp::isBuildableWith(value, type)) |
| return builder.create<arith::ConstantOp>(loc, value, type); |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Common canonicalization pattern support logic |
| //===----------------------------------------------------------------------===// |
| |
| /// This is a common class used for patterns of the form |
| /// "someop(memrefcast) -> someop". It folds the source of any memref.cast |
| /// into the root operation directly. |
| LogicalResult mlir::memref::foldMemRefCast(Operation *op, Value inner) { |
| bool folded = false; |
| for (OpOperand &operand : op->getOpOperands()) { |
| auto cast = operand.get().getDefiningOp<CastOp>(); |
| if (cast && operand.get() != inner && |
| !cast.getOperand().getType().isa<UnrankedMemRefType>()) { |
| operand.set(cast.getOperand()); |
| folded = true; |
| } |
| } |
| return success(folded); |
| } |
| |
| /// Return an unranked/ranked tensor type for the given unranked/ranked memref |
| /// type. |
| Type mlir::memref::getTensorTypeFromMemRefType(Type type) { |
| if (auto memref = type.dyn_cast<MemRefType>()) |
| return RankedTensorType::get(memref.getShape(), memref.getElementType()); |
| if (auto memref = type.dyn_cast<UnrankedMemRefType>()) |
| return UnrankedTensorType::get(memref.getElementType()); |
| return NoneType::get(type.getContext()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocOp / AllocaOp |
| //===----------------------------------------------------------------------===// |
| |
| template <typename AllocLikeOp> |
| static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { |
| static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value, |
| "applies to only alloc or alloca"); |
| auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>(); |
| if (!memRefType) |
| return op.emitOpError("result must be a memref"); |
| |
| if (static_cast<int64_t>(op.getDynamicSizes().size()) != |
| memRefType.getNumDynamicDims()) |
| return op.emitOpError("dimension operand count does not equal memref " |
| "dynamic dimension count"); |
| |
| unsigned numSymbols = 0; |
| if (!memRefType.getLayout().isIdentity()) |
| numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); |
| if (op.getSymbolOperands().size() != numSymbols) |
| return op.emitOpError("symbol operand count does not equal memref symbol " |
| "count: expected ") |
| << numSymbols << ", got " << op.getSymbolOperands().size(); |
| |
| return success(); |
| } |
| |
| LogicalResult AllocOp::verify() { return verifyAllocLikeOp(*this); } |
| |
| LogicalResult AllocaOp::verify() { |
| // An alloca op needs to have an ancestor with an allocation scope trait. |
| if (!(*this)->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| return emitOpError( |
| "requires an ancestor op with AutomaticAllocationScope trait"); |
| |
| return verifyAllocLikeOp(*this); |
| } |
| |
| namespace { |
| /// Fold constant dimensions into an alloc like operation. |
| template <typename AllocLikeOp> |
| struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> { |
| using OpRewritePattern<AllocLikeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocLikeOp alloc, |
| PatternRewriter &rewriter) const override { |
| // Check to see if any dimensions operands are constants. If so, we can |
| // substitute and drop them. |
| if (llvm::none_of(alloc.getDynamicSizes(), [](Value operand) { |
| return matchPattern(operand, matchConstantIndex()); |
| })) |
| return failure(); |
| |
| auto memrefType = alloc.getType(); |
| |
| // Ok, we have one or more constant operands. Collect the non-constant ones |
| // and keep track of the resultant memref type to build. |
| SmallVector<int64_t, 4> newShapeConstants; |
| newShapeConstants.reserve(memrefType.getRank()); |
| SmallVector<Value, 4> dynamicSizes; |
| |
| unsigned dynamicDimPos = 0; |
| for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { |
| int64_t dimSize = memrefType.getDimSize(dim); |
| // If this is already static dimension, keep it. |
| if (dimSize != -1) { |
| newShapeConstants.push_back(dimSize); |
| continue; |
| } |
| auto dynamicSize = alloc.getDynamicSizes()[dynamicDimPos]; |
| auto *defOp = dynamicSize.getDefiningOp(); |
| if (auto constantIndexOp = |
| dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { |
| // Dynamic shape dimension will be folded. |
| newShapeConstants.push_back(constantIndexOp.value()); |
| } else { |
| // Dynamic shape dimension not folded; copy dynamicSize from old memref. |
| newShapeConstants.push_back(-1); |
| dynamicSizes.push_back(dynamicSize); |
| } |
| dynamicDimPos++; |
| } |
| |
| // Create new memref type (which will have fewer dynamic dimensions). |
| MemRefType newMemRefType = |
| MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| assert(static_cast<int64_t>(dynamicSizes.size()) == |
| newMemRefType.getNumDynamicDims()); |
| |
| // Create and insert the alloc op for the new memref. |
| auto newAlloc = rewriter.create<AllocLikeOp>( |
| alloc.getLoc(), newMemRefType, dynamicSizes, alloc.getSymbolOperands(), |
| alloc.getAlignmentAttr()); |
| // Insert a cast so we have the same type as the old alloc. |
| auto resultCast = |
| rewriter.create<CastOp>(alloc.getLoc(), alloc.getType(), newAlloc); |
| |
| rewriter.replaceOp(alloc, {resultCast}); |
| return success(); |
| } |
| }; |
| |
| /// Fold alloc operations with no users or only store and dealloc uses. |
| template <typename T> |
| struct SimplifyDeadAlloc : public OpRewritePattern<T> { |
| using OpRewritePattern<T>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(T alloc, |
| PatternRewriter &rewriter) const override { |
| if (llvm::any_of(alloc->getUsers(), [&](Operation *op) { |
| if (auto storeOp = dyn_cast<StoreOp>(op)) |
| return storeOp.getValue() == alloc; |
| return !isa<DeallocOp>(op); |
| })) |
| return failure(); |
| |
| for (Operation *user : llvm::make_early_inc_range(alloc->getUsers())) |
| rewriter.eraseOp(user); |
| |
| rewriter.eraseOp(alloc); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context); |
| } |
| |
| void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>( |
| context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocaScopeOp |
| //===----------------------------------------------------------------------===// |
| |
| void AllocaScopeOp::print(OpAsmPrinter &p) { |
| bool printBlockTerminators = false; |
| |
| p << ' '; |
| if (!getResults().empty()) { |
| p << " -> (" << getResultTypes() << ")"; |
| printBlockTerminators = true; |
| } |
| p << ' '; |
| p.printRegion(getBodyRegion(), |
| /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/printBlockTerminators); |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| } |
| |
| ParseResult AllocaScopeOp::parse(OpAsmParser &parser, OperationState &result) { |
| // Create a region for the body. |
| result.regions.reserve(1); |
| Region *bodyRegion = result.addRegion(); |
| |
| // Parse optional results type list. |
| if (parser.parseOptionalArrowTypeList(result.types)) |
| return failure(); |
| |
| // Parse the body region. |
| if (parser.parseRegion(*bodyRegion, /*arguments=*/{})) |
| return failure(); |
| AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(), |
| result.location); |
| |
| // Parse the optional attribute list. |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| |
| return success(); |
| } |
| |
| void AllocaScopeOp::getSuccessorRegions( |
| Optional<unsigned> index, ArrayRef<Attribute> operands, |
| SmallVectorImpl<RegionSuccessor> ®ions) { |
| if (index) { |
| regions.push_back(RegionSuccessor(getResults())); |
| return; |
| } |
| |
| regions.push_back(RegionSuccessor(&getBodyRegion())); |
| } |
| |
| /// Given an operation, return whether this op is guaranteed to |
| /// allocate an AutomaticAllocationScopeResource |
| static bool isGuaranteedAutomaticAllocation(Operation *op) { |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return false; |
| for (auto res : op->getResults()) { |
| if (auto effect = |
| interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Given an operation, return whether this op itself could |
| /// allocate an AutomaticAllocationScopeResource. Note that |
| /// this will not check whether an operation contained within |
| /// the op can allocate. |
| static bool isOpItselfPotentialAutomaticAllocation(Operation *op) { |
| // This op itself doesn't create a stack allocation, |
| // the inner allocation should be handled separately. |
| if (op->hasTrait<OpTrait::HasRecursiveSideEffects>()) |
| return false; |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return true; |
| for (auto res : op->getResults()) { |
| if (auto effect = |
| interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Return whether this op is the last non terminating op |
| /// in a region. That is to say, it is in a one-block region |
| /// and is only followed by a terminator. This prevents |
| /// extending the lifetime of allocations. |
| static bool lastNonTerminatorInRegion(Operation *op) { |
| return op->getNextNode() == op->getBlock()->getTerminator() && |
| op->getParentRegion()->getBlocks().size() == 1; |
| } |
| |
| /// Inline an AllocaScopeOp if either the direct parent is an allocation scope |
| /// or it contains no allocation. |
| struct AllocaScopeInliner : public OpRewritePattern<AllocaScopeOp> { |
| using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocaScopeOp op, |
| PatternRewriter &rewriter) const override { |
| bool hasPotentialAlloca = |
| op->walk<WalkOrder::PreOrder>([&](Operation *alloc) { |
| if (alloc == op) |
| return WalkResult::advance(); |
| if (isOpItselfPotentialAutomaticAllocation(alloc)) |
| return WalkResult::interrupt(); |
| if (alloc->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return WalkResult::skip(); |
| return WalkResult::advance(); |
| }).wasInterrupted(); |
| |
| // If this contains no potential allocation, it is always legal to |
| // inline. Otherwise, consider two conditions: |
| if (hasPotentialAlloca) { |
| // If the parent isn't an allocation scope, or we are not the last |
| // non-terminator op in the parent, we will extend the lifetime. |
| if (!op->getParentOp()->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| if (!lastNonTerminatorInRegion(op)) |
| return failure(); |
| } |
| |
| Block *block = &op.getRegion().front(); |
| Operation *terminator = block->getTerminator(); |
| ValueRange results = terminator->getOperands(); |
| rewriter.mergeBlockBefore(block, op); |
| rewriter.replaceOp(op, results); |
| rewriter.eraseOp(terminator); |
| return success(); |
| } |
| }; |
| |
| /// Move allocations into an allocation scope, if it is legal to |
| /// move them (e.g. their operands are available at the location |
| /// the op would be moved to). |
| struct AllocaScopeHoister : public OpRewritePattern<AllocaScopeOp> { |
| using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocaScopeOp op, |
| PatternRewriter &rewriter) const override { |
| |
| if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| |
| Operation *lastParentWithoutScope = op->getParentOp(); |
| |
| if (!lastParentWithoutScope || |
| lastParentWithoutScope->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| |
| // Only apply to if this is this last non-terminator |
| // op in the block (lest lifetime be extended) of a one |
| // block region |
| if (!lastNonTerminatorInRegion(op) || |
| !lastNonTerminatorInRegion(lastParentWithoutScope)) |
| return failure(); |
| |
| while (!lastParentWithoutScope->getParentOp() |
| ->hasTrait<OpTrait::AutomaticAllocationScope>()) { |
| lastParentWithoutScope = lastParentWithoutScope->getParentOp(); |
| if (!lastParentWithoutScope || |
| !lastNonTerminatorInRegion(lastParentWithoutScope)) |
| return failure(); |
| } |
| assert(lastParentWithoutScope->getParentOp() |
| ->hasTrait<OpTrait::AutomaticAllocationScope>()); |
| |
| Region *containingRegion = nullptr; |
| for (auto &r : lastParentWithoutScope->getRegions()) { |
| if (r.isAncestor(op->getParentRegion())) { |
| assert(containingRegion == nullptr && |
| "only one region can contain the op"); |
| containingRegion = &r; |
| } |
| } |
| assert(containingRegion && "op must be contained in a region"); |
| |
| SmallVector<Operation *> toHoist; |
| op->walk([&](Operation *alloc) { |
| if (!isGuaranteedAutomaticAllocation(alloc)) |
| return WalkResult::skip(); |
| |
| // If any operand is not defined before the location of |
| // lastParentWithoutScope (i.e. where we would hoist to), skip. |
| if (llvm::any_of(alloc->getOperands(), [&](Value v) { |
| return containingRegion->isAncestor(v.getParentRegion()); |
| })) |
| return WalkResult::skip(); |
| toHoist.push_back(alloc); |
| return WalkResult::advance(); |
| }); |
| |
| if (toHoist.empty()) |
| return failure(); |
| rewriter.setInsertionPoint(lastParentWithoutScope); |
| for (auto *op : toHoist) { |
| auto *cloned = rewriter.clone(*op); |
| rewriter.replaceOp(op, cloned->getResults()); |
| } |
| return success(); |
| } |
| }; |
| |
| void AllocaScopeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<AllocaScopeInliner, AllocaScopeHoister>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AssumeAlignmentOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AssumeAlignmentOp::verify() { |
| if (!llvm::isPowerOf2_32(getAlignment())) |
| return emitOpError("alignment must be power of 2"); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CastOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Determines whether MemRef_CastOp casts to a more dynamic version of the |
| /// source memref. This is useful to to fold a memref.cast into a consuming op |
| /// and implement canonicalization patterns for ops in different dialects that |
| /// may consume the results of memref.cast operations. Such foldable memref.cast |
| /// operations are typically inserted as `view` and `subview` ops are |
| /// canonicalized, to preserve the type compatibility of their uses. |
| /// |
| /// Returns true when all conditions are met: |
| /// 1. source and result are ranked memrefs with strided semantics and same |
| /// element type and rank. |
| /// 2. each of the source's size, offset or stride has more static information |
| /// than the corresponding result's size, offset or stride. |
| /// |
| /// Example 1: |
| /// ```mlir |
| /// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32> |
| /// %2 = consumer %1 ... : memref<?x?xf32> ... |
| /// ``` |
| /// |
| /// may fold into: |
| /// |
| /// ```mlir |
| /// %2 = consumer %0 ... : memref<8x16xf32> ... |
| /// ``` |
| /// |
| /// Example 2: |
| /// ``` |
| /// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| /// to memref<?x?xf32> |
| /// consumer %1 : memref<?x?xf32> ... |
| /// ``` |
| /// |
| /// may fold into: |
| /// |
| /// ``` |
| /// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| /// ``` |
| bool CastOp::canFoldIntoConsumerOp(CastOp castOp) { |
| MemRefType sourceType = castOp.getSource().getType().dyn_cast<MemRefType>(); |
| MemRefType resultType = castOp.getType().dyn_cast<MemRefType>(); |
| |
| // Requires ranked MemRefType. |
| if (!sourceType || !resultType) |
| return false; |
| |
| // Requires same elemental type. |
| if (sourceType.getElementType() != resultType.getElementType()) |
| return false; |
| |
| // Requires same rank. |
| if (sourceType.getRank() != resultType.getRank()) |
| return false; |
| |
| // Only fold casts between strided memref forms. |
| int64_t sourceOffset, resultOffset; |
| SmallVector<int64_t, 4> sourceStrides, resultStrides; |
| if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) || |
| failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) |
| return false; |
| |
| // If cast is towards more static sizes along any dimension, don't fold. |
| for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { |
| auto ss = std::get<0>(it), st = std::get<1>(it); |
| if (ss != st) |
| if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) |
| return false; |
| } |
| |
| // If cast is towards more static offset along any dimension, don't fold. |
| if (sourceOffset != resultOffset) |
| if (ShapedType::isDynamicStrideOrOffset(sourceOffset) && |
| !ShapedType::isDynamicStrideOrOffset(resultOffset)) |
| return false; |
| |
| // If cast is towards more static strides along any dimension, don't fold. |
| for (auto it : llvm::zip(sourceStrides, resultStrides)) { |
| auto ss = std::get<0>(it), st = std::get<1>(it); |
| if (ss != st) |
| if (ShapedType::isDynamicStrideOrOffset(ss) && |
| !ShapedType::isDynamicStrideOrOffset(st)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| if (inputs.size() != 1 || outputs.size() != 1) |
| return false; |
| Type a = inputs.front(), b = outputs.front(); |
| auto aT = a.dyn_cast<MemRefType>(); |
| auto bT = b.dyn_cast<MemRefType>(); |
| |
| auto uaT = a.dyn_cast<UnrankedMemRefType>(); |
| auto ubT = b.dyn_cast<UnrankedMemRefType>(); |
| |
| if (aT && bT) { |
| if (aT.getElementType() != bT.getElementType()) |
| return false; |
| if (aT.getLayout() != bT.getLayout()) { |
| int64_t aOffset, bOffset; |
| SmallVector<int64_t, 4> aStrides, bStrides; |
| if (failed(getStridesAndOffset(aT, aStrides, aOffset)) || |
| failed(getStridesAndOffset(bT, bStrides, bOffset)) || |
| aStrides.size() != bStrides.size()) |
| return false; |
| |
| // Strides along a dimension/offset are compatible if the value in the |
| // source memref is static and the value in the target memref is the |
| // same. They are also compatible if either one is dynamic (see |
| // description of MemRefCastOp for details). |
| auto checkCompatible = [](int64_t a, int64_t b) { |
| return (a == MemRefType::getDynamicStrideOrOffset() || |
| b == MemRefType::getDynamicStrideOrOffset() || a == b); |
| }; |
| if (!checkCompatible(aOffset, bOffset)) |
| return false; |
| for (const auto &aStride : enumerate(aStrides)) |
| if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) |
| return false; |
| } |
| if (aT.getMemorySpace() != bT.getMemorySpace()) |
| return false; |
| |
| // They must have the same rank, and any specified dimensions must match. |
| if (aT.getRank() != bT.getRank()) |
| return false; |
| |
| for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { |
| int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); |
| if (aDim != -1 && bDim != -1 && aDim != bDim) |
| return false; |
| } |
| return true; |
| } else { |
| if (!aT && !uaT) |
| return false; |
| if (!bT && !ubT) |
| return false; |
| // Unranked to unranked casting is unsupported |
| if (uaT && ubT) |
| return false; |
| |
| auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); |
| auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); |
| if (aEltType != bEltType) |
| return false; |
| |
| auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); |
| auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); |
| return aMemSpace == bMemSpace; |
| } |
| |
| return false; |
| } |
| |
| OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) { |
| return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CopyOp |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// If the source/target of a CopyOp is a CastOp that does not modify the shape |
| /// and element type, the cast can be skipped. Such CastOps only cast the layout |
| /// of the type. |
| struct FoldCopyOfCast : public OpRewritePattern<CopyOp> { |
| using OpRewritePattern<CopyOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CopyOp copyOp, |
| PatternRewriter &rewriter) const override { |
| bool modified = false; |
| |
| // Check source. |
| if (auto castOp = copyOp.getSource().getDefiningOp<CastOp>()) { |
| auto fromType = castOp.getSource().getType().dyn_cast<MemRefType>(); |
| auto toType = castOp.getSource().getType().dyn_cast<MemRefType>(); |
| |
| if (fromType && toType) { |
| if (fromType.getShape() == toType.getShape() && |
| fromType.getElementType() == toType.getElementType()) { |
| rewriter.updateRootInPlace(copyOp, [&] { |
| copyOp.getSourceMutable().assign(castOp.getSource()); |
| }); |
| modified = true; |
| } |
| } |
| } |
| |
| // Check target. |
| if (auto castOp = copyOp.getTarget().getDefiningOp<CastOp>()) { |
| auto fromType = castOp.getSource().getType().dyn_cast<MemRefType>(); |
| auto toType = castOp.getSource().getType().dyn_cast<MemRefType>(); |
| |
| if (fromType && toType) { |
| if (fromType.getShape() == toType.getShape() && |
| fromType.getElementType() == toType.getElementType()) { |
| rewriter.updateRootInPlace(copyOp, [&] { |
| copyOp.getTargetMutable().assign(castOp.getSource()); |
| }); |
| modified = true; |
| } |
| } |
| } |
| |
| return success(modified); |
| } |
| }; |
| |
| /// Fold memref.copy(%x, %x). |
| struct FoldSelfCopy : public OpRewritePattern<CopyOp> { |
| using OpRewritePattern<CopyOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CopyOp copyOp, |
| PatternRewriter &rewriter) const override { |
| if (copyOp.getSource() != copyOp.getTarget()) |
| return failure(); |
| |
| rewriter.eraseOp(copyOp); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<FoldCopyOfCast, FoldSelfCopy>(context); |
| } |
| |
| LogicalResult CopyOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// copy(memrefcast) -> copy |
| bool folded = false; |
| Operation *op = *this; |
| for (OpOperand &operand : op->getOpOperands()) { |
| auto castOp = operand.get().getDefiningOp<memref::CastOp>(); |
| if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { |
| operand.set(castOp.getOperand()); |
| folded = true; |
| } |
| } |
| return success(folded); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeallocOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dealloc(memrefcast) -> dealloc |
| return foldMemRefCast(*this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DimOp |
| //===----------------------------------------------------------------------===// |
| |
| void DimOp::build(OpBuilder &builder, OperationState &result, Value source, |
| int64_t index) { |
| auto loc = result.location; |
| Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); |
| build(builder, result, source, indexValue); |
| } |
| |
| void DimOp::build(OpBuilder &builder, OperationState &result, Value source, |
| Value index) { |
| auto indexTy = builder.getIndexType(); |
| build(builder, result, indexTy, source, index); |
| } |
| |
| Optional<int64_t> DimOp::getConstantIndex() { |
| if (auto constantOp = getIndex().getDefiningOp<arith::ConstantOp>()) |
| return constantOp.getValue().cast<IntegerAttr>().getInt(); |
| return {}; |
| } |
| |
| LogicalResult DimOp::verify() { |
| // Assume unknown index to be in range. |
| Optional<int64_t> index = getConstantIndex(); |
| if (!index) |
| return success(); |
| |
| // Check that constant index is not knowingly out of range. |
| auto type = getSource().getType(); |
| if (auto memrefType = type.dyn_cast<MemRefType>()) { |
| if (*index >= memrefType.getRank()) |
| return emitOpError("index is out of range"); |
| } else if (type.isa<UnrankedMemRefType>()) { |
| // Assume index to be in range. |
| } else { |
| llvm_unreachable("expected operand with memref type"); |
| } |
| return success(); |
| } |
| |
| /// Return a map with key being elements in `vals` and data being number of |
| /// occurences of it. Use std::map, since the `vals` here are strides and the |
| /// dynamic stride value is the same as the tombstone value for |
| /// `DenseMap<int64_t>`. |
| static std::map<int64_t, unsigned> getNumOccurences(ArrayRef<int64_t> vals) { |
| std::map<int64_t, unsigned> numOccurences; |
| for (auto val : vals) |
| numOccurences[val]++; |
| return numOccurences; |
| } |
| |
| /// Given the `originalType` and a `candidateReducedType` whose shape is assumed |
| /// to be a subset of `originalType` with some `1` entries erased, return the |
| /// set of indices that specifies which of the entries of `originalShape` are |
| /// dropped to obtain `reducedShape`. |
| /// This accounts for cases where there are multiple unit-dims, but only a |
| /// subset of those are dropped. For MemRefTypes these can be disambiguated |
| /// using the strides. If a dimension is dropped the stride must be dropped too. |
| static llvm::Optional<llvm::SmallBitVector> |
| computeMemRefRankReductionMask(MemRefType originalType, MemRefType reducedType, |
| ArrayRef<OpFoldResult> sizes) { |
| llvm::SmallBitVector unusedDims(originalType.getRank()); |
| if (originalType.getRank() == reducedType.getRank()) |
| return unusedDims; |
| |
| for (const auto &dim : llvm::enumerate(sizes)) |
| if (auto attr = dim.value().dyn_cast<Attribute>()) |
| if (attr.cast<IntegerAttr>().getInt() == 1) |
| unusedDims.set(dim.index()); |
| |
| // Early exit for the case where the number of unused dims matches the number |
| // of ranks reduced. |
| if (static_cast<int64_t>(unusedDims.count()) + reducedType.getRank() == |
| originalType.getRank()) |
| return unusedDims; |
| |
| SmallVector<int64_t> originalStrides, candidateStrides; |
| int64_t originalOffset, candidateOffset; |
| if (failed( |
| getStridesAndOffset(originalType, originalStrides, originalOffset)) || |
| failed( |
| getStridesAndOffset(reducedType, candidateStrides, candidateOffset))) |
| return llvm::None; |
| |
| // For memrefs, a dimension is truly dropped if its corresponding stride is |
| // also dropped. This is particularly important when more than one of the dims |
| // is 1. Track the number of occurences of the strides in the original type |
| // and the candidate type. For each unused dim that stride should not be |
| // present in the candidate type. Note that there could be multiple dimensions |
| // that have the same size. We dont need to exactly figure out which dim |
| // corresponds to which stride, we just need to verify that the number of |
| // reptitions of a stride in the original + number of unused dims with that |
| // stride == number of repititions of a stride in the candidate. |
| std::map<int64_t, unsigned> currUnaccountedStrides = |
| getNumOccurences(originalStrides); |
| std::map<int64_t, unsigned> candidateStridesNumOccurences = |
| getNumOccurences(candidateStrides); |
| for (size_t dim = 0, e = unusedDims.size(); dim != e; ++dim) { |
| if (!unusedDims.test(dim)) |
| continue; |
| int64_t originalStride = originalStrides[dim]; |
| if (currUnaccountedStrides[originalStride] > |
| candidateStridesNumOccurences[originalStride]) { |
| // This dim can be treated as dropped. |
| currUnaccountedStrides[originalStride]--; |
| continue; |
| } |
| if (currUnaccountedStrides[originalStride] == |
| candidateStridesNumOccurences[originalStride]) { |
| // The stride for this is not dropped. Keep as is. |
| unusedDims.reset(dim); |
| continue; |
| } |
| if (currUnaccountedStrides[originalStride] < |
| candidateStridesNumOccurences[originalStride]) { |
| // This should never happen. Cant have a stride in the reduced rank type |
| // that wasnt in the original one. |
| return llvm::None; |
| } |
| } |
| |
| if ((int64_t)unusedDims.count() + reducedType.getRank() != |
| originalType.getRank()) |
| return llvm::None; |
| return unusedDims; |
| } |
| |
| llvm::SmallBitVector SubViewOp::getDroppedDims() { |
| MemRefType sourceType = getSourceType(); |
| MemRefType resultType = getType(); |
| llvm::Optional<llvm::SmallBitVector> unusedDims = |
| computeMemRefRankReductionMask(sourceType, resultType, getMixedSizes()); |
| assert(unusedDims && "unable to find unused dims of subview"); |
| return *unusedDims; |
| } |
| |
| OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { |
| // All forms of folding require a known index. |
| auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); |
| if (!index) |
| return {}; |
| |
| // Folding for unranked types (UnrankedMemRefType) is not supported. |
| auto memrefType = getSource().getType().dyn_cast<MemRefType>(); |
| if (!memrefType) |
| return {}; |
| |
| // Fold if the shape extent along the given index is known. |
| if (!memrefType.isDynamicDim(index.getInt())) { |
| Builder builder(getContext()); |
| return builder.getIndexAttr(memrefType.getShape()[index.getInt()]); |
| } |
| |
| // The size at the given index is now known to be a dynamic size. |
| unsigned unsignedIndex = index.getValue().getZExtValue(); |
| |
| // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. |
| Operation *definingOp = getSource().getDefiningOp(); |
| |
| if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp)) |
| return *(alloc.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp)) |
| return *(alloca.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto view = dyn_cast_or_null<ViewOp>(definingOp)) |
| return *(view.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto subview = dyn_cast_or_null<SubViewOp>(definingOp)) { |
| llvm::SmallBitVector unusedDims = subview.getDroppedDims(); |
| unsigned resultIndex = 0; |
| unsigned sourceRank = subview.getSourceType().getRank(); |
| unsigned sourceIndex = 0; |
| for (auto i : llvm::seq<unsigned>(0, sourceRank)) { |
| if (unusedDims.test(i)) |
| continue; |
| if (resultIndex == unsignedIndex) { |
| sourceIndex = i; |
| break; |
| } |
| resultIndex++; |
| } |
| assert(subview.isDynamicSize(sourceIndex) && |
| "expected dynamic subview size"); |
| return subview.getDynamicSize(sourceIndex); |
| } |
| |
| if (auto sizeInterface = |
| dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) { |
| assert(sizeInterface.isDynamicSize(unsignedIndex) && |
| "Expected dynamic subview size"); |
| return sizeInterface.getDynamicSize(unsignedIndex); |
| } |
| |
| // dim(memrefcast) -> dim |
| if (succeeded(foldMemRefCast(*this))) |
| return getResult(); |
| |
| return {}; |
| } |
| |
| namespace { |
| /// Fold dim of a memref reshape operation to a load into the reshape's shape |
| /// operand. |
| struct DimOfMemRefReshape : public OpRewritePattern<DimOp> { |
| using OpRewritePattern<DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DimOp dim, |
| PatternRewriter &rewriter) const override { |
| auto reshape = dim.getSource().getDefiningOp<ReshapeOp>(); |
| |
| if (!reshape) |
| return failure(); |
| |
| // Place the load directly after the reshape to ensure that the shape memref |
| // was not mutated. |
| rewriter.setInsertionPointAfter(reshape); |
| Location loc = dim.getLoc(); |
| Value load = |
| rewriter.create<LoadOp>(loc, reshape.getShape(), dim.getIndex()); |
| if (load.getType() != dim.getType()) |
| load = rewriter.create<arith::IndexCastOp>(loc, dim.getType(), load); |
| rewriter.replaceOp(dim, load); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<DimOfMemRefReshape>(context); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // DmaStartOp |
| // --------------------------------------------------------------------------- |
| |
| void DmaStartOp::build(OpBuilder &builder, OperationState &result, |
| Value srcMemRef, ValueRange srcIndices, Value destMemRef, |
| ValueRange destIndices, Value numElements, |
| Value tagMemRef, ValueRange tagIndices, Value stride, |
| Value elementsPerStride) { |
| result.addOperands(srcMemRef); |
| result.addOperands(srcIndices); |
| result.addOperands(destMemRef); |
| result.addOperands(destIndices); |
| result.addOperands({numElements, tagMemRef}); |
| result.addOperands(tagIndices); |
| if (stride) |
| result.addOperands({stride, elementsPerStride}); |
| } |
| |
| void DmaStartOp::print(OpAsmPrinter &p) { |
| p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], " |
| << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements() |
| << ", " << getTagMemRef() << '[' << getTagIndices() << ']'; |
| if (isStrided()) |
| p << ", " << getStride() << ", " << getNumElementsPerStride(); |
| |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType() |
| << ", " << getTagMemRef().getType(); |
| } |
| |
| // Parse DmaStartOp. |
| // Ex: |
| // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, |
| // %tag[%index], %stride, %num_elt_per_stride : |
| // : memref<3076 x f32, 0>, |
| // memref<1024 x f32, 2>, |
| // memref<1 x i32> |
| // |
| ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand srcMemRefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> srcIndexInfos; |
| OpAsmParser::UnresolvedOperand dstMemRefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> dstIndexInfos; |
| OpAsmParser::UnresolvedOperand numElementsInfo; |
| OpAsmParser::UnresolvedOperand tagMemrefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> tagIndexInfos; |
| SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo; |
| |
| SmallVector<Type, 3> types; |
| auto indexType = parser.getBuilder().getIndexType(); |
| |
| // Parse and resolve the following list of operands: |
| // *) source memref followed by its indices (in square brackets). |
| // *) destination memref followed by its indices (in square brackets). |
| // *) dma size in KiB. |
| if (parser.parseOperand(srcMemRefInfo) || |
| parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseOperand(dstMemRefInfo) || |
| parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseOperand(numElementsInfo) || |
| parser.parseComma() || parser.parseOperand(tagMemrefInfo) || |
| parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) |
| return failure(); |
| |
| // Parse optional stride and elements per stride. |
| if (parser.parseTrailingOperandList(strideInfo)) |
| return failure(); |
| |
| bool isStrided = strideInfo.size() == 2; |
| if (!strideInfo.empty() && !isStrided) { |
| return parser.emitError(parser.getNameLoc(), |
| "expected two stride related operands"); |
| } |
| |
| if (parser.parseColonTypeList(types)) |
| return failure(); |
| if (types.size() != 3) |
| return parser.emitError(parser.getNameLoc(), "fewer/more types expected"); |
| |
| if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || |
| parser.resolveOperands(srcIndexInfos, indexType, result.operands) || |
| parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || |
| parser.resolveOperands(dstIndexInfos, indexType, result.operands) || |
| // size should be an index. |
| parser.resolveOperand(numElementsInfo, indexType, result.operands) || |
| parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || |
| // tag indices should be index. |
| parser.resolveOperands(tagIndexInfos, indexType, result.operands)) |
| return failure(); |
| |
| if (isStrided) { |
| if (parser.resolveOperands(strideInfo, indexType, result.operands)) |
| return failure(); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult DmaStartOp::verify() { |
| unsigned numOperands = getNumOperands(); |
| |
| // Mandatory non-variadic operands are: src memref, dst memref, tag memref and |
| // the number of elements. |
| if (numOperands < 4) |
| return emitOpError("expected at least 4 operands"); |
| |
| // Check types of operands. The order of these calls is important: the later |
| // calls rely on some type properties to compute the operand position. |
| // 1. Source memref. |
| if (!getSrcMemRef().getType().isa<MemRefType>()) |
| return emitOpError("expected source to be of memref type"); |
| if (numOperands < getSrcMemRefRank() + 4) |
| return emitOpError() << "expected at least " << getSrcMemRefRank() + 4 |
| << " operands"; |
| if (!getSrcIndices().empty() && |
| !llvm::all_of(getSrcIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected source indices to be of index type"); |
| |
| // 2. Destination memref. |
| if (!getDstMemRef().getType().isa<MemRefType>()) |
| return emitOpError("expected destination to be of memref type"); |
| unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4; |
| if (numOperands < numExpectedOperands) |
| return emitOpError() << "expected at least " << numExpectedOperands |
| << " operands"; |
| if (!getDstIndices().empty() && |
| !llvm::all_of(getDstIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected destination indices to be of index type"); |
| |
| // 3. Number of elements. |
| if (!getNumElements().getType().isIndex()) |
| return emitOpError("expected num elements to be of index type"); |
| |
| // 4. Tag memref. |
| if (!getTagMemRef().getType().isa<MemRefType>()) |
| return emitOpError("expected tag to be of memref type"); |
| numExpectedOperands += getTagMemRefRank(); |
| if (numOperands < numExpectedOperands) |
| return emitOpError() << "expected at least " << numExpectedOperands |
| << " operands"; |
| if (!getTagIndices().empty() && |
| !llvm::all_of(getTagIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected tag indices to be of index type"); |
| |
| // Optional stride-related operands must be either both present or both |
| // absent. |
| if (numOperands != numExpectedOperands && |
| numOperands != numExpectedOperands + 2) |
| return emitOpError("incorrect number of operands"); |
| |
| // 5. Strides. |
| if (isStrided()) { |
| if (!getStride().getType().isIndex() || |
| !getNumElementsPerStride().getType().isIndex()) |
| return emitOpError( |
| "expected stride and num elements per stride to be of type index"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dma_start(memrefcast) -> dma_start |
| return foldMemRefCast(*this); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // DmaWaitOp |
| // --------------------------------------------------------------------------- |
| |
| LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dma_wait(memrefcast) -> dma_wait |
| return foldMemRefCast(*this); |
| } |
| |
| LogicalResult DmaWaitOp::verify() { |
| // Check that the number of tag indices matches the tagMemRef rank. |
| unsigned numTagIndices = getTagIndices().size(); |
| unsigned tagMemRefRank = getTagMemRefRank(); |
| if (numTagIndices != tagMemRefRank) |
| return emitOpError() << "expected tagIndices to have the same number of " |
| "elements as the tagMemRef rank, expected " |
| << tagMemRefRank << ", but got " << numTagIndices; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GenericAtomicRMWOp |
| //===----------------------------------------------------------------------===// |
| |
| void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result, |
| Value memref, ValueRange ivs) { |
| result.addOperands(memref); |
| result.addOperands(ivs); |
| |
| if (auto memrefType = memref.getType().dyn_cast<MemRefType>()) { |
| Type elementType = memrefType.getElementType(); |
| result.addTypes(elementType); |
| |
| Region *bodyRegion = result.addRegion(); |
| bodyRegion->push_back(new Block()); |
| bodyRegion->addArgument(elementType, memref.getLoc()); |
| } |
| } |
| |
| LogicalResult GenericAtomicRMWOp::verify() { |
| auto &body = getRegion(); |
| if (body.getNumArguments() != 1) |
| return emitOpError("expected single number of entry block arguments"); |
| |
| if (getResult().getType() != body.getArgument(0).getType()) |
| return emitOpError("expected block argument of the same type result type"); |
| |
| bool hasSideEffects = |
| body.walk([&](Operation *nestedOp) { |
| if (MemoryEffectOpInterface::hasNoEffect(nestedOp)) |
| return WalkResult::advance(); |
| nestedOp->emitError( |
| "body of 'memref.generic_atomic_rmw' should contain " |
| "only operations with no side effects"); |
| return WalkResult::interrupt(); |
| }) |
| .wasInterrupted(); |
| return hasSideEffects ? failure() : success(); |
| } |
| |
| ParseResult GenericAtomicRMWOp::parse(OpAsmParser &parser, |
| OperationState &result) { |
| OpAsmParser::UnresolvedOperand memref; |
| Type memrefType; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> ivs; |
| |
| Type indexType = parser.getBuilder().getIndexType(); |
| if (parser.parseOperand(memref) || |
| parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) || |
| parser.parseColonType(memrefType) || |
| parser.resolveOperand(memref, memrefType, result.operands) || |
| parser.resolveOperands(ivs, indexType, result.operands)) |
| return failure(); |
| |
| Region *body = result.addRegion(); |
| if (parser.parseRegion(*body, {}) || |
| parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| result.types.push_back(memrefType.cast<MemRefType>().getElementType()); |
| return success(); |
| } |
| |
| void GenericAtomicRMWOp::print(OpAsmPrinter &p) { |
| p << ' ' << getMemref() << "[" << getIndices() |
| << "] : " << getMemref().getType() << ' '; |
| p.printRegion(getRegion()); |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicYieldOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AtomicYieldOp::verify() { |
| Type parentType = (*this)->getParentOp()->getResultTypes().front(); |
| Type resultType = getResult().getType(); |
| if (parentType != resultType) |
| return emitOpError() << "types mismatch between yield op: " << resultType |
| << " and its parent: " << parentType; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalOp |
| //===----------------------------------------------------------------------===// |
| |
| static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, |
| TypeAttr type, |
| Attribute initialValue) { |
| p << type; |
| if (!op.isExternal()) { |
| p << " = "; |
| if (op.isUninitialized()) |
| p << "uninitialized"; |
| else |
| p.printAttributeWithoutType(initialValue); |
| } |
| } |
| |
| static ParseResult |
| parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, |
| Attribute &initialValue) { |
| Type type; |
| if (parser.parseType(type)) |
| return failure(); |
| |
| auto memrefType = type.dyn_cast<MemRefType>(); |
| if (!memrefType || !memrefType.hasStaticShape()) |
| return parser.emitError(parser.getNameLoc()) |
| << "type should be static shaped memref, but got " << type; |
| typeAttr = TypeAttr::get(type); |
| |
| if (parser.parseOptionalEqual()) |
| return success(); |
| |
| if (succeeded(parser.parseOptionalKeyword("uninitialized"))) { |
| initialValue = UnitAttr::get(parser.getContext()); |
| return success(); |
| } |
| |
| Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| if (parser.parseAttribute(initialValue, tensorType)) |
| return failure(); |
| if (!initialValue.isa<ElementsAttr>()) |
| return parser.emitError(parser.getNameLoc()) |
| << "initial value should be a unit or elements attribute"; |
| return success(); |
| } |
| |
| LogicalResult GlobalOp::verify() { |
| auto memrefType = getType().dyn_cast<MemRefType>(); |
| if (!memrefType || !memrefType.hasStaticShape()) |
| return emitOpError("type should be static shaped memref, but got ") |
| << getType(); |
| |
| // Verify that the initial value, if present, is either a unit attribute or |
| // an elements attribute. |
| if (getInitialValue().has_value()) { |
| Attribute initValue = getInitialValue().value(); |
| if (!initValue.isa<UnitAttr>() && !initValue.isa<ElementsAttr>()) |
| return emitOpError("initial value should be a unit or elements " |
| "attribute, but got ") |
| << initValue; |
| |
| // Check that the type of the initial value is compatible with the type of |
| // the global variable. |
| if (initValue.isa<ElementsAttr>()) { |
| Type initType = initValue.getType(); |
| Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| if (initType != tensorType) |
| return emitOpError("initial value expected to be of type ") |
| << tensorType << ", but was of type " << initType; |
| } |
| } |
| |
| if (Optional<uint64_t> alignAttr = getAlignment()) { |
| uint64_t alignment = *alignAttr; |
| |
| if (!llvm::isPowerOf2_64(alignment)) |
| return emitError() << "alignment attribute value " << alignment |
| << " is not a power of 2"; |
| } |
| |
| // TODO: verify visibility for declarations. |
| return success(); |
| } |
| |
| ElementsAttr GlobalOp::getConstantInitValue() { |
| auto initVal = getInitialValue(); |
| if (getConstant() && initVal.has_value()) |
| return initVal.value().cast<ElementsAttr>(); |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GetGlobalOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult |
| GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
| // Verify that the result type is same as the type of the referenced |
| // memref.global op. |
| auto global = |
| symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, getNameAttr()); |
| if (!global) |
| return emitOpError("'") |
| << getName() << "' does not reference a valid global memref"; |
| |
| Type resultType = getResult().getType(); |
| if (global.getType() != resultType) |
| return emitOpError("result type ") |
| << resultType << " does not match type " << global.getType() |
| << " of the global memref @" << getName(); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult LoadOp::verify() { |
| if (getNumOperands() != 1 + getMemRefType().getRank()) |
| return emitOpError("incorrect number of indices for load"); |
| return success(); |
| } |
| |
| OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) { |
| /// load(memrefcast) -> load |
| if (succeeded(foldMemRefCast(*this))) |
| return getResult(); |
| return OpFoldResult(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PrefetchOp |
| //===----------------------------------------------------------------------===// |
| |
| void PrefetchOp::print(OpAsmPrinter &p) { |
| p << " " << getMemref() << '['; |
| p.printOperands(getIndices()); |
| p << ']' << ", " << (getIsWrite() ? "write" : "read"); |
| p << ", locality<" << getLocalityHint(); |
| p << ">, " << (getIsDataCache() ? "data" : "instr"); |
| p.printOptionalAttrDict( |
| (*this)->getAttrs(), |
| /*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"}); |
| p << " : " << getMemRefType(); |
| } |
| |
| ParseResult PrefetchOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand memrefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> indexInfo; |
| IntegerAttr localityHint; |
| MemRefType type; |
| StringRef readOrWrite, cacheType; |
| |
| auto indexTy = parser.getBuilder().getIndexType(); |
| auto i32Type = parser.getBuilder().getIntegerType(32); |
| if (parser.parseOperand(memrefInfo) || |
| parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseKeyword(&readOrWrite) || |
| parser.parseComma() || parser.parseKeyword("locality") || |
| parser.parseLess() || |
| parser.parseAttribute(localityHint, i32Type, "localityHint", |
| result.attributes) || |
| parser.parseGreater() || parser.parseComma() || |
| parser.parseKeyword(&cacheType) || parser.parseColonType(type) || |
| parser.resolveOperand(memrefInfo, type, result.operands) || |
| parser.resolveOperands(indexInfo, indexTy, result.operands)) |
| return failure(); |
| |
| if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) |
| return parser.emitError(parser.getNameLoc(), |
| "rw specifier has to be 'read' or 'write'"); |
| result.addAttribute( |
| PrefetchOp::getIsWriteAttrStrName(), |
| parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); |
| |
| if (!cacheType.equals("data") && !cacheType.equals("instr")) |
| return parser.emitError(parser.getNameLoc(), |
| "cache type has to be 'data' or 'instr'"); |
| |
| result.addAttribute( |
| PrefetchOp::getIsDataCacheAttrStrName(), |
| parser.getBuilder().getBoolAttr(cacheType.equals("data"))); |
| |
| return success(); |
| } |
| |
| LogicalResult PrefetchOp::verify() { |
| if (getNumOperands() != 1 + getMemRefType().getRank()) |
| return emitOpError("too few indices"); |
| |
| return success(); |
| } |
| |
| LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| // prefetch(memrefcast) -> prefetch |
| return foldMemRefCast(*this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RankOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { |
| // Constant fold rank when the rank of the operand is known. |
| auto type = getOperand().getType(); |
| auto shapedType = type.dyn_cast<ShapedType>(); |
| if (shapedType && shapedType.hasRank()) |
| return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); |
| return IntegerAttr(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReinterpretCastOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`, |
| /// `staticSizes` and `staticStrides` are automatically filled with |
| /// source-memref-rank sentinel values that encode dynamic entries. |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| OpFoldResult offset, ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets, |
| ShapedType::kDynamicStrideOrOffset); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, |
| ShapedType::kDynamicSize); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, |
| ShapedType::kDynamicStrideOrOffset); |
| build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| dynamicStrides, b.getI64ArrayAttr(staticOffsets), |
| b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); |
| result.addAttributes(attrs); |
| } |
| |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| int64_t offset, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues, |
| strideValues, attrs); |
| } |
| |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, Value offset, |
| ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| build(b, result, resultType, source, offset, sizeValues, strideValues, attrs); |
| } |
| |
| // TODO: ponder whether we want to allow missing trailing sizes/strides that are |
| // completed automatically, like we have for subview and extract_slice. |
| LogicalResult ReinterpretCastOp::verify() { |
| // The source and result memrefs should be in the same memory space. |
| auto srcType = getSource().getType().cast<BaseMemRefType>(); |
| auto resultType = getType().cast<MemRefType>(); |
| if (srcType.getMemorySpace() != resultType.getMemorySpace()) |
| return emitError("different memory spaces specified for source type ") |
| << srcType << " and result memref type " << resultType; |
| if (srcType.getElementType() != resultType.getElementType()) |
| return emitError("different element types specified for source type ") |
| << srcType << " and result memref type " << resultType; |
| |
| // Match sizes in result memref type and in static_sizes attribute. |
| for (auto &en : llvm::enumerate(llvm::zip( |
| resultType.getShape(), extractFromI64ArrayAttr(getStaticSizes())))) { |
| int64_t resultSize = std::get<0>(en.value()); |
| int64_t expectedSize = std::get<1>(en.value()); |
| if (!ShapedType::isDynamic(resultSize) && |
| !ShapedType::isDynamic(expectedSize) && resultSize != expectedSize) |
| return emitError("expected result type with size = ") |
| << expectedSize << " instead of " << resultSize |
| << " in dim = " << en.index(); |
| } |
| |
| // Match offset and strides in static_offset and static_strides attributes. If |
| // result memref type has no affine map specified, this will assume an |
| // identity layout. |
| int64_t resultOffset; |
| SmallVector<int64_t, 4> resultStrides; |
| if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) |
| return emitError("expected result type to have strided layout but found ") |
| << resultType; |
| |
| // Match offset in result memref type and in static_offsets attribute. |
| int64_t expectedOffset = extractFromI64ArrayAttr(getStaticOffsets()).front(); |
| if (!ShapedType::isDynamicStrideOrOffset(resultOffset) && |
| !ShapedType::isDynamicStrideOrOffset(expectedOffset) && |
| resultOffset != expectedOffset) |
| return emitError("expected result type with offset = ") |
| << resultOffset << " instead of " << expectedOffset; |
| |
| // Match strides in result memref type and in static_strides attribute. |
| for (auto &en : llvm::enumerate(llvm::zip( |
| resultStrides, extractFromI64ArrayAttr(getStaticStrides())))) { |
| int64_t resultStride = std::get<0>(en.value()); |
| int64_t expectedStride = std::get<1>(en.value()); |
| if (!ShapedType::isDynamicStrideOrOffset(resultStride) && |
| !ShapedType::isDynamicStrideOrOffset(expectedStride) && |
| resultStride != expectedStride) |
| return emitError("expected result type with stride = ") |
| << expectedStride << " instead of " << resultStride |
| << " in dim = " << en.index(); |
| } |
| |
| return success(); |
| } |
| |
| OpFoldResult ReinterpretCastOp::fold(ArrayRef<Attribute> /*operands*/) { |
| Value src = getSource(); |
| auto getPrevSrc = [&]() -> Value { |
| // reinterpret_cast(reinterpret_cast(x)) -> reinterpret_cast(x). |
| if (auto prev = src.getDefiningOp<ReinterpretCastOp>()) |
| return prev.getSource(); |
| |
| // reinterpret_cast(cast(x)) -> reinterpret_cast(x). |
| if (auto prev = src.getDefiningOp<CastOp>()) |
| return prev.getSource(); |
| |
| // reinterpret_cast(subview(x)) -> reinterpret_cast(x) if subview offsets |
| // are 0. |
| if (auto prev = src.getDefiningOp<SubViewOp>()) |
| if (llvm::all_of(prev.getMixedOffsets(), [](OpFoldResult val) { |
| return isConstantIntValue(val, 0); |
| })) |
| return prev.getSource(); |
| |
| return nullptr; |
| }; |
| |
| if (auto prevSrc = getPrevSrc()) { |
| getSourceMutable().assign(prevSrc); |
| return getResult(); |
| } |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reassociative reshape ops |
| //===----------------------------------------------------------------------===// |
| |
| /// Helper function for verifying the shape of ExpandShapeOp and ResultShapeOp |
| /// result and operand. Layout maps are verified separately. |
| /// |
| /// If `allowMultipleDynamicDimsPerGroup`, multiple dynamic dimensions are |
| /// allowed in a reassocation group. |
| static LogicalResult |
| verifyCollapsedShape(Operation *op, ArrayRef<int64_t> collapsedShape, |
| ArrayRef<int64_t> expandedShape, |
| ArrayRef<ReassociationIndices> reassociation, |
| bool allowMultipleDynamicDimsPerGroup) { |
| // There must be one reassociation group per collapsed dimension. |
| if (collapsedShape.size() != reassociation.size()) |
| return op->emitOpError("invalid number of reassociation groups: found ") |
| << reassociation.size() << ", expected " << collapsedShape.size(); |
| |
| // The next expected expanded dimension index (while iterating over |
| // reassociation indices). |
| int64_t nextDim = 0; |
| for (const auto &it : llvm::enumerate(reassociation)) { |
| ReassociationIndices group = it.value(); |
| int64_t collapsedDim = it.index(); |
| |
| bool foundDynamic = false; |
| for (int64_t expandedDim : group) { |
| if (expandedDim != nextDim++) |
| return op->emitOpError("reassociation indices must be contiguous"); |
| |
| if (expandedDim >= static_cast<int64_t>(expandedShape.size())) |
| return op->emitOpError("reassociation index ") |
| << expandedDim << " is out of bounds"; |
| |
| // Check if there are multiple dynamic dims in a reassociation group. |
| if (ShapedType::isDynamic(expandedShape[expandedDim])) { |
| if (foundDynamic && !allowMultipleDynamicDimsPerGroup) |
| return op->emitOpError( |
| "at most one dimension in a reassociation group may be dynamic"); |
| foundDynamic = true; |
| } |
| } |
| |
| // ExpandShapeOp/CollapseShapeOp may not be used to cast dynamicity. |
| if (ShapedType::isDynamic(collapsedShape[collapsedDim]) != foundDynamic) |
| return op->emitOpError("collapsed dim (") |
| << collapsedDim |
| << ") must be dynamic if and only if reassociation group is " |
| "dynamic"; |
| |
| // If all dims in the reassociation group are static, the size of the |
| // collapsed dim can be verified. |
| if (!foundDynamic) { |
| int64_t groupSize = 1; |
| for (int64_t expandedDim : group) |
| groupSize *= expandedShape[expandedDim]; |
| if (groupSize != collapsedShape[collapsedDim]) |
| return op->emitOpError("collapsed dim size (") |
| << collapsedShape[collapsedDim] |
| << ") must equal reassociation group size (" << groupSize << ")"; |
| } |
| } |
| |
| if (collapsedShape.empty()) { |
| // Rank 0: All expanded dimensions must be 1. |
| for (int64_t d : expandedShape) |
| if (d != 1) |
| return op->emitOpError( |
| "rank 0 memrefs can only be extended/collapsed with/from ones"); |
| } else if (nextDim != static_cast<int64_t>(expandedShape.size())) { |
| // Rank >= 1: Number of dimensions among all reassociation groups must match |
| // the result memref rank. |
| return op->emitOpError("expanded rank (") |
| << expandedShape.size() |
| << ") inconsistent with number of reassociation indices (" << nextDim |
| << ")"; |
| } |
| |
| return success(); |
| } |
| |
| SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { |
| return getSymbolLessAffineMaps(getReassociationExprs()); |
| } |
| |
| SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { |
| return convertReassociationIndicesToExprs(getContext(), |
| getReassociationIndices()); |
| } |
| |
| SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { |
| return getSymbolLessAffineMaps(getReassociationExprs()); |
| } |
| |
| SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { |
| return convertReassociationIndicesToExprs(getContext(), |
| getReassociationIndices()); |
| } |
| |
| /// Compute the layout map after expanding a given source MemRef type with the |
| /// specified reassociation indices. |
| static FailureOr<AffineMap> |
| computeExpandedLayoutMap(MemRefType srcType, ArrayRef<int64_t> resultShape, |
| ArrayRef<ReassociationIndices> reassociation) { |
| int64_t srcOffset; |
| SmallVector<int64_t> srcStrides; |
| if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) |
| return failure(); |
| assert(srcStrides.size() == reassociation.size() && "invalid reassociation"); |
| |
| // 1-1 mapping between srcStrides and reassociation packs. |
| // Each srcStride starts with the given value and gets expanded according to |
| // the proper entries in resultShape. |
| // Example: |
| // srcStrides = [10000, 1 , 100 ], |
| // reassociations = [ [0], [1], [2, 3, 4]], |
| // resultSizes = [2, 5, 4, 3, 2] = [ [2], [5], [4, 3, 2]] |
| // -> For the purpose of stride calculation, the useful sizes are: |
| // [x, x, x, 3, 2] = [ [x], [x], [x, 3, 2]]. |
| // resultStrides = [10000, 1, 600, 200, 100] |
| // Note that a stride does not get expanded along the first entry of each |
| // shape pack. |
| SmallVector<int64_t> reverseResultStrides; |
| reverseResultStrides.reserve(resultShape.size()); |
| unsigned shapeIndex = resultShape.size() - 1; |
| for (auto it : llvm::reverse(llvm::zip(reassociation, srcStrides))) { |
| ReassociationIndices reassoc = std::get<0>(it); |
| int64_t currentStrideToExpand = std::get<1>(it); |
| for (unsigned idx = 0, e = reassoc.size(); idx < e; ++idx) { |
| using saturated_arith::Wrapper; |
| reverseResultStrides.push_back(currentStrideToExpand); |
| currentStrideToExpand = (Wrapper::stride(currentStrideToExpand) * |
| Wrapper::size(resultShape[shapeIndex--])) |
| .asStride(); |
| } |
| } |
| auto resultStrides = llvm::to_vector<8>(llvm::reverse(reverseResultStrides)); |
| resultStrides.resize(resultShape.size(), 1); |
| return makeStridedLinearLayoutMap(resultStrides, srcOffset, |
| srcType.getContext()); |
| } |
| |
| static FailureOr<MemRefType> |
| computeExpandedType(MemRefType srcType, ArrayRef<int64_t> resultShape, |
| ArrayRef<ReassociationIndices> reassociation) { |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } |
| |
| // Source may not be contiguous. Compute the layout map. |
| FailureOr<AffineMap> computedLayout = |
| computeExpandedLayoutMap(srcType, resultShape, reassociation); |
| if (failed(computedLayout)) |
| return failure(); |
| auto computedType = |
| MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| srcType.getMemorySpaceAsInt()); |
| return canonicalizeStridedLayout(computedType); |
| } |
| |
| void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| ArrayRef<int64_t> resultShape, Value src, |
| ArrayRef<ReassociationIndices> reassociation) { |
| // Only ranked memref source values are supported. |
| auto srcType = src.getType().cast<MemRefType>(); |
| FailureOr<MemRefType> resultType = |
| computeExpandedType(srcType, resultShape, reassociation); |
| // Failure of this assertion usually indicates a problem with the source |
| // type, e.g., could not get strides/offset. |
| assert(succeeded(resultType) && "could not compute layout"); |
| build(builder, result, *resultType, src, reassociation); |
| } |
| |
| LogicalResult ExpandShapeOp::verify() { |
| MemRefType srcType = getSrcType(); |
| MemRefType resultType = getResultType(); |
| |
| // Verify result shape. |
| if (failed(verifyCollapsedShape(getOperation(), srcType.getShape(), |
| resultType.getShape(), |
| getReassociationIndices(), |
| /*allowMultipleDynamicDimsPerGroup=*/false))) |
| return failure(); |
| |
| // Compute expected result type (including layout map). |
| FailureOr<MemRefType> expectedResultType = computeExpandedType( |
| srcType, resultType.getShape(), getReassociationIndices()); |
| if (failed(expectedResultType)) |
| return emitOpError("invalid source layout map"); |
| |
| // Check actual result type. |
| auto canonicalizedResultType = canonicalizeStridedLayout(resultType); |
| if (*expectedResultType != canonicalizedResultType) |
| return emitOpError("expected expanded type to be ") |
| << *expectedResultType << " but found " << canonicalizedResultType; |
| |
| return success(); |
| } |
| |
| void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>, |
| ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>( |
| context); |
| } |
| |
| /// Compute the layout map after collapsing a given source MemRef type with the |
| /// specified reassociation indices. |
| /// |
| /// Note: All collapsed dims in a reassociation group must be contiguous. It is |
| /// not possible to check this by inspecting a MemRefType in the general case. |
| /// If non-contiguity cannot be checked statically, the collapse is assumed to |
| /// be valid (and thus accepted by this function) unless `strict = true`. |
| static FailureOr<AffineMap> |
| computeCollapsedLayoutMap(MemRefType srcType, |
| ArrayRef<ReassociationIndices> reassociation, |
| bool strict = false) { |
| int64_t srcOffset; |
| SmallVector<int64_t> srcStrides; |
| auto srcShape = srcType.getShape(); |
| if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) |
| return failure(); |
| |
| // The result stride of a reassociation group is the stride of the last entry |
| // of the reassociation. (TODO: Should be the minimum stride in the |
| // reassociation because strides are not necessarily sorted. E.g., when using |
| // memref.transpose.) Dimensions of size 1 should be skipped, because their |
| // strides are meaningless and could have any arbitrary value. |
| SmallVector<int64_t> resultStrides; |
| resultStrides.reserve(reassociation.size()); |
| for (const ReassociationIndices &reassoc : reassociation) { |
| ArrayRef<int64_t> ref = llvm::makeArrayRef(reassoc); |
| while (srcShape[ref.back()] == 1 && ref.size() > 1) |
| ref = ref.drop_back(); |
| if (!ShapedType::isDynamic(srcShape[ref.back()]) || ref.size() == 1) { |
| resultStrides.push_back(srcStrides[ref.back()]); |
| } else { |
| // Dynamically-sized dims may turn out to be dims of size 1 at runtime, so |
| // the corresponding stride may have to be skipped. (See above comment.) |
| // Therefore, the result stride cannot be statically determined and must |
| // be dynamic. |
| resultStrides.push_back(ShapedType::kDynamicStrideOrOffset); |
| } |
| } |
| |
| // Validate that each reassociation group is contiguous. |
| unsigned resultStrideIndex = resultStrides.size() - 1; |
| for (const ReassociationIndices &reassoc : llvm::reverse(reassociation)) { |
| auto trailingReassocs = ArrayRef<int64_t>(reassoc).drop_front(); |
| using saturated_arith::Wrapper; |
| auto stride = Wrapper::stride(resultStrides[resultStrideIndex--]); |
| for (int64_t idx : llvm::reverse(trailingReassocs)) { |
| stride = stride * Wrapper::size(srcShape[idx]); |
| |
| // Both source and result stride must have the same static value. In that |
| // case, we can be sure, that the dimensions are collapsible (because they |
| // are contiguous). |
| // |
| // One special case is when the srcShape is `1`, in which case it can |
| // never produce non-contiguity. |
| if (srcShape[idx] == 1) |
| continue; |
| |
| // If `strict = false` (default during op verification), we accept cases |
| // where one or both strides are dynamic. This is best effort: We reject |
| // ops where obviously non-contiguous dims are collapsed, but accept ops |
| // where we cannot be sure statically. Such ops may fail at runtime. See |
| // the op documentation for details. |
| auto srcStride = Wrapper::stride(srcStrides[idx - 1]); |
| if (strict && (stride.saturated || srcStride.saturated)) |
| return failure(); |
| |
| if (!stride.saturated && !srcStride.saturated && stride != srcStride) |
| return failure(); |
| } |
| } |
| return makeStridedLinearLayoutMap(resultStrides, srcOffset, |
| srcType.getContext()); |
| } |
| |
| bool CollapseShapeOp::isGuaranteedCollapsible( |
| MemRefType srcType, ArrayRef<ReassociationIndices> reassociation) { |
| // MemRefs with standard layout are always collapsible. |
| if (srcType.getLayout().isIdentity()) |
| return true; |
| |
| return succeeded(computeCollapsedLayoutMap(srcType, reassociation, |
| /*strict=*/true)); |
| } |
| |
| static MemRefType |
| computeCollapsedType(MemRefType srcType, |
| ArrayRef<ReassociationIndices> reassociation) { |
| SmallVector<int64_t> resultShape; |
| resultShape.reserve(reassociation.size()); |
| for (const ReassociationIndices &group : reassociation) { |
| using saturated_arith::Wrapper; |
| auto groupSize = Wrapper::size(1); |
| for (int64_t srcDim : group) |
| groupSize = groupSize * Wrapper::size(srcType.getDimSize(srcDim)); |
| resultShape.push_back(groupSize.asSize()); |
| } |
| |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } |
| |
| // Source may not be fully contiguous. Compute the layout map. |
| // Note: Dimensions that are collapsed into a single dim are assumed to be |
| // contiguous. |
| FailureOr<AffineMap> computedLayout = |
| computeCollapsedLayoutMap(srcType, reassociation); |
| assert(succeeded(computedLayout) && |
| "invalid source layout map or collapsing non-contiguous dims"); |
| auto computedType = |
| MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| srcType.getMemorySpaceAsInt()); |
| return canonicalizeStridedLayout(computedType); |
| } |
| |
| void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, |
| ArrayRef<ReassociationIndices> reassociation, |
| ArrayRef<NamedAttribute> attrs) { |
| auto srcType = src.getType().cast<MemRefType>(); |
| MemRefType resultType = computeCollapsedType(srcType, reassociation); |
| build(b, result, resultType, src, attrs); |
| result.addAttribute(::mlir::getReassociationAttrName(), |
| getReassociationIndicesAttribute(b, reassociation)); |
| } |
| |
| LogicalResult CollapseShapeOp::verify() { |
| MemRefType srcType = getSrcType(); |
| MemRefType resultType = getResultType(); |
| |
| // Verify result shape. |
| if (failed(verifyCollapsedShape(getOperation(), resultType.getShape(), |
| srcType.getShape(), getReassociationIndices(), |
| /*allowMultipleDynamicDimsPerGroup=*/true))) |
| return failure(); |
| |
| // Compute expected result type (including layout map). |
| MemRefType expectedResultType; |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| expectedResultType = |
| MemRefType::get(resultType.getShape(), srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } else { |
| // Source may not be fully contiguous. Compute the layout map. |
| // Note: Dimensions that are collapsed into a single dim are assumed to be |
| // contiguous. |
| FailureOr<AffineMap> computedLayout = |
| computeCollapsedLayoutMap(srcType, getReassociationIndices()); |
| if (failed(computedLayout)) |
| return emitOpError( |
| "invalid source layout map or collapsing non-contiguous dims"); |
| auto computedType = |
| MemRefType::get(resultType.getShape(), srcType.getElementType(), |
| *computedLayout, srcType.getMemorySpaceAsInt()); |
| expectedResultType = canonicalizeStridedLayout(computedType); |
| } |
| |
| auto canonicalizedResultType = canonicalizeStridedLayout(resultType); |
| if (expectedResultType != canonicalizedResultType) |
| return emitOpError("expected collapsed type to be ") |
| << expectedResultType << " but found " << canonicalizedResultType; |
| |
| return success(); |
| } |
| |
| struct CollapseShapeOpMemRefCastFolder |
| : public OpRewritePattern<CollapseShapeOp> { |
| public: |
| using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CollapseShapeOp op, |
| PatternRewriter &rewriter) const override { |
| auto cast = op.getOperand().getDefiningOp<CastOp>(); |
| if (!cast) |
| return failure(); |
| |
| if (!CastOp::canFoldIntoConsumerOp(cast)) |
| return failure(); |
| |
| Type newResultType = |
| computeCollapsedType(cast.getOperand().getType().cast<MemRefType>(), |
| op.getReassociationIndices()); |
| |
| if (newResultType == op.getResultType()) { |
| rewriter.updateRootInPlace( |
| op, [&]() { op.getSrcMutable().assign(cast.getSource()); }); |
| } else { |
| Value newOp = rewriter.create<CollapseShapeOp>( |
| op->getLoc(), cast.getSource(), op.getReassociationIndices()); |
| rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| } |
| return success(); |
| } |
| }; |
| |
| void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ComposeReassociativeReshapeOps<CollapseShapeOp>, |
| ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp>, |
| CollapseShapeOpMemRefCastFolder>(context); |
| } |
| |
| OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { |
| return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); |
| } |
| |
| OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { |
| return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReshapeOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult ReshapeOp::verify() { |
| Type operandType = getSource().getType(); |
| Type resultType = getResult().getType(); |
| |
| Type operandElementType = operandType.cast<ShapedType>().getElementType(); |
| Type resultElementType = resultType.cast<ShapedType>().getElementType(); |
| if (operandElementType != resultElementType) |
| return emitOpError("element types of source and destination memref " |
| "types should be the same"); |
| |
| if (auto operandMemRefType = operandType.dyn_cast<MemRefType>()) |
| if (!operandMemRefType.getLayout().isIdentity()) |
| return emitOpError("source memref type should have identity affine map"); |
| |
| int64_t shapeSize = getShape().getType().cast<MemRefType>().getDimSize(0); |
| auto resultMemRefType = resultType.dyn_cast<MemRefType>(); |
| if (resultMemRefType) { |
| if (!resultMemRefType.getLayout().isIdentity()) |
| return emitOpError("result memref type should have identity affine map"); |
| if (shapeSize == ShapedType::kDynamicSize) |
| return emitOpError("cannot use shape operand with dynamic length to " |
| "reshape to statically-ranked memref type"); |
| if (shapeSize != resultMemRefType.getRank()) |
| return emitOpError( |
| "length of shape operand differs from the result's memref rank"); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StoreOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult StoreOp::verify() { |
| if (getNumOperands() != 2 + getMemRefType().getRank()) |
| return emitOpError("store index operand count not equal to memref rank"); |
| |
| return success(); |
| } |
| |
| LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// store(memrefcast) -> store |
| return foldMemRefCast(*this, getValueToStore()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SubViewOp |
| //===----------------------------------------------------------------------===// |
| |
| /// A subview result type can be fully inferred from the source type and the |
| /// static representation of offsets, sizes and strides. Special sentinels |
| /// encode the dynamic case. |
| Type SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| ArrayRef<int64_t> staticOffsets, |
| ArrayRef<int64_t> staticSizes, |
| ArrayRef<int64_t> staticStrides) { |
| unsigned rank = sourceMemRefType.getRank(); |
| (void)rank; |
| assert(staticOffsets.size() == rank && "staticOffsets length mismatch"); |
| assert(staticSizes.size() == rank && "staticSizes length mismatch"); |
| assert(staticStrides.size() == rank && "staticStrides length mismatch"); |
| |
| // Extract source offset and strides. |
| int64_t sourceOffset; |
| SmallVector<int64_t, 4> sourceStrides; |
| auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset); |
| assert(succeeded(res) && "SubViewOp expected strided memref type"); |
| (void)res; |
| |
| // Compute target offset whose value is: |
| // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. |
| int64_t targetOffset = sourceOffset; |
| for (auto it : llvm::zip(staticOffsets, sourceStrides)) { |
| auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it); |
| using saturated_arith::Wrapper; |
| targetOffset = |
| (Wrapper::offset(targetOffset) + |
| Wrapper::offset(staticOffset) * Wrapper::stride(targetStride)) |
| .asOffset(); |
| } |
| |
| // Compute target stride whose value is: |
| // `sourceStrides_i * staticStrides_i`. |
| SmallVector<int64_t, 4> targetStrides; |
| targetStrides.reserve(staticOffsets.size()); |
| for (auto it : llvm::zip(sourceStrides, staticStrides)) { |
| auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); |
| using saturated_arith::Wrapper; |
| targetStrides.push_back( |
| (Wrapper::stride(sourceStride) * Wrapper::stride(staticStride)) |
| .asStride()); |
| } |
| |
| // The type is now known. |
| return MemRefType::get( |
| staticSizes, sourceMemRefType.getElementType(), |
| makeStridedLinearLayoutMap(targetStrides, targetOffset, |
| sourceMemRefType.getContext()), |
| sourceMemRefType.getMemorySpace()); |
| } |
| |
| Type SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, |
| ShapedType::kDynamicStrideOrOffset); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, |
| ShapedType::kDynamicSize); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, |
| ShapedType::kDynamicStrideOrOffset); |
| return SubViewOp::inferResultType(sourceMemRefType, staticOffsets, |
| staticSizes, staticStrides); |
| } |
| |
| Type SubViewOp::inferRankReducedResultType(ArrayRef<int64_t> resultShape, |
| MemRefType sourceRankedTensorType, |
| ArrayRef<int64_t> offsets, |
| ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides) { |
| auto inferredType = |
| inferResultType(sourceRankedTensorType, offsets, sizes, strides) |
| .cast<MemRefType>(); |
| assert(inferredType.getRank() >= static_cast<int64_t>(resultShape.size()) && |
| "expected "); |
| if (inferredType.getRank() == static_cast<int64_t>(resultShape.size())) |
| return inferredType; |
| |
| // Compute which dimensions are dropped. |
| Optional<llvm::SmallDenseSet<unsigned>> dimsToProject = |
| computeRankReductionMask(inferredType.getShape(), resultShape); |
| assert(dimsToProject.has_value() && "invalid rank reduction"); |
| llvm::SmallBitVector dimsToProjectVector(inferredType.getRank()); |
| for (unsigned dim : *dimsToProject) |
| dimsToProjectVector.set(dim); |
| |
| // Compute layout map and result type. |
| AffineMap map = getProjectedMap(inferredType.getLayout().getAffineMap(), |
| dimsToProjectVector); |
| return MemRefType::get(resultShape, inferredType.getElementType(), map, |
| inferredType.getMemorySpace()); |
| } |
| |
| Type SubViewOp::inferRankReducedResultType(ArrayRef<int64_t> resultShape, |
| MemRefType sourceRankedTensorType, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, |
| ShapedType::kDynamicStrideOrOffset); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, |
| ShapedType::kDynamicSize); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, |
| ShapedType::kDynamicStrideOrOffset); |
| return SubViewOp::inferRankReducedResultType( |
| resultShape, sourceRankedTensorType, staticOffsets, staticSizes, |
| staticStrides); |
| } |
| |
| // Build a SubViewOp with mixed static and dynamic entries and custom result |
| // type. If the type passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, |
| ShapedType::kDynamicStrideOrOffset); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, |
| ShapedType::kDynamicSize); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, |
| ShapedType::kDynamicStrideOrOffset); |
| auto sourceMemRefType = source.getType().cast<MemRefType>(); |
| // Structuring implementation this way avoids duplication between builders. |
| if (!resultType) { |
| resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets, |
| staticSizes, staticStrides) |
| .cast<MemRefType>(); |
| } |
| build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| dynamicStrides, b.getI64ArrayAttr(staticOffsets), |
| b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); |
| result.addAttributes(attrs); |
| } |
| |
| // Build a SubViewOp with mixed static and dynamic entries and inferred result |
| // type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| } |
| |
| // Build a SubViewOp with static entries and inferred result type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, source, offsetValues, sizeValues, strideValues, attrs); |
| } |
| |
| // Build a SubViewOp with dynamic entries and custom result type. If the |
| // type passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, resultType, source, offsetValues, sizeValues, strideValues, |
| attrs); |
| } |
| |
| // Build a SubViewOp with dynamic entries and custom result type. If the type |
| // passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, ValueRange offsets, |
| ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| build(b, result, resultType, source, offsetValues, sizeValues, strideValues); |
| } |
| |
| // Build a SubViewOp with dynamic entries and inferred result type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ValueRange offsets, ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| } |
| |
| /// For ViewLikeOpInterface. |
| Value SubViewOp::getViewSource() { return getSource(); } |
| |
| /// Return true if t1 and t2 have equal offsets (both dynamic or of same |
| /// static value). |
| static bool haveCompatibleOffsets(MemRefType t1, MemRefType t2) { |
| AffineExpr t1Offset, t2Offset; |
| SmallVector<AffineExpr> t1Strides, t2Strides; |
| auto res1 = getStridesAndOffset(t1, t1Strides, t1Offset); |
| auto res2 = getStridesAndOffset(t2, t2Strides, t2Offset); |
| return succeeded(res1) && succeeded(res2) && t1Offset == t2Offset; |
| } |
| |
| /// Checks if `original` Type type can be rank reduced to `reduced` type. |
| /// This function is slight variant of `is subsequence` algorithm where |
| /// not matching dimension must be 1. |
| static SliceVerificationResult |
| isRankReducedMemRefType(MemRefType originalType, |
| MemRefType candidateRankReducedType, |
| ArrayRef<OpFoldResult> sizes) { |
| auto partialRes = isRankReducedType(originalType, candidateRankReducedType); |
| if (partialRes != SliceVerificationResult::Success) |
| return partialRes; |
| |
| auto optionalUnusedDimsMask = computeMemRefRankReductionMask( |
| originalType, candidateRankReducedType, sizes); |
| |
| // Sizes cannot be matched in case empty vector is returned. |
| if (!optionalUnusedDimsMask) |
| return SliceVerificationResult::LayoutMismatch; |
| |
| if (originalType.getMemorySpace() != |
| candidateRankReducedType.getMemorySpace()) |
| return SliceVerificationResult::MemSpaceMismatch; |
| |
| // No amount of stride dropping can reconcile incompatible offsets. |
| if (!haveCompatibleOffsets(originalType, candidateRankReducedType)) |
| return SliceVerificationResult::LayoutMismatch; |
| |
| return SliceVerificationResult::Success; |
| } |
| |
| template <typename OpTy> |
| static LogicalResult produceSubViewErrorMsg(SliceVerificationResult result, |
| OpTy op, Type expectedType) { |
| auto memrefType = expectedType.cast<ShapedType>(); |
| switch (result) { |
| case SliceVerificationResult::Success: |
| return success(); |
| case SliceVerificationResult::RankTooLarge: |
| return op.emitError("expected result rank to be smaller or equal to ") |
| << "the source rank. "; |
| case SliceVerificationResult::SizeMismatch: |
| return op.emitError("expected result type to be ") |
| << expectedType |
| << " or a rank-reduced version. (mismatch of result sizes) "; |
| case SliceVerificationResult::ElemTypeMismatch: |
| return op.emitError("expected result element type to be ") |
| << memrefType.getElementType(); |
| case SliceVerificationResult::MemSpaceMismatch: |
| return op.emitError("expected result and source memory spaces to match."); |
| case SliceVerificationResult::LayoutMismatch: |
| return op.emitError("expected result type to be ") |
| << expectedType |
| << " or a rank-reduced version. (mismatch of result layout) "; |
| } |
| llvm_unreachable("unexpected subview verification result"); |
| } |
| |
| /// Verifier for SubViewOp. |
| LogicalResult SubViewOp::verify() { |
| MemRefType baseType = getSourceType(); |
| MemRefType subViewType = getType(); |
| |
| // The base memref and the view memref should be in the same memory space. |
| if (baseType.getMemorySpace() != subViewType.getMemorySpace()) |
| return emitError("different memory spaces specified for base memref " |
| "type ") |
| << baseType << " and subview memref type " << subViewType; |
| |
| // Verify that the base memref type has a strided layout map. |
| if (!isStrided(baseType)) |
| return emitError("base type ") << baseType << " is not strided"; |
| |
| // Verify result type against inferred type. |
| auto expectedType = SubViewOp::inferResultType( |
| baseType, extractFromI64ArrayAttr(getStaticOffsets()), |
| extractFromI64ArrayAttr(getStaticSizes()), |
| extractFromI64ArrayAttr(getStaticStrides())); |
| |
| auto result = isRankReducedMemRefType(expectedType.cast<MemRefType>(), |
| subViewType, getMixedSizes()); |
| return produceSubViewErrorMsg(result, *this, expectedType); |
| } |
| |
| raw_ostream &mlir::operator<<(raw_ostream &os, const Range &range) { |
| return os << "range " << range.offset << ":" << range.size << ":" |
| << range.stride; |
| } |
| |
| /// Return the list of Range (i.e. offset, size, stride). Each Range |
| /// entry contains either the dynamic value or a ConstantIndexOp constructed |
| /// with `b` at location `loc`. |
| SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, |
| OpBuilder &b, Location loc) { |
| std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks(); |
| assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks"); |
| assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks"); |
| SmallVector<Range, 8> res; |
| unsigned rank = ranks[0]; |
| res.reserve(rank); |
| for (unsigned idx = 0; idx < rank; ++idx) { |
| Value offset = |
| op.isDynamicOffset(idx) |
| ? op.getDynamicOffset(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticOffset(idx)); |
| Value size = |
| op.isDynamicSize(idx) |
| ? op.getDynamicSize(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticSize(idx)); |
| Value stride = |
| op.isDynamicStride(idx) |
| ? op.getDynamicStride(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticStride(idx)); |
| res.emplace_back(Range{offset, size, stride}); |
| } |
| return res; |
| } |
| |
| /// Compute the canonical result type of a SubViewOp. Call `inferResultType` |
| /// to deduce the result type for the given `sourceType`. Additionally, reduce |
| /// the rank of the inferred result type if `currentResultType` is lower rank |
| /// than `currentSourceType`. Use this signature if `sourceType` is updated |
| /// together with the result type. In this case, it is important to compute |
| /// the dropped dimensions using `currentSourceType` whose strides align with |
| /// `currentResultType`. |
| static MemRefType getCanonicalSubViewResultType( |
| MemRefType currentResultType, MemRefType currentSourceType, |
| MemRefType sourceType, ArrayRef<OpFoldResult> mixedOffsets, |
| ArrayRef<OpFoldResult> mixedSizes, ArrayRef<OpFoldResult> mixedStrides) { |
| auto nonRankReducedType = SubViewOp::inferResultType(sourceType, mixedOffsets, |
| mixedSizes, mixedStrides) |
| .cast<MemRefType>(); |
| llvm::Optional<llvm::SmallBitVector> unusedDims = |
| computeMemRefRankReductionMask(currentSourceType, currentResultType, |
| mixedSizes); |
| // Return nullptr as failure mode. |
| if (!unusedDims) |
| return nullptr; |
| SmallVector<int64_t> shape; |
| for (const auto &sizes : llvm::enumerate(nonRankReducedType.getShape())) { |
| if (unusedDims->test(sizes.index())) |
| continue; |
| shape.push_back(sizes.value()); |
| } |
| AffineMap layoutMap = nonRankReducedType.getLayout().getAffineMap(); |
| if (!layoutMap.isIdentity()) |
| layoutMap = getProjectedMap(layoutMap, *unusedDims); |
| return MemRefType::get(shape, nonRankReducedType.getElementType(), layoutMap, |
| nonRankReducedType.getMemorySpace()); |
| } |
| |
| /// Compute the canonical result type of a SubViewOp. Call `inferResultType` |
| /// to deduce the result type. Additionally, reduce the rank of the inferred |
| /// result type if `currentResultType` is lower rank than `sourceType`. |
| static MemRefType getCanonicalSubViewResultType( |
| MemRefType currentResultType, MemRefType sourceType, |
| ArrayRef<OpFoldResult> mixedOffsets, ArrayRef<OpFoldResult> mixedSizes, |
| ArrayRef<OpFoldResult> mixedStrides) { |
| return getCanonicalSubViewResultType(currentResultType, sourceType, |
| sourceType, mixedOffsets, mixedSizes, |
| mixedStrides); |
| } |
| |
| /// Helper method to check if a `subview` operation is trivially a no-op. This |
| /// is the case if the all offsets are zero, all strides are 1, and the source |
| /// shape is same as the size of the subview. In such cases, the subview can |
| /// be folded into its source. |
| static bool isTrivialSubViewOp(SubViewOp subViewOp) { |
| if (subViewOp.getSourceType().getRank() != subViewOp.getType().getRank()) |
| return false; |
| |
| auto mixedOffsets = subViewOp.getMixedOffsets(); |
| auto mixedSizes = subViewOp.getMixedSizes(); |
| auto mixedStrides = subViewOp.getMixedStrides(); |
| |
| // Check offsets are zero. |
| if (llvm::any_of(mixedOffsets, [](OpFoldResult ofr) { |
| Optional<int64_t> intValue = getConstantIntValue(ofr); |
| return !intValue || intValue.value() != 0; |
| })) |
| return false; |
| |
| // Check strides are one. |
| if (llvm::any_of(mixedStrides, [](OpFoldResult ofr) { |
| Optional<int64_t> intValue = getConstantIntValue(ofr); |
| return !intValue || intValue.value() != 1; |
| })) |
| return false; |
| |
| // Check all size values are static and matches the (static) source shape. |
| ArrayRef<int64_t> sourceShape = subViewOp.getSourceType().getShape(); |
| for (const auto &size : llvm::enumerate(mixedSizes)) { |
| Optional<int64_t> intValue = getConstantIntValue(size.value()); |
| if (!intValue || *intValue != sourceShape[size.index()]) |
| return false; |
| } |
| // All conditions met. The `SubViewOp` is foldable as a no-op. |
| return true; |
| } |
| |
| namespace { |
| /// Pattern to rewrite a subview op with MemRefCast arguments. |
| /// This essentially pushes memref.cast past its consuming subview when |
| /// `canFoldIntoConsumerOp` is true. |
| /// |
| /// Example: |
| /// ``` |
| /// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32> |
| /// %1 = memref.subview %0[0, 0][3, 4][1, 1] : |
| /// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]> |
| /// ``` |
| /// is rewritten into: |
| /// ``` |
| /// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> |
| /// %1 = memref.cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to |
| /// memref<3x4xf32, offset:?, strides:[?, 1]> |
| /// ``` |
| class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> { |
| public: |
| using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| PatternRewriter &rewriter) const override { |
| // Any constant operand, just return to let SubViewOpConstantFolder kick |
| // in. |
| if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { |
| return matchPattern(operand, matchConstantIndex()); |
| })) |
| return failure(); |
| |
| auto castOp = subViewOp.getSource().getDefiningOp<CastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| if (!CastOp::canFoldIntoConsumerOp(castOp)) |
| return failure(); |
| |
| // Compute the SubViewOp result type after folding the MemRefCastOp. Use |
| // the MemRefCastOp source operand type to infer the result type and the |
| // current SubViewOp source operand type to compute the dropped dimensions |
| // if the operation is rank-reducing. |
| auto resultType = getCanonicalSubViewResultType( |
| subViewOp.getType(), subViewOp.getSourceType(), |
| castOp.getSource().getType().cast<MemRefType>(), |
| subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(), |
| subViewOp.getMixedStrides()); |
| if (!resultType) |
| return failure(); |
| |
| Value newSubView = rewriter.create<SubViewOp>( |
| subViewOp.getLoc(), resultType, castOp.getSource(), |
| subViewOp.getOffsets(), subViewOp.getSizes(), subViewOp.getStrides(), |
| subViewOp.getStaticOffsets(), subViewOp.getStaticSizes(), |
| subViewOp.getStaticStrides()); |
| rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| newSubView); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalize subview ops that are no-ops. When the source shape is not |
| /// same as a result shape due to use of `affine_map`. |
| class TrivialSubViewOpFolder final : public OpRewritePattern<SubViewOp> { |
| public: |
| using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| PatternRewriter &rewriter) const override { |
| if (!isTrivialSubViewOp(subViewOp)) |
| return failure(); |
| if (subViewOp.getSourceType() == subViewOp.getType()) { |
| rewriter.replaceOp(subViewOp, subViewOp.getSource()); |
| return success(); |
| } |
| rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| subViewOp.getSource()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| /// Return the canonical type of the result of a subview. |
| struct SubViewReturnTypeCanonicalizer { |
| MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets, |
| ArrayRef<OpFoldResult> mixedSizes, |
| ArrayRef<OpFoldResult> mixedStrides) { |
| return getCanonicalSubViewResultType(op.getType(), op.getSourceType(), |
| mixedOffsets, mixedSizes, |
| mixedStrides); |
| } |
| }; |
| |
| /// A canonicalizer wrapper to replace SubViewOps. |
| struct SubViewCanonicalizer { |
| void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { |
| rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| } |
| }; |
| |
| void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results |
| .add<OpWithOffsetSizesAndStridesConstantArgumentFolder< |
| SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>, |
| SubViewOpMemRefCastFolder, TrivialSubViewOpFolder>(context); |
| } |
| |
| OpFoldResult SubViewOp::fold(ArrayRef<Attribute> operands) { |
| auto resultShapedType = getResult().getType().cast<ShapedType>(); |
| auto sourceShapedType = getSource().getType().cast<ShapedType>(); |
| |
| if (resultShapedType.hasStaticShape() && |
| resultShapedType == sourceShapedType) { |
| return getViewSource(); |
| } |
| |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TransposeOp |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a strided memref type by applying `permutationMap` tp `memRefType`. |
| static MemRefType inferTransposeResultType(MemRefType memRefType, |
| AffineMap permutationMap) { |
| auto rank = memRefType.getRank(); |
| auto originalSizes = memRefType.getShape(); |
| // Compute permuted sizes. |
| SmallVector<int64_t, 4> sizes(rank, 0); |
| for (const auto &en : llvm::enumerate(permutationMap.getResults())) |
| sizes[en.index()] = |
| originalSizes[en.value().cast<AffineDimExpr>().getPosition()]; |
| |
| // Compute permuted strides. |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto res = getStridesAndOffset(memRefType, strides, offset); |
| assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank)); |
| (void)res; |
| auto map = |
| makeStridedLinearLayoutMap(strides, offset, memRefType.getContext()); |
| map = permutationMap ? map.compose(permutationMap) : map; |
| return MemRefType::Builder(memRefType) |
| .setShape(sizes) |
| .setLayout(AffineMapAttr::get(map)); |
| } |
| |
| void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, |
| AffineMapAttr permutation, |
| ArrayRef<NamedAttribute> attrs) { |
| auto permutationMap = permutation.getValue(); |
| assert(permutationMap); |
| |
| auto memRefType = in.getType().cast<MemRefType>(); |
| // Compute result type. |
| MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); |
| |
| build(b, result, resultType, in, attrs); |
| result.addAttribute(TransposeOp::getPermutationAttrStrName(), permutation); |
| } |
| |
| // transpose $in $permutation attr-dict : type($in) `to` type(results) |
| void TransposeOp::print(OpAsmPrinter &p) { |
| p << " " << getIn() << " " << getPermutation(); |
| p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrStrName()}); |
| p << " : " << getIn().getType() << " to " << getType(); |
| } |
| |
| ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand in; |
| AffineMap permutation; |
| MemRefType srcType, dstType; |
| if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || |
| parser.parseOptionalAttrDict(result.attributes) || |
| parser.parseColonType(srcType) || |
| parser.resolveOperand(in, srcType, result.operands) || |
| parser.parseKeywordType("to", dstType) || |
| parser.addTypeToList(dstType, result.types)) |
| return failure(); |
| |
| result.addAttribute(TransposeOp::getPermutationAttrStrName(), |
| AffineMapAttr::get(permutation)); |
| return success(); |
| } |
| |
| LogicalResult TransposeOp::verify() { |
| if (!getPermutation().isPermutation()) |
| return emitOpError("expected a permutation map"); |
| if (getPermutation().getNumDims() != getShapedType().getRank()) |
| return emitOpError("expected a permutation map of same rank as the input"); |
| |
| auto srcType = getIn().getType().cast<MemRefType>(); |
| auto dstType = getType().cast<MemRefType>(); |
| auto transposedType = inferTransposeResultType(srcType, getPermutation()); |
| if (dstType != transposedType) |
| return emitOpError("output type ") |
| << dstType << " does not match transposed input type " << srcType |
| << ", " << transposedType; |
| return success(); |
| } |
| |
| OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) { |
| if (succeeded(foldMemRefCast(*this))) |
| return getResult(); |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ViewOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult ViewOp::verify() { |
| auto baseType = getOperand(0).getType().cast<MemRefType>(); |
| auto viewType = getType(); |
| |
| // The base memref should have identity layout map (or none). |
| if (!baseType.getLayout().isIdentity()) |
| return emitError("unsupported map for base memref type ") << baseType; |
| |
| // The result memref should have identity layout map (or none). |
| if (!viewType.getLayout().isIdentity()) |
| return emitError("unsupported map for result memref type ") << viewType; |
| |
| // The base memref and the view memref should be in the same memory space. |
| if (baseType.getMemorySpace() != viewType.getMemorySpace()) |
| return emitError("different memory spaces specified for base memref " |
| "type ") |
| << baseType << " and view memref type " << viewType; |
| |
| // Verify that we have the correct number of sizes for the result type. |
| unsigned numDynamicDims = viewType.getNumDynamicDims(); |
| if (getSizes().size() != numDynamicDims) |
| return emitError("incorrect number of size operands for type ") << viewType; |
| |
| return success(); |
| } |
| |
| Value ViewOp::getViewSource() { return getSource(); } |
| |
| namespace { |
| |
| struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> { |
| using OpRewritePattern<ViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ViewOp viewOp, |
| PatternRewriter &rewriter) const override { |
| // Return if none of the operands are constants. |
| if (llvm::none_of(viewOp.getOperands(), [](Value operand) { |
| return matchPattern(operand, matchConstantIndex()); |
| })) |
| return failure(); |
| |
| // Get result memref type. |
| auto memrefType = viewOp.getType(); |
| |
| // Get offset from old memref view type 'memRefType'. |
| int64_t oldOffset; |
| SmallVector<int64_t, 4> oldStrides; |
| if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset))) |
| return failure(); |
| assert(oldOffset == 0 && "Expected 0 offset"); |
| |
| SmallVector<Value, 4> newOperands; |
| |
| // Offset cannot be folded into result type. |
| |
| // Fold any dynamic dim operands which are produced by a constant. |
| SmallVector<int64_t, 4> newShapeConstants; |
| newShapeConstants.reserve(memrefType.getRank()); |
| |
| unsigned dynamicDimPos = 0; |
| unsigned rank = memrefType.getRank(); |
| for (unsigned dim = 0, e = rank; dim < e; ++dim) { |
| int64_t dimSize = memrefType.getDimSize(dim); |
| // If this is already static dimension, keep it. |
| if (!ShapedType::isDynamic(dimSize)) { |
| newShapeConstants.push_back(dimSize); |
| continue; |
| } |
| auto *defOp = viewOp.getSizes()[dynamicDimPos].getDefiningOp(); |
| if (auto constantIndexOp = |
| dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { |
| // Dynamic shape dimension will be folded. |
| newShapeConstants.push_back(constantIndexOp.value()); |
| } else { |
| // Dynamic shape dimension not folded; copy operand from old memref. |
| newShapeConstants.push_back(dimSize); |
| newOperands.push_back(viewOp.getSizes()[dynamicDimPos]); |
| } |
| dynamicDimPos++; |
| } |
| |
| // Create new memref type with constant folded dims. |
| MemRefType newMemRefType = |
| MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| // Nothing new, don't fold. |
| if (newMemRefType == memrefType) |
| return failure(); |
| |
| // Create new ViewOp. |
| auto newViewOp = rewriter.create<ViewOp>( |
| viewOp.getLoc(), newMemRefType, viewOp.getOperand(0), |
| viewOp.getByteShift(), newOperands); |
| // Insert a cast so we have the same type as the old memref type. |
| rewriter.replaceOpWithNewOp<CastOp>(viewOp, viewOp.getType(), newViewOp); |
| return success(); |
| } |
| }; |
| |
| struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> { |
| using OpRewritePattern<ViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ViewOp viewOp, |
| PatternRewriter &rewriter) const override { |
| Value memrefOperand = viewOp.getOperand(0); |
| CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>(); |
| if (!memrefCastOp) |
| return failure(); |
| Value allocOperand = memrefCastOp.getOperand(); |
| AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>(); |
| if (!allocOp) |
| return failure(); |
| rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand, |
| viewOp.getByteShift(), |
| viewOp.getSizes()); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicRMWOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AtomicRMWOp::verify() { |
| if (getMemRefType().getRank() != getNumOperands() - 2) |
| return emitOpError( |
| "expects the number of subscripts to be equal to memref rank"); |
| switch (getKind()) { |
| case arith::AtomicRMWKind::addf: |
| case arith::AtomicRMWKind::maxf: |
| case arith::AtomicRMWKind::minf: |
| case arith::AtomicRMWKind::mulf: |
| if (!getValue().getType().isa<FloatType>()) |
| return emitOpError() << "with kind '" |
| << arith::stringifyAtomicRMWKind(getKind()) |
| << "' expects a floating-point type"; |
| break; |
| case arith::AtomicRMWKind::addi: |
| case arith::AtomicRMWKind::maxs: |
| case arith::AtomicRMWKind::maxu: |
| case arith::AtomicRMWKind::mins: |
| case arith::AtomicRMWKind::minu: |
| case arith::AtomicRMWKind::muli: |
| case arith::AtomicRMWKind::ori: |
| case arith::AtomicRMWKind::andi: |
| if (!getValue().getType().isa<IntegerType>()) |
| return emitOpError() << "with kind '" |
| << arith::stringifyAtomicRMWKind(getKind()) |
| << "' expects an integer type"; |
| break; |
| default: |
| break; |
| } |
| return success(); |
| } |
| |
| OpFoldResult AtomicRMWOp::fold(ArrayRef<Attribute> operands) { |
| /// atomicrmw(memrefcast) -> atomicrmw |
| if (succeeded(foldMemRefCast(*this, getValue()))) |
| return getResult(); |
| return OpFoldResult(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd op method definitions |
| //===----------------------------------------------------------------------===// |
| |
| #define GET_OP_CLASSES |
| #include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc" |