| use consts::constant; |
| use rustc::lint::*; |
| use rustc::hir::*; |
| use std::hash::{Hash, Hasher}; |
| use std::collections::hash_map::DefaultHasher; |
| use syntax::ast::Name; |
| use syntax::ptr::P; |
| use utils::differing_macro_contexts; |
| |
| /// Type used to check whether two ast are the same. This is different from the |
| /// operator |
| /// `==` on ast types as this operator would compare true equality with ID and |
| /// span. |
| /// |
| /// Note that some expressions kinds are not considered but could be added. |
| pub struct SpanlessEq<'a, 'tcx: 'a> { |
| /// Context used to evaluate constant expressions. |
| cx: &'a LateContext<'a, 'tcx>, |
| /// If is true, never consider as equal expressions containing function |
| /// calls. |
| ignore_fn: bool, |
| } |
| |
| impl<'a, 'tcx: 'a> SpanlessEq<'a, 'tcx> { |
| pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self { |
| Self { |
| cx: cx, |
| ignore_fn: false, |
| } |
| } |
| |
| pub fn ignore_fn(self) -> Self { |
| Self { |
| cx: self.cx, |
| ignore_fn: true, |
| } |
| } |
| |
| /// Check whether two statements are the same. |
| pub fn eq_stmt(&self, left: &Stmt, right: &Stmt) -> bool { |
| match (&left.node, &right.node) { |
| (&StmtDecl(ref l, _), &StmtDecl(ref r, _)) => { |
| if let (&DeclLocal(ref l), &DeclLocal(ref r)) = (&l.node, &r.node) { |
| both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && both(&l.init, &r.init, |l, r| self.eq_expr(l, r)) |
| } else { |
| false |
| } |
| }, |
| (&StmtExpr(ref l, _), &StmtExpr(ref r, _)) | |
| (&StmtSemi(ref l, _), &StmtSemi(ref r, _)) => self.eq_expr(l, r), |
| _ => false, |
| } |
| } |
| |
| /// Check whether two blocks are the same. |
| pub fn eq_block(&self, left: &Block, right: &Block) -> bool { |
| over(&left.stmts, &right.stmts, |l, r| self.eq_stmt(l, r)) && |
| both(&left.expr, &right.expr, |l, r| self.eq_expr(l, r)) |
| } |
| |
| pub fn eq_expr(&self, left: &Expr, right: &Expr) -> bool { |
| if self.ignore_fn && differing_macro_contexts(left.span, right.span) { |
| return false; |
| } |
| |
| if let (Some(l), Some(r)) = (constant(self.cx, left), constant(self.cx, right)) { |
| if l == r { |
| return true; |
| } |
| } |
| |
| match (&left.node, &right.node) { |
| (&ExprAddrOf(l_mut, ref le), &ExprAddrOf(r_mut, ref re)) => l_mut == r_mut && self.eq_expr(le, re), |
| (&ExprAgain(li), &ExprAgain(ri)) => { |
| both(&li.ident, &ri.ident, |l, r| l.node.name.as_str() == r.node.name.as_str()) |
| }, |
| (&ExprAssign(ref ll, ref lr), &ExprAssign(ref rl, ref rr)) => self.eq_expr(ll, rl) && self.eq_expr(lr, rr), |
| (&ExprAssignOp(ref lo, ref ll, ref lr), &ExprAssignOp(ref ro, ref rl, ref rr)) => { |
| lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) |
| }, |
| (&ExprBlock(ref l), &ExprBlock(ref r)) => self.eq_block(l, r), |
| (&ExprBinary(l_op, ref ll, ref lr), &ExprBinary(r_op, ref rl, ref rr)) => { |
| l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) || |
| swap_binop(l_op.node, ll, lr).map_or(false, |(l_op, ll, lr)| { |
| l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) |
| }) |
| }, |
| (&ExprBreak(li, ref le), &ExprBreak(ri, ref re)) => { |
| both(&li.ident, &ri.ident, |l, r| l.node.name.as_str() == r.node.name.as_str()) && |
| both(le, re, |l, r| self.eq_expr(l, r)) |
| }, |
| (&ExprBox(ref l), &ExprBox(ref r)) => self.eq_expr(l, r), |
| (&ExprCall(ref l_fun, ref l_args), &ExprCall(ref r_fun, ref r_args)) => { |
| !self.ignore_fn && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args) |
| }, |
| (&ExprCast(ref lx, ref lt), &ExprCast(ref rx, ref rt)) | |
| (&ExprType(ref lx, ref lt), &ExprType(ref rx, ref rt)) => self.eq_expr(lx, rx) && self.eq_ty(lt, rt), |
| (&ExprField(ref l_f_exp, ref l_f_ident), &ExprField(ref r_f_exp, ref r_f_ident)) => { |
| l_f_ident.node == r_f_ident.node && self.eq_expr(l_f_exp, r_f_exp) |
| }, |
| (&ExprIndex(ref la, ref li), &ExprIndex(ref ra, ref ri)) => self.eq_expr(la, ra) && self.eq_expr(li, ri), |
| (&ExprIf(ref lc, ref lt, ref le), &ExprIf(ref rc, ref rt, ref re)) => { |
| self.eq_expr(lc, rc) && self.eq_expr(&**lt, &**rt) && both(le, re, |l, r| self.eq_expr(l, r)) |
| }, |
| (&ExprLit(ref l), &ExprLit(ref r)) => l.node == r.node, |
| (&ExprLoop(ref lb, ref ll, ref lls), &ExprLoop(ref rb, ref rl, ref rls)) => { |
| lls == rls && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.node.as_str() == r.node.as_str()) |
| }, |
| (&ExprMatch(ref le, ref la, ref ls), &ExprMatch(ref re, ref ra, ref rs)) => { |
| ls == rs && self.eq_expr(le, re) && |
| over(la, ra, |l, r| { |
| self.eq_expr(&l.body, &r.body) && both(&l.guard, &r.guard, |l, r| self.eq_expr(l, r)) && |
| over(&l.pats, &r.pats, |l, r| self.eq_pat(l, r)) |
| }) |
| }, |
| (&ExprMethodCall(ref l_path, _, ref l_args), &ExprMethodCall(ref r_path, _, ref r_args)) => { |
| !self.ignore_fn && l_path == r_path && self.eq_exprs(l_args, r_args) |
| }, |
| (&ExprRepeat(ref le, ll_id), &ExprRepeat(ref re, rl_id)) => { |
| self.eq_expr(le, re) && |
| self.eq_expr(&self.cx.tcx.hir.body(ll_id).value, &self.cx.tcx.hir.body(rl_id).value) |
| }, |
| (&ExprRet(ref l), &ExprRet(ref r)) => both(l, r, |l, r| self.eq_expr(l, r)), |
| (&ExprPath(ref l), &ExprPath(ref r)) => self.eq_qpath(l, r), |
| (&ExprStruct(ref l_path, ref lf, ref lo), &ExprStruct(ref r_path, ref rf, ref ro)) => { |
| self.eq_qpath(l_path, r_path) && both(lo, ro, |l, r| self.eq_expr(l, r)) && |
| over(lf, rf, |l, r| self.eq_field(l, r)) |
| }, |
| (&ExprTup(ref l_tup), &ExprTup(ref r_tup)) => self.eq_exprs(l_tup, r_tup), |
| (&ExprTupField(ref le, li), &ExprTupField(ref re, ri)) => li.node == ri.node && self.eq_expr(le, re), |
| (&ExprUnary(l_op, ref le), &ExprUnary(r_op, ref re)) => l_op == r_op && self.eq_expr(le, re), |
| (&ExprArray(ref l), &ExprArray(ref r)) => self.eq_exprs(l, r), |
| (&ExprWhile(ref lc, ref lb, ref ll), &ExprWhile(ref rc, ref rb, ref rl)) => { |
| self.eq_expr(lc, rc) && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.node.as_str() == r.node.as_str()) |
| }, |
| _ => false, |
| } |
| } |
| |
| fn eq_exprs(&self, left: &P<[Expr]>, right: &P<[Expr]>) -> bool { |
| over(left, right, |l, r| self.eq_expr(l, r)) |
| } |
| |
| fn eq_field(&self, left: &Field, right: &Field) -> bool { |
| left.name.node == right.name.node && self.eq_expr(&left.expr, &right.expr) |
| } |
| |
| fn eq_lifetime(&self, left: &Lifetime, right: &Lifetime) -> bool { |
| left.name == right.name |
| } |
| |
| /// Check whether two patterns are the same. |
| pub fn eq_pat(&self, left: &Pat, right: &Pat) -> bool { |
| match (&left.node, &right.node) { |
| (&PatKind::Box(ref l), &PatKind::Box(ref r)) => self.eq_pat(l, r), |
| (&PatKind::TupleStruct(ref lp, ref la, ls), &PatKind::TupleStruct(ref rp, ref ra, rs)) => { |
| self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs |
| }, |
| (&PatKind::Binding(ref lb, _, ref li, ref lp), &PatKind::Binding(ref rb, _, ref ri, ref rp)) => { |
| lb == rb && li.node.as_str() == ri.node.as_str() && both(lp, rp, |l, r| self.eq_pat(l, r)) |
| }, |
| (&PatKind::Path(ref l), &PatKind::Path(ref r)) => self.eq_qpath(l, r), |
| (&PatKind::Lit(ref l), &PatKind::Lit(ref r)) => self.eq_expr(l, r), |
| (&PatKind::Tuple(ref l, ls), &PatKind::Tuple(ref r, rs)) => { |
| ls == rs && over(l, r, |l, r| self.eq_pat(l, r)) |
| }, |
| (&PatKind::Range(ref ls, ref le, ref li), &PatKind::Range(ref rs, ref re, ref ri)) => { |
| self.eq_expr(ls, rs) && self.eq_expr(le, re) && (*li == *ri) |
| }, |
| (&PatKind::Ref(ref le, ref lm), &PatKind::Ref(ref re, ref rm)) => lm == rm && self.eq_pat(le, re), |
| (&PatKind::Slice(ref ls, ref li, ref le), &PatKind::Slice(ref rs, ref ri, ref re)) => { |
| over(ls, rs, |l, r| self.eq_pat(l, r)) && over(le, re, |l, r| self.eq_pat(l, r)) && |
| both(li, ri, |l, r| self.eq_pat(l, r)) |
| }, |
| (&PatKind::Wild, &PatKind::Wild) => true, |
| _ => false, |
| } |
| } |
| |
| fn eq_qpath(&self, left: &QPath, right: &QPath) -> bool { |
| match (left, right) { |
| (&QPath::Resolved(ref lty, ref lpath), &QPath::Resolved(ref rty, ref rpath)) => { |
| both(lty, rty, |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath) |
| }, |
| (&QPath::TypeRelative(ref lty, ref lseg), &QPath::TypeRelative(ref rty, ref rseg)) => { |
| self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg) |
| }, |
| _ => false, |
| } |
| } |
| |
| fn eq_path(&self, left: &Path, right: &Path) -> bool { |
| left.is_global() == right.is_global() && |
| over(&left.segments, &right.segments, |l, r| self.eq_path_segment(l, r)) |
| } |
| |
| fn eq_path_parameters(&self, left: &PathParameters, right: &PathParameters) -> bool { |
| if !(left.parenthesized || right.parenthesized) { |
| over(&left.lifetimes, &right.lifetimes, |l, r| self.eq_lifetime(l, r)) && |
| over(&left.types, &right.types, |l, r| self.eq_ty(l, r)) && |
| over(&left.bindings, &right.bindings, |l, r| self.eq_type_binding(l, r)) |
| } else if left.parenthesized && right.parenthesized { |
| over(left.inputs(), right.inputs(), |l, r| self.eq_ty(l, r)) && |
| both(&Some(&left.bindings[0].ty), &Some(&right.bindings[0].ty), |l, r| self.eq_ty(l, r)) |
| } else { |
| false |
| } |
| } |
| |
| fn eq_path_segment(&self, left: &PathSegment, right: &PathSegment) -> bool { |
| // The == of idents doesn't work with different contexts, |
| // we have to be explicit about hygiene |
| left.name.as_str() == right.name.as_str() && self.eq_path_parameters(&left.parameters, &right.parameters) |
| } |
| |
| fn eq_ty(&self, left: &Ty, right: &Ty) -> bool { |
| match (&left.node, &right.node) { |
| (&TySlice(ref l_vec), &TySlice(ref r_vec)) => self.eq_ty(l_vec, r_vec), |
| (&TyArray(ref lt, ll_id), &TyArray(ref rt, rl_id)) => { |
| self.eq_ty(lt, rt) && |
| self.eq_expr(&self.cx.tcx.hir.body(ll_id).value, &self.cx.tcx.hir.body(rl_id).value) |
| }, |
| (&TyPtr(ref l_mut), &TyPtr(ref r_mut)) => l_mut.mutbl == r_mut.mutbl && self.eq_ty(&*l_mut.ty, &*r_mut.ty), |
| (&TyRptr(_, ref l_rmut), &TyRptr(_, ref r_rmut)) => { |
| l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(&*l_rmut.ty, &*r_rmut.ty) |
| }, |
| (&TyPath(ref l), &TyPath(ref r)) => self.eq_qpath(l, r), |
| (&TyTup(ref l), &TyTup(ref r)) => over(l, r, |l, r| self.eq_ty(l, r)), |
| (&TyInfer, &TyInfer) => true, |
| _ => false, |
| } |
| } |
| |
| fn eq_type_binding(&self, left: &TypeBinding, right: &TypeBinding) -> bool { |
| left.name == right.name && self.eq_ty(&left.ty, &right.ty) |
| } |
| } |
| |
| fn swap_binop<'a>(binop: BinOp_, lhs: &'a Expr, rhs: &'a Expr) -> Option<(BinOp_, &'a Expr, &'a Expr)> { |
| match binop { |
| BiAdd | BiMul | BiBitXor | BiBitAnd | BiEq | BiNe | BiBitOr => Some((binop, rhs, lhs)), |
| BiLt => Some((BiGt, rhs, lhs)), |
| BiLe => Some((BiGe, rhs, lhs)), |
| BiGe => Some((BiLe, rhs, lhs)), |
| BiGt => Some((BiLt, rhs, lhs)), |
| BiShl | BiShr | BiRem | BiSub | BiDiv | BiAnd | BiOr => None, |
| } |
| } |
| |
| /// Check if the two `Option`s are both `None` or some equal values as per |
| /// `eq_fn`. |
| fn both<X, F>(l: &Option<X>, r: &Option<X>, mut eq_fn: F) -> bool |
| where |
| F: FnMut(&X, &X) -> bool, |
| { |
| l.as_ref().map_or_else(|| r.is_none(), |x| { |
| r.as_ref().map_or(false, |y| eq_fn(x, y)) |
| }) |
| } |
| |
| /// Check if two slices are equal as per `eq_fn`. |
| fn over<X, F>(left: &[X], right: &[X], mut eq_fn: F) -> bool |
| where |
| F: FnMut(&X, &X) -> bool, |
| { |
| left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y)) |
| } |
| |
| |
| /// Type used to hash an ast element. This is different from the `Hash` trait |
| /// on ast types as this |
| /// trait would consider IDs and spans. |
| /// |
| /// All expressions kind are hashed, but some might have a weaker hash. |
| pub struct SpanlessHash<'a, 'tcx: 'a> { |
| /// Context used to evaluate constant expressions. |
| cx: &'a LateContext<'a, 'tcx>, |
| s: DefaultHasher, |
| } |
| |
| impl<'a, 'tcx: 'a> SpanlessHash<'a, 'tcx> { |
| pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self { |
| Self { |
| cx: cx, |
| s: DefaultHasher::new(), |
| } |
| } |
| |
| pub fn finish(&self) -> u64 { |
| self.s.finish() |
| } |
| |
| pub fn hash_block(&mut self, b: &Block) { |
| for s in &b.stmts { |
| self.hash_stmt(s); |
| } |
| |
| if let Some(ref e) = b.expr { |
| self.hash_expr(e); |
| } |
| |
| b.rules.hash(&mut self.s); |
| } |
| |
| pub fn hash_expr(&mut self, e: &Expr) { |
| if let Some(e) = constant(self.cx, e) { |
| return e.hash(&mut self.s); |
| } |
| |
| match e.node { |
| ExprAddrOf(m, ref e) => { |
| let c: fn(_, _) -> _ = ExprAddrOf; |
| c.hash(&mut self.s); |
| m.hash(&mut self.s); |
| self.hash_expr(e); |
| }, |
| ExprAgain(i) => { |
| let c: fn(_) -> _ = ExprAgain; |
| c.hash(&mut self.s); |
| if let Some(i) = i.ident { |
| self.hash_name(&i.node.name); |
| } |
| }, |
| ExprAssign(ref l, ref r) => { |
| let c: fn(_, _) -> _ = ExprAssign; |
| c.hash(&mut self.s); |
| self.hash_expr(l); |
| self.hash_expr(r); |
| }, |
| ExprAssignOp(ref o, ref l, ref r) => { |
| let c: fn(_, _, _) -> _ = ExprAssignOp; |
| c.hash(&mut self.s); |
| o.hash(&mut self.s); |
| self.hash_expr(l); |
| self.hash_expr(r); |
| }, |
| ExprBlock(ref b) => { |
| let c: fn(_) -> _ = ExprBlock; |
| c.hash(&mut self.s); |
| self.hash_block(b); |
| }, |
| ExprBinary(op, ref l, ref r) => { |
| let c: fn(_, _, _) -> _ = ExprBinary; |
| c.hash(&mut self.s); |
| op.node.hash(&mut self.s); |
| self.hash_expr(l); |
| self.hash_expr(r); |
| }, |
| ExprBreak(i, ref j) => { |
| let c: fn(_, _) -> _ = ExprBreak; |
| c.hash(&mut self.s); |
| if let Some(i) = i.ident { |
| self.hash_name(&i.node.name); |
| } |
| if let Some(ref j) = *j { |
| self.hash_expr(&*j); |
| } |
| }, |
| ExprBox(ref e) => { |
| let c: fn(_) -> _ = ExprBox; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| }, |
| ExprCall(ref fun, ref args) => { |
| let c: fn(_, _) -> _ = ExprCall; |
| c.hash(&mut self.s); |
| self.hash_expr(fun); |
| self.hash_exprs(args); |
| }, |
| ExprCast(ref e, ref _ty) => { |
| let c: fn(_, _) -> _ = ExprCast; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| // TODO: _ty |
| }, |
| ExprClosure(cap, _, eid, _) => { |
| let c: fn(_, _, _, _) -> _ = ExprClosure; |
| c.hash(&mut self.s); |
| cap.hash(&mut self.s); |
| self.hash_expr(&self.cx.tcx.hir.body(eid).value); |
| }, |
| ExprField(ref e, ref f) => { |
| let c: fn(_, _) -> _ = ExprField; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| self.hash_name(&f.node); |
| }, |
| ExprIndex(ref a, ref i) => { |
| let c: fn(_, _) -> _ = ExprIndex; |
| c.hash(&mut self.s); |
| self.hash_expr(a); |
| self.hash_expr(i); |
| }, |
| ExprInlineAsm(..) => { |
| let c: fn(_, _, _) -> _ = ExprInlineAsm; |
| c.hash(&mut self.s); |
| }, |
| ExprIf(ref cond, ref t, ref e) => { |
| let c: fn(_, _, _) -> _ = ExprIf; |
| c.hash(&mut self.s); |
| self.hash_expr(cond); |
| self.hash_expr(&**t); |
| if let Some(ref e) = *e { |
| self.hash_expr(e); |
| } |
| }, |
| ExprLit(ref l) => { |
| let c: fn(_) -> _ = ExprLit; |
| c.hash(&mut self.s); |
| l.hash(&mut self.s); |
| }, |
| ExprLoop(ref b, ref i, _) => { |
| let c: fn(_, _, _) -> _ = ExprLoop; |
| c.hash(&mut self.s); |
| self.hash_block(b); |
| if let Some(i) = *i { |
| self.hash_name(&i.node); |
| } |
| }, |
| ExprMatch(ref e, ref arms, ref s) => { |
| let c: fn(_, _, _) -> _ = ExprMatch; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| |
| for arm in arms { |
| // TODO: arm.pat? |
| if let Some(ref e) = arm.guard { |
| self.hash_expr(e); |
| } |
| self.hash_expr(&arm.body); |
| } |
| |
| s.hash(&mut self.s); |
| }, |
| ExprMethodCall(ref path, ref _tys, ref args) => { |
| let c: fn(_, _, _) -> _ = ExprMethodCall; |
| c.hash(&mut self.s); |
| self.hash_name(&path.name); |
| self.hash_exprs(args); |
| }, |
| ExprRepeat(ref e, l_id) => { |
| let c: fn(_, _) -> _ = ExprRepeat; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| self.hash_expr(&self.cx.tcx.hir.body(l_id).value); |
| }, |
| ExprRet(ref e) => { |
| let c: fn(_) -> _ = ExprRet; |
| c.hash(&mut self.s); |
| if let Some(ref e) = *e { |
| self.hash_expr(e); |
| } |
| }, |
| ExprPath(ref qpath) => { |
| let c: fn(_) -> _ = ExprPath; |
| c.hash(&mut self.s); |
| self.hash_qpath(qpath); |
| }, |
| ExprStruct(ref path, ref fields, ref expr) => { |
| let c: fn(_, _, _) -> _ = ExprStruct; |
| c.hash(&mut self.s); |
| |
| self.hash_qpath(path); |
| |
| for f in fields { |
| self.hash_name(&f.name.node); |
| self.hash_expr(&f.expr); |
| } |
| |
| if let Some(ref e) = *expr { |
| self.hash_expr(e); |
| } |
| }, |
| ExprTup(ref tup) => { |
| let c: fn(_) -> _ = ExprTup; |
| c.hash(&mut self.s); |
| self.hash_exprs(tup); |
| }, |
| ExprTupField(ref le, li) => { |
| let c: fn(_, _) -> _ = ExprTupField; |
| c.hash(&mut self.s); |
| |
| self.hash_expr(le); |
| li.node.hash(&mut self.s); |
| }, |
| ExprType(ref e, ref _ty) => { |
| let c: fn(_, _) -> _ = ExprType; |
| c.hash(&mut self.s); |
| self.hash_expr(e); |
| // TODO: _ty |
| }, |
| ExprUnary(lop, ref le) => { |
| let c: fn(_, _) -> _ = ExprUnary; |
| c.hash(&mut self.s); |
| |
| lop.hash(&mut self.s); |
| self.hash_expr(le); |
| }, |
| ExprArray(ref v) => { |
| let c: fn(_) -> _ = ExprArray; |
| c.hash(&mut self.s); |
| |
| self.hash_exprs(v); |
| }, |
| ExprWhile(ref cond, ref b, l) => { |
| let c: fn(_, _, _) -> _ = ExprWhile; |
| c.hash(&mut self.s); |
| |
| self.hash_expr(cond); |
| self.hash_block(b); |
| if let Some(l) = l { |
| self.hash_name(&l.node); |
| } |
| }, |
| } |
| } |
| |
| pub fn hash_exprs(&mut self, e: &P<[Expr]>) { |
| for e in e { |
| self.hash_expr(e); |
| } |
| } |
| |
| pub fn hash_name(&mut self, n: &Name) { |
| n.as_str().hash(&mut self.s); |
| } |
| |
| pub fn hash_qpath(&mut self, p: &QPath) { |
| match *p { |
| QPath::Resolved(_, ref path) => { |
| self.hash_path(path); |
| }, |
| QPath::TypeRelative(_, ref path) => { |
| self.hash_name(&path.name); |
| }, |
| } |
| // self.cx.tables.qpath_def(p, id).hash(&mut self.s); |
| } |
| |
| pub fn hash_path(&mut self, p: &Path) { |
| p.is_global().hash(&mut self.s); |
| for p in &p.segments { |
| self.hash_name(&p.name); |
| } |
| } |
| |
| pub fn hash_stmt(&mut self, b: &Stmt) { |
| match b.node { |
| StmtDecl(ref decl, _) => { |
| let c: fn(_, _) -> _ = StmtDecl; |
| c.hash(&mut self.s); |
| |
| if let DeclLocal(ref local) = decl.node { |
| if let Some(ref init) = local.init { |
| self.hash_expr(init); |
| } |
| } |
| }, |
| StmtExpr(ref expr, _) => { |
| let c: fn(_, _) -> _ = StmtExpr; |
| c.hash(&mut self.s); |
| self.hash_expr(expr); |
| }, |
| StmtSemi(ref expr, _) => { |
| let c: fn(_, _) -> _ = StmtSemi; |
| c.hash(&mut self.s); |
| self.hash_expr(expr); |
| }, |
| } |
| } |
| } |