| // RUN: mlir-opt %s \ |
| // RUN: --pass-pipeline="builtin.module(transform-interpreter{ \ |
| // RUN: debug-bind-trailing-args=linalg.matmul,linalg.elemwise_binary},\ |
| // RUN: canonicalize,cse,symbol-dce)" \ |
| // RUN: --split-input-file --verify-diagnostics |
| |
| // ****************************** IMPORTANT NOTE ****************************** |
| // |
| // If you are changing this file, you may also need to change |
| // mlir/docs/Tutorials/Transform accordingly. |
| // |
| // **************************************************************************** |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main( |
| %arg0: !transform.any_op, |
| // expected-note @below {{handle to invalidated ops}} |
| %arg1: !transform.op<"linalg.matmul">, |
| %arg2: !transform.op<"linalg.elemwise_binary">) { |
| // The actual tiling transformation takes tile sizes as attributes. |
| // expected-note @below {{invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them}} |
| %tiled, %loop = transform.structured.tile_using_forall %arg1 tile_sizes [4, 32] |
| : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op) |
| |
| // This is trying to use an invalidated handle leading to undefined behavior. |
| // expected-error @below {{uses a handle invalidated by a previously executed transform op}} |
| transform.debug.emit_remark_at %arg1, "remark" : !transform.op<"linalg.matmul"> |
| transform.yield |
| } |
| } |
| |
| // Original function to optimize. |
| func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>, |
| %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>) |
| -> tensor<512x512xf32> { |
| // Matrix-matrix multiplication. |
| // expected-note @below {{payload op}} |
| %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>) |
| outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32> |
| |
| // Elementwise addition. |
| %biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> } |
| ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>) |
| outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> |
| |
| // Elementwise max with 0 (ReLU). |
| %c0f = arith.constant 0.0 : f32 |
| %relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> } |
| ins(%biased, %c0f : tensor<512x512xf32>, f32) |
| outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> |
| func.return %relued : tensor<512x512xf32> |
| } |
| |
| // ----- |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main( |
| %arg0: !transform.any_op, |
| %arg1: !transform.op<"linalg.matmul">, |
| %arg2: !transform.op<"linalg.elemwise_binary">) { |
| // We can cast one type to another as long as operations are compatible |
| // with both types. This creates "aliasing" handles. |
| // expected-note @below {{handle to invalidated ops}} |
| %casted = transform.cast %arg1 : !transform.op<"linalg.matmul"> to |
| !transform.any_op |
| |
| // The actual tiling transformation takes tile sizes as attributes. |
| // expected-note @below {{invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them}} |
| %tiled, %loop = transform.structured.tile_using_forall %arg1 tile_sizes [4, 32] |
| : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op) |
| |
| // Consuming an operand invalidates the consumed handle and any other handle that is |
| // associated with the same payload operations, or payload operations nested in them. |
| // expected-error @below {{uses a handle invalidated by a previously executed transform op}} |
| transform.debug.emit_remark_at %casted, "remark" |
| : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // Original function to optimize. |
| func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>, |
| %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>) |
| -> tensor<512x512xf32> { |
| // Matrix-matrix multiplication. |
| // expected-note @below {{payload op}} |
| %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>) |
| outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32> |
| |
| // Elementwise addition. |
| %biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> } |
| ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>) |
| outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> |
| |
| // Elementwise max with 0 (ReLU). |
| %c0f = arith.constant 0.0 : f32 |
| %relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> } |
| ins(%biased, %c0f : tensor<512x512xf32>, f32) |
| outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> |
| func.return %relued : tensor<512x512xf32> |
| } |